1
|
Jodeiri Farshbaf M, Alviña K. Multiple Roles in Neuroprotection for the Exercise Derived Myokine Irisin. Front Aging Neurosci 2021; 13:649929. [PMID: 33935687 PMCID: PMC8086837 DOI: 10.3389/fnagi.2021.649929] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Exercise has multiple beneficial effects on health including decreasing the risk of neurodegenerative diseases. Such effects are thought to be mediated (at least in part) by myokines, a collection of cytokines and other small proteins released from skeletal muscles. As an endocrine organ, skeletal muscle synthesizes and secretes a wide range of myokines which contribute to different functions in different organs, including the brain. One such myokine is the recently discovered protein Irisin, which is secreted into circulation from skeletal muscle during exercise from its membrane bound precursor Fibronectin type III domain-containing protein 5 (FNDC5). Irisin contributes to metabolic processes such as glucose homeostasis and browning of white adipose tissue. Irisin also crosses the blood brain barrier and initiates a neuroprotective genetic program in the hippocampus that culminates with increased expression of brain derived neurotrophic factor (BDNF). Furthermore, exercise and FNDC5/Irisin have been shown to have several neuroprotective effects against injuries in ischemia and neurodegenerative disease models, including Alzheimer's disease. In addition, Irisin has anxiolytic and antidepressant effects. In this review we present and summarize recent findings on the multiple effects of Irisin on neural function, including signaling pathways and mechanisms involved. We also discuss how exercise can positively influence brain function and mental health via the "skeletal muscle-brain axis." While there are still many unanswered questions, we put forward the idea that Irisin is a potentially essential mediator of the skeletal muscle-brain crosstalk.
Collapse
|
Review |
4 |
58 |
2
|
Jodeiri Farshbaf M, Ghaedi K, Megraw TL, Curtiss J, Shirani Faradonbeh M, Vaziri P, Nasr-Esfahani MH. Does PGC1α/FNDC5/BDNF Elicit the Beneficial Effects of Exercise on Neurodegenerative Disorders? Neuromolecular Med 2015; 18:1-15. [PMID: 26611102 DOI: 10.1007/s12017-015-8370-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/22/2015] [Indexed: 12/20/2022]
Abstract
Neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases have high prevalence among the elderly. Many strategies have been established to alleviate the symptoms experienced by affected individuals. Recent studies have shown that exercise helps patients with neurological disorders to regain lost physical abilities. PGC1α/FNDC5/BDNF has emerged recently as a critical pathway for neuroprotection. PGC1α is a highly conserved co-activator of transcription factors that preserves and protects neurons against destruction. PGC1α regulates FNDC5 and its processed and secreted peptide Irisin, which has been proposed to play a critical role in energy expenditure and to promote neural differentiation of mouse embryonic stem cells. FNDC5 may also increase the expression of the neurotrophic factor BDNF, a neuroprotective agent, in the hippocampus. BDNF is secreted from hippocampus, amygdala, cerebral cortex and hypothalamus neurons and initiates intracellular signaling pathways through TrkB receptors. These pathways have positive feedback on CREB activities and lead to enhancement in PGC1α expression in neurons. Therefore, FNDC5 could behave as a key regulator in neuronal survival and development. This review presents recent findings on the PGC1α/FNDC5/BDNF pathway and its role in neuroprotection, and discusses the controversial promise of irisin as a mediator of the positive benefits of exercise.
Collapse
|
Review |
10 |
57 |
3
|
Yousefi R, Ostadabbas S, Faezipour M, Farshbaf M, Nourani M, Tamil L, Pompeo M. Bed posture classification for pressure ulcer prevention. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:7175-8. [PMID: 22255993 DOI: 10.1109/iembs.2011.6091813] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Pressure ulcer is an age-old problem imposing a huge cost to our health care system. Detecting and keeping record of the patient's posture on bed, help care givers reposition patient more efficiently and reduce the risk of developing pressure ulcer. In this paper, a commercial pressure mapping system is used to create a time-stamped, whole-body pressure map of the patient. An image-based processing algorithm is developed to keep an unobtrusive and informative record of patient's bed posture over time. The experimental results show that proposed algorithm can predict patient's bed posture with up to 97.7% average accuracy. This algorithm could ultimately be used with current support surface technologies to reduce the risk of ulcer development.
Collapse
|
Journal Article |
13 |
55 |
4
|
Forouzanfar M, Rabiee F, Ghaedi K, Beheshti S, Tanhaei S, Shoaraye Nejati A, Jodeiri Farshbaf M, Baharvand H, Nasr-Esfahani MH. Fndc5overexpression facilitated neural differentiation of mouse embryonic stem cells. Cell Biol Int 2015; 39:629-37. [DOI: 10.1002/cbin.10427] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 12/19/2014] [Indexed: 11/06/2022]
|
|
10 |
41 |
5
|
Jodeiri Farshbaf M, Kiani-Esfahani A. Succinate dehydrogenase: Prospect for neurodegenerative diseases. Mitochondrion 2017; 42:77-83. [PMID: 29225013 DOI: 10.1016/j.mito.2017.12.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 11/25/2017] [Accepted: 12/06/2017] [Indexed: 12/13/2022]
Abstract
Onset of Alzheimer's, Parkinson's and Huntington's diseases as neurodegenerative disorders is increased by age. Alleviation of clinical symptoms and protection of neurons against degeneration are the main aspects of researches to establish new therapeutic strategies. Many studies have shown that mitochondria play crucial roles in high energy demand tissues like brain. Impairments in mitochondrial activity and physiology can makes neurons vulnerable to stress and degeneration. Succinate dehydrogenase (SDH) connects tricarboxylic cycle to the electron transport chain. Therefore, dysfunction of the SDH could impair mitochondrial activity, ATP generation and energy hemostasis in the cell. Exceed lipid synthesis, induction of the excitotoxicity in neurodegenerative disorders could be controlled by SDH through direct and indirect mechanism. In addition, mutation in SDH correlates with the onset of neurodegenerative disorders. Therefore, SDH could behave as a key regulator in neuroprotection. This review will present recent findings which are about SDH activity and related pathways which could play important roles in neuronal survival. Additionally, we will discuss about all possibilities which candidate SDH as a neuroprotective agent.
Collapse
|
Review |
8 |
39 |
6
|
Farshbaf MJ, Ghaedi K, Shirani M, Nasr-Esfahani MH. Peroxisome proliferator activated receptor gamma (PPARγ) as a therapeutic target for improvement of cognitive performance in Fragile-X. Med Hypotheses 2013; 82:291-4. [PMID: 24456944 DOI: 10.1016/j.mehy.2013.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 12/03/2013] [Accepted: 12/18/2013] [Indexed: 02/07/2023]
Abstract
Rare disorders leading to intellectual disability, such as Fragile X syndrome (FXS) alter synaptic plasticity. Ligand identification of orphan nuclear receptors has led to the discovery of many signaling pathways and has revealed a direct link of nuclear receptors with human conditions such as mental retardation and neurodegenerative diseases. PPARγ agonists can act as neuroprotective agents, promoting synaptic plasticity and neurite outgrowth. Therefore, selective PPARγ agonists are good candidates for therapeutic evaluation in intellectual disabilities. Preliminary results suggest that PPARγ agonists such as Pioglitazone, Rosiglitazone and synthetic agonist, GW1929, are used as the therapeutic agent in neurological disorders. These components interact with intracellular transduction signals (e.g. GSK3β, PI3K/Akt, Wnt/β-Catenin, Rac1 and MMP-9). It seems that interaction with these pathways can improve memory recognition in FXS animal models. The present hypothesis consists of enhancing synaptic plasticity that may then rescue the learning and memory in FXS. This will open many new therapeutic avenues for a variety of human diseases.
Collapse
|
Journal Article |
12 |
17 |
7
|
Alviña K, Jodeiri Farshbaf M, Mondal AK. Long term effects of stress on hippocampal function: Emphasis on early life stress paradigms and potential involvement of neuropeptide Y. J Neurosci Res 2021; 99:57-66. [PMID: 32162350 DOI: 10.1002/jnr.24614] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/06/2020] [Accepted: 02/27/2020] [Indexed: 01/06/2023]
Abstract
The brain is both central in orchestrating the response to stress, and, a very sensitive target when such response is not controlled. In fact, stress has long been associated with the onset and/or exacerbation of several neuropsychiatric disorders such as anxiety, depression, and drug addiction. The hippocampus is a key brain region involved in the response to stress, not only due to its anatomical connections with the hypothalamic-pituitary-adrenal axis but also as a major target of stress mediators. The hippocampal dentate gyrus (DG)-CA3 circuit, composed of DG granule cells axons (mossy fibers) synapsing onto CA3 pyramidal cells, plays an essential role in memory encoding and retrieval, functions that are vulnerable to stress. Although naturally excitatory, this circuit is under the inhibitory control of GABAergic interneurons that maintain the excitation/inhibition balance. One subgroup of such interneurons produces neuropeptide Y (NPY), which has emerged as a promising endogenous stress "resilience molecule" due to its anxiolytic and anti-epileptic properties. Here we examine existing evidence that reveals a potential role for hilar NPY+ interneurons in mediating stress-induced changes in hippocampal function. We will focus specifically on rodent models of early life stress (ELS), defined as adverse conditions during the early postnatal period that can have profound consequences for neurodevelopment. Collectively, these findings suggest that the long-lasting effects of ELS might stem from the loss of GABAergic NPY+ cells, which then can lead to reduced inhibition in the DG-CA3 pathway. Such change might then lead to hyperexcitability and concomitant hippocampal-dependent behavioral deficits.
Collapse
|
Review |
4 |
13 |
8
|
Ashraf-Uz-Zaman M, Shahi S, Akwii R, Sajib MS, Farshbaf MJ, Kallem RR, Putnam W, Wang W, Zhang R, Alvina K, Trippier PC, Mikelis CM, German NA. Design, synthesis and structure-activity relationship study of novel urea compounds as FGFR1 inhibitors to treat metastatic triple-negative breast cancer. Eur J Med Chem 2021; 209:112866. [PMID: 33039722 PMCID: PMC7744370 DOI: 10.1016/j.ejmech.2020.112866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive type of cancer characterized by higher metastatic and reoccurrence rates, where approximately one-third of TNBC patients suffer from the metastasis in the brain. At the same time, TNBC shows good responses to chemotherapy, a feature that fuels the search for novel compounds with therapeutic potential in this area. Recently, we have identified novel urea-based compounds with cytotoxicity against selected cell lines and with the ability to cross the blood-brain barrier in vivo. We have synthesized and analyzed a library of more than 40 compounds to elucidate the key features responsible for the observed activity. We have also identified FGFR1 as a molecular target that is affected by the presence of these compounds, confirming our data using in silico model. Overall, we envision that these compounds can be further developed for the potential treatment of metastatic breast cancer.
Collapse
|
research-article |
4 |
8 |
9
|
Jodeiri Farshbaf M, Garasia S, Moussoki DPK, Mondal AK, Cherkowsky D, Manal N, Alviña K. Hippocampal injection of the exercise-induced myokine irisin suppresses acute stress-induced neurobehavioral impairment in a sex-dependent manner. Behav Neurosci 2021; 134:233-247. [PMID: 32437197 DOI: 10.1037/bne0000367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Stress disrupts a variety of neural processes, including reducing levels of brain-derived neurotrophic factor (BDNF) in the hippocampus. In contrast, exercise increases BDNF and is beneficial for health and cognition. Irisin is a myokine that is released into circulation during exercise. Although its main known functions are browning white adipose tissue and improving glucose homeostasis, Irisin also mediates the activation of an exercise-induced BDNF-mediated neuroprotective pathway in the hippocampus. Therefore, we tested the hypothesis that Irisin can counteract the deleterious effects of acute stress when directly injected into the hippocampus. To test our hypothesis, we used a 3-hr long physical restraint stress event in adult female and male mice. Acute stress resulted in sex-dependent increased anxiety-like behaviors and memory impairment in a combined open field/novel object recognition (OF/NOR) test, affecting male mice only. Moreover, acute stress also reduced skin temperature and body weight in both females and males. We then injected Irisin into the hippocampus via bilateral stereotaxic injection and repeated the acute stress paradigm and combined OF/NOR test. We found that Irisin partially blocked stress-induced anxiety-like behavior and memory impairment in male mice, while also preventing the reduction in skin temperature and body weight. In females Irisin only prevented the body weight reduction but showed no beneficial effects on neurobehaviors. Our results suggest a novel role for Irisin in counteracting acute stress-induced neurobehavioral and physiological abnormalities. Also, our results support the idea that exercise can be a potentially effective tool to promote the maintenance of healthy neural function. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Collapse
|
Journal Article |
4 |
8 |
10
|
Jodeiri Farshbaf M, Matos TA, Niblo K, Alokam Y, Ables JL. STZ-induced hyperglycemia differentially influences mitochondrial distribution and morphology in the habenulointerpeduncular circuit. Front Cell Neurosci 2024; 18:1432887. [PMID: 39763617 PMCID: PMC11700986 DOI: 10.3389/fncel.2024.1432887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/29/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Diabetes is a metabolic disorder of glucose homeostasis that is a significant risk factor for neurodegenerative diseases, such as Alzheimer's disease, as well as mood disorders, which often precede neurodegenerative conditions. We examined the medial habenulainterpeduncular nucleus (MHb-IPN), as this circuit plays crucial roles in mood regulation, has been linked to the development of diabetes after smoking, and is rich in cholinergic neurons, which are affected in other brain areas in Alzheimer's disease. Methods This study aimed to investigate the impact of streptozotocin (STZ)-induced hyperglycemia, a type 1 diabetes model, on mitochondrial and lipid homeostasis in 4% paraformaldehyde-fixed sections from the MHb and IPN of C57BL/6 J male mice, using a recently developed automated pipeline for mitochondrial analysis in confocal images. We examined different time points after STZ-induced diabetes onset to determine how the brain responded to chronic hyperglycemia, with the limitation that mitochondria and lipids were not examined with respect to cell type or intracellular location. Results Mitochondrial distribution and morphology differentially responded to hyperglycemia depending on time and brain area. Six weeks after STZ treatment, mitochondria in the ventral MHb and dorsal IPN increased in number and exhibited altered morphology, but no changes were observed in the lateral habenula (LHb) or ventral IPN. Strikingly, mitochondrial numbers returned to normal dynamics at 12 weeks. Both blood glucose level and glycated hemoglobin (HbA1C) correlated with mitochondrial dynamics in ventral MHb, whereas only HbA1C correlated in the IPN. We also examined lipid homeostasis using BODIPY staining for neutral lipids in this model given that diabetes is associated with disrupted lipid homeostasis. BODIPY staining intensity was unchanged in the vMHb of STZ-treated mice but increased in the IPN and VTA and decreased in the LHb at 12 weeks. Interestingly, areas that demonstrated changes in mitochondria had little change in lipid staining and vice versa. Discussion This study is the first to describe the specific impacts of diabetes on mitochondria in the MHb-IPN circuit and suggests that the cholinergic MHb is uniquely sensitive to diabetesinduced hyperglycemia. Further studies are needed to understand the functional and behavioral implications of these findings.
Collapse
|
research-article |
1 |
|
11
|
Nwakama CA, Durand-de Cuttoli R, Oketokoun ZM, Brown SO, Haller JE, Méndez A, Farshbaf MJ, Cho YZ, Ahmed S, Leng S, Ables JL, Sweis BM. Diabetes alters neuroeconomically dissociable forms of mental accounting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574210. [PMID: 38260368 PMCID: PMC10802482 DOI: 10.1101/2024.01.04.574210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Those with diabetes mellitus are at high-risk of developing psychiatric disorders, yet the link between hyperglycemia and alterations in motivated behavior has not been explored in detail. We characterized value-based decision-making behavior of a streptozocin-induced diabetic mouse model on a naturalistic neuroeconomic foraging paradigm called Restaurant Row. Mice made self-paced choices while on a limited time-budget accepting or rejecting reward offers as a function of cost (delays cued by tone-pitch) and subjective value (flavors), tested daily in a closed-economy system across months. We found streptozocin-treated mice disproportionately undervalued less-preferred flavors and inverted their meal-consumption patterns shifted toward a more costly strategy that overprioritized high-value rewards. We discovered these foraging behaviors were driven by impairments in multiple decision-making systems, including the ability to deliberate when engaged in conflict and cache the value of the passage of time in the form of sunk costs. Surprisingly, diabetes-induced changes in behavior depended not only on the type of choice being made but also the salience of reward-scarcity in the environment. These findings suggest complex relationships between glycemic regulation and dissociable valuation algorithms underlying unique cognitive heuristics and sensitivity to opportunity costs can disrupt fundamentally distinct computational processes and could give rise to psychiatric vulnerabilities.
Collapse
|
Preprint |
1 |
|
12
|
Nwakama CA, Durand-de Cuttoli R, Oketokoun ZM, Brown SO, Haller JE, Méndez A, Jodeiri Farshbaf M, Cho YZ, Ahmed S, Leng S, Ables JL, Sweis BM. Neuroeconomically dissociable forms of mental accounting are altered in a mouse model of diabetes. Commun Biol 2025; 8:102. [PMID: 39838110 PMCID: PMC11751097 DOI: 10.1038/s42003-025-07500-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
Those with diabetes mellitus are at high-risk of developing psychiatric disorders, especially mood disorders, yet the link between hyperglycemia and altered motivation has not been thoroughly explored. Here, we characterized value-based decision-making behavior of a streptozocin-induced diabetic mouse model on Restaurant Row, a naturalistic neuroeconomic foraging paradigm capable of behaviorally capturing multiple decision systems known to depend on dissociable neural circuits. Mice made self-paced choices on a daily limited time-budget, accepting or rejecting reward offers based on cost (delays cued by tone pitch) and subjective value (flavors), in a closed-economy system tested across months. We found streptozocin-treated mice disproportionately undervalued less-preferred flavors and inverted their meal-consumption patterns shifted toward a more costly strategy overprioritizing high-value rewards. These foraging behaviors were driven by impairments in multiple decision-making processes, including the ability to deliberate when engaged in conflict and cache the value of the passage of time as sunk costs. Surprisingly, diabetes-induced changes in motivation depended not only on the type of choice being made, but also on the salience of reward-scarcity in the environment. These findings suggest that complex relationships between metabolic dysfunction and dissociable valuation algorithms underlying unique cognitive heuristics and sensitivity to opportunity costs can disrupt distinct computational processes leading to comorbid psychiatric vulnerabilities.
Collapse
|
research-article |
1 |
|