Keng M, Merz KM. In Silico Characterization of Glycan Ions from IM-MS Collision Cross Section.
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025;
36:504-513. [PMID:
39928852 PMCID:
PMC11887428 DOI:
10.1021/jasms.4c00370]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 02/12/2025]
Abstract
Ion mobility mass spectrometry (IM-MS) can assist in the identification of isobaric chemical analytes by exploiting the difference in their gas phase collision cross-section (CCS) property. In glycomics, reliable glycan characterization remains challenging, even with IM-MS, because of closely related isomeric species and the available binding arrangements of substituted monosaccharides, allowing for the formation of complex structures. Here, we present a computational procedure to obtain gas-phase structural information from the experimental IM-MS CCS data of carbohydrates. The workflow proceeds with high throughput charge modeling of glycan seed structures to determine the precise protonation or deprotonation site. The charge models were then screened by using density functional theory (DFT) to produce candidate charge states for conformation generation. An extensive conformational scoring of the glycan ions was performed quantum mechanically at the DFT D3-B3LYP/6-31G+(d,p) level for the negative mode, [M - H]-, and at the D3-B3LYP/6-31G(d,p) level for the positive mode, [M + H]+. For most of our test set, the computed CCS values from the final geometry optimized structures showed good agreement with experiment. We also demonstrated the capability of characterizing configurational and constitutional isomeric species. Altogether, we believe that the method we used in this work can be used to build a reliable theoretical reference database for glycans that can be used for experimental quality control and for assigning molecular structure to experimental IM-MS CCS information.
Collapse