1
|
Abulsoud AI, El-Husseiny HM, El-Husseiny AA, El-Mahdy HA, Ismail A, Elkhawaga SY, Khidr EG, Fathi D, Mady EA, Najda A, Algahtani M, Theyab A, Alsharif KF, Albrakati A, Bayram R, Abdel-Daim MM, Doghish AS. Mutations in SARS-CoV-2: Insights on structure, variants, vaccines, and biomedical interventions. Biomed Pharmacother 2023; 157:113977. [PMID: 36370519 PMCID: PMC9637516 DOI: 10.1016/j.biopha.2022.113977] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
COVID-19 is a worldwide pandemic caused by SARS-coronavirus-2 (SARS-CoV-2). Less than a year after the emergence of the Covid-19 pandemic, many vaccines have arrived on the market with innovative technologies in the field of vaccinology. Based on the use of messenger RNA (mRNA) encoding the Spike SARS-Cov-2 protein or on the use of recombinant adenovirus vectors enabling the gene encoding the Spike protein to be introduced into our cells, these strategies make it possible to envisage the vaccination in a new light with tools that are more scalable than the vaccine strategies used so far. Faced with the appearance of new variants, which will gradually take precedence over the strain at the origin of the pandemic, these new strategies will allow a much faster update of vaccines to fight against these new variants, some of which may escape neutralization by vaccine antibodies. However, only a vaccination policy based on rapid and massive vaccination of the population but requiring a supply of sufficient doses could make it possible to combat the emergence of these variants. Indeed, the greater the number of infected individuals, the faster the virus multiplies, with an increased risk of the emergence of variants in these RNA viruses. This review will discuss SARS-CoV-2 pathophysiology and evolution approaches in altered transmission platforms and emphasize the different mutations and how they influence the virus characteristics. Also, this article summarizes the common vaccines and the implication of the mutations and genetic variety of SARS-CoV-2 on the COVID-19 biomedical arbitrations.
Collapse
|
Review |
2 |
79 |
2
|
Alhazzani K, Ahmad SF, Al-Harbi NO, Attia SM, Bakheet SA, Sarawi W, Alqarni SA, Algahtani M, Nadeem A. Pharmacological Inhibition of STAT3 by Stattic Ameliorates Clinical Symptoms and Reduces Autoinflammation in Myeloid, Lymphoid, and Neuronal Tissue Compartments in Relapsing-Remitting Model of Experimental Autoimmune Encephalomyelitis in SJL/J Mice. Pharmaceutics 2021; 13:pharmaceutics13070925. [PMID: 34206429 PMCID: PMC8308768 DOI: 10.3390/pharmaceutics13070925] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/17/2021] [Indexed: 11/22/2022] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated inflammatory disease that leads to demyelination and neuronal loss in the central nervous system. Immune cells of lymphoid and myeloid origin play a significant role in the initiation and amplification of neuronal inflammation in MS. STAT3 signaling plays a pivotal role in both myeloid and lymphoid immune cells, such as neutrophils and CD4+ T cells, through regulation of their inflammatory potential. Dysregulation in STAT3 signaling in myeloid and lymphoid cell compartments has been reported in MS. In this report, we attempted to investigate the effect of a small molecular inhibitor of STAT3, i.e., Stattic, in a relapsing–remitting (RR) model of experimental autoimmune encephalomyelitis (EAE). The effect of Stattic was investigated for clinical features, oxidative stress parameters, and Th17-related signaling in both the periphery and brain of SJL/J mice. Our data report that p-STAT3 expression is elevated in granulocytes, CD4+ T cells, and brain tissue in myelin proteolipid protein (PLP)-immunized SJL/J mice, which is associated with the presence of clinical symptoms and upregulation of inflammatory markers in these cells/tissues. Treatment with Stattic leads to the amelioration of disease symptoms and attenuation of inflammatory markers in neutrophils (iNOS/nitrotyrosine/IL-1β), CD4+ T cells (IL-17A/IL-23R), and brain tissue (IL-17A/iNOS/IL-1β/MPO activity/lipid peroxides) in mice with EAE. These data suggest that the blockade of STAT3 signaling in cells of lymphoid and myeloid origin may cause the attenuation of systemic and neuronal inflammation, which could be responsible for the amelioration of disease symptoms in an RR model of EAE. Therefore, pharmacological inhibition of STAT3 in RRMS could be a potential therapeutic strategy.
Collapse
|
Journal Article |
4 |
31 |
3
|
Theyab A, Algahtani M, Alsharif KF, Hawsawi YM, Alghamdi A, Alghamdi A, Akinwale J. New insight into the mechanism of granulocyte colony-stimulating factor (G-CSF) that induces the mobilization of neutrophils. ACTA ACUST UNITED AC 2021; 26:628-636. [PMID: 34494505 DOI: 10.1080/16078454.2021.1965725] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the past 20 years, granulocyte colony-stimulating factor (G-CSF) has driven the attention of researchers as a therapeutic agent for curing patients suffering from neutropenia. Despite the successful use of G-CSF, it currently requires daily injections, which are inconvenient, expensive, and distressing for children. Therefore, an alternative strategy for using G-CSF for treatment is needed. Understanding the G-CSF structure, expression, mechanism of action, and how it induces neutrophils mobilization is crucial to producing promising cancer therapy. The ability of G-CSF to mobilize hematopoietic stem cells from the bone marrow into the blood circulation was consequently exploited and altered the practice of hematopoietic stem cell transplantation. This is the motivation for the current review, which sheds light on the history of G-CSF and then focuses on the mechanism of action upon binding to its receptor (G-CSFR) and how that had led to the stimulation of neutrophils mobilization. The findings of this review show new insight into the mechanism of G-CSF that induces neutrophils mobilization. Thus, Understanding the G-CSF will provide a more effective treatment for all neutropenia patients.
Collapse
|
Historical Article |
4 |
30 |
4
|
Mahnashi MH, Mahmoud AM, Alhazzani K, Alanazi AZ, Alaseem AM, Algahtani MM, El-Wekil MM. Ultrasensitive and selective molecularly imprinted electrochemical oxaliplatin sensor based on a novel nitrogen-doped carbon nanotubes/Ag@cu MOF as a signal enhancer and reporter nanohybrid. Mikrochim Acta 2021; 188:124. [PMID: 33712895 DOI: 10.1007/s00604-021-04781-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/07/2021] [Indexed: 01/16/2023]
Abstract
A sensitive and selective molecular imprinted polymeric network (MIP) electrochemical sensor is proposed for the determination of anti-cancer drug oxaliplatin (OXAL). The polymeric network [poly(pyrrole)] was electrodeposited on a glassy carbon electrode (GCE) modified with silver nanoparticles (Ag) functionalized Cu-metal organic framework (Cu-BDC) and nitrogen-doped carbon nanotubes (N-CNTs). The MIP-Ag@Cu-BDC /N-CNTs/GCE showed an observable reduction peak at -0.14 V, which corresponds to the Cu-BDC reduction. This peak increased and decreased by eluting and rebinding of OXAL, respectively. The binding constant between OXAL and Cu-BDC was calculated to be 3.5 ± 0.1 × 107 mol-1 L. The electrochemical signal (∆i) increased with increasing OXAL concentration in the range 0.056-200 ng mL-1 with a limit of detection (LOD, S/N = 3) of 0.016 ng mL-1. The combination of N-CNTs and Ag@Cu-BDC improves both the conductivity and the anchoring sites for binding the polymer film on the surface of the electrode. The MIP-based electrochemical sensor offered outstanding sensitivity, selectivity, reproducibility, and stability. The MIP-Ag@Cu-BDC /N-CNTs/GCE was applied to determine OXAL in pharmaceutical injections, human plasma, and urine samples with good recoveries (97.5-105%) and acceptable relative standard deviations (RSDs = 1.8-3.2%). Factors affecting fabrication of MIP and OXAL determination were optimized using standard orthogonal design using L25 (56) matrix. This MIP based electrochemical sensor opens a new venue for the fabrication of other similar sensors and biosensors.
Collapse
|
|
4 |
25 |
5
|
Al-Brakati A, Albarakati AJA, Lokman MS, Theyab A, Algahtani M, Menshawi S, AlAmri OD, Al Omairi NE, Essawy EA, Kassab RB, Abdel Moneim AE. Possible Role of Kaempferol in Reversing Oxidative Damage, Inflammation, and Apoptosis-Mediated Cortical Injury Following Cadmium Exposure. Neurotox Res 2021; 39:198-209. [PMID: 33141427 DOI: 10.1007/s12640-020-00300-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 12/13/2022]
Abstract
Cadmium (Cd) is a heavy metal of considerable toxicity, inducing a number of hazardous effects to humans and animals including neurotoxicity. This experiment was aimed to investigate the potential effect of kaempferol (KPF) against Cd-induced cortical injury. Thirty-two adult Sprague-Dawley rats were divided equally into four groups. The control rats intraperitoneally (i.p.) injected with physiological saline (0.9% NaCl), the cadmium chloride (CdCl2)-treated rats were i.p. injected with 4.5 mg/kg of CdCl2, the KPF-treated rats were orally gavaged with 50 mg/kg of KPF, and the KPF + CdCl2-treated rats were administered orally 50 mg/kg of KPF 120 min before receiving i.p. injection of 4.5 mg/kg CdCl2. CdCl2 exposure for 30 days led to the accumulation of Cd in the cortical tissue, accompanied by a reduction in the content of monoamines and acetylcholinesterase activity. Additionally, CdCl2 induced a state of oxidative stress as evidenced by the elevation of lipid peroxidation and nitrate/nitrite levels, while glutathione content and the activities of glutathione peroxidase, glutathione reductase, superoxide dismutase, and catalase were decreased. Moreover, CdCl2 mediated inflammatory events in the cortical tissue through increasing tumor necrosis factor-alpha and interleukin-1 beta levels and upregulating the expression of inducible nitric oxide synthase. Furthermore, pro-apoptotic proteins (Bax and caspase-3) were elevated, while Bcl-2, the anti-apoptotic protein, was decreased. Also, histological alterations were observed obviously following CdCl2. However, KPF pretreatment restored significantly the examined markers to be near the normal values. Hence, the obtained data provide evidences that KPF pretreatment has the protective effect to preserve the cortical tissues in CdCl2-exposed rats by restraining oxidative stress, inflammatory response, apoptosis, neurochemical modulation, and improving the histological changes.
Collapse
|
|
4 |
21 |
6
|
Lokman MS, Zaafar D, Althagafi HA, Abdel Daim MM, Theyab A, Hasan Mufti A, Algahtani M, Habotta OA, Alghamdi AAA, Alsharif KF, Albrakati A, Oyouni AAA, Bauomy AA, Baty RS, Zhery AS, Hassan KE, Abdel Moneim AE, Kassab RB. Antiulcer activity of proanthocyanidins is mediated via suppression of oxidative, inflammatory, and apoptotic machineries. J Food Biochem 2022; 46:e14070. [PMID: 35034361 DOI: 10.1111/jfbc.14070] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/24/2022]
Abstract
Gastric ulcer (GU) is a lesion in the gastric mucosa associated with excessive oxidative damage, inflammatory response, apoptotic events, and irritation which may develop into cancer. However, medications commonly used in GU treatment cannot normalize gastric mucosa, while causing several adverse effects. Proanthocyanidins (PAs) are dietary flavonoids with numerous biological and pharmacological activities. In the current investigation, we studied the potential anti-ulcerative activity of PAs against acidified ethanol (HCl/ethanol)-caused gastric ulceration. Fifty male albino Wistar rats were allocated into five equal groups: control, HCl/ethanol (3 mL/kg), lansoprazole (LPZ, 30 mg/kg) + HCl/ethanol, and PAs (100 and 250 mg/kg) + HCl/ethanol. LPZ and PAs were applied one week before gastric ulcer induction. PAs pretreatment notably reduced gastric mucosal macroscopic and microscopic pathological changes in a dose-dependent manner. Additionally, PAs activated the innate antioxidant molecules including glutathione and its derived antioxidants (glutathione peroxidase and glutathione reductase), along with superoxide dismutase and catalase, while attenuating pro-oxidant formation, including malondialdehyde and nitric oxide. Interestingly, PAs supplementation at a higher dose suppressed gastric inflammatory and apoptotic responses, as demonstrated by the reduced levels of interleukin-1β, interleukin-6, tumor necrosis factor alpha, high-mobility group box 1, cyclooxygenase 2, prostaglandin E2, nuclear factor kappa-B, Bcl-2-associated X protein, and caspase-3, while B cell lymphoma 2 was elevated. Hence, PAs could exhibit antiulcer activity by protecting gastric tissue from the development of oxidative damage, inflammatory responses, and apoptosis events associated with ulceration. PRACTICAL IMPLICATIONS: Gastric ulcer is a lesion in the gastric mucosal layer associated with excessive inflammatory response, apoptotic events, oxidative damage, and irritation, and may develop into cancer with about 5%-10% morbidity rate. However, medications commonly used in GU treatment cannot normalize gastric mucosa, while causing several adverse effects. Therefore, new therapeutic approaches are needed to treat or prevent gastric ulceration. Proanthocyanidins (PAs, condensed tannins) are dietary flavonoids found in abundance in different plant species, including their fruits, bark, and seeds. Due to their potent antioxidative activity, PAs have been applied to prevent or treat oxidative stress-related diseases, including cancer, as well as metabolic, neurodegenerative, cardiovascular, and inflammatory disorders. Here, we examine the potential therapeutic role of proanthocyanidins (PAs) against acidified ethanol-induced gastric ulcer in rats through evaluating oxidative challenge, inflammatory response, apoptotic events, and histopathological changes in the gastric tissue.
Collapse
|
|
3 |
17 |
7
|
Kassab RB, Theyab A, Al-Ghamdy AO, Algahtani M, Mufti AH, Alsharif KF, Abdella EM, Habotta OA, Omran MM, Lokman MS, Bauomy AA, Albrakati A, Baty RS, Hassan KE, Alshiekheid MA, Abdel Moneim AE, Elmasry HA. Protocatechuic acid abrogates oxidative insults, inflammation, and apoptosis in liver and kidney associated with monosodium glutamate intoxication in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:12208-12221. [PMID: 34562213 DOI: 10.1007/s11356-021-16578-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Monosodium glutamate (MSG), a commonly used flavor enhancer, has been reported to induce hepatic and renal dysfunctions. In this study, the palliative role of protocatechuic acid (PCA) in MSG-administered rats was elucidated. Adult male rats were assigned to four groups, namely control, MSG (4 g/kg), PCA (100 mg/kg), and the last group was co-administered MSG and PCA at aforementioned doses for 7 days. Results showed that MSG augmented the hepatic and renal functions markers as well as glucose, triglycerides, total cholesterol, and low-density lipoprotein levels. Moreover, marked increases in malondialdehyde levels accompanied by declines in glutathione levels and notable decreases in the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase were observed in MSG-treated group. The MSG-mediated oxidative stress was further confirmed by downregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) gene expression levels in both tissues. In addition, MSG enhanced the hepatorenal inflammation as witnessed by increased inflammatory cytokines (interleukin-1b and tumor necrosis factor-α) and elevated nuclear factor-κB (NF-κB) levels. Further, significant increases in Bcl-2-associated X protein (Bax) levels together with decreases in B-cell lymphoma 2 (Bcl-2) levels were observed in MSG administration. Histopathological screening supported the biochemical and molecular findings. In contrast, co-treatment of rats with PCA resulted in remarkable enhancement of the antioxidant cellular capacity, suppression of inflammatory mediators, and apoptosis. These effects are possibly endorsed for activation of Nrf-2 and suppression of NF-kB signaling pathways. Collectively, addition of PCA counteracted MSG-induced hepatorenal injuries through modulation of oxidative, inflammatory and apoptotic alterations.
Collapse
|
|
3 |
14 |
8
|
Beg S, Malik AK, Ansari MJ, Malik AA, Ali AMA, Theyab A, Algahtani M, Almalki WH, Alharbi KS, Alenezi SK, Barkat MA, Rahman M, Choudhry H. Systematic Development of Solid Lipid Nanoparticles of Abiraterone Acetate with Improved Oral Bioavailability and Anticancer Activity for Prostate Carcinoma Treatment. ACS OMEGA 2022; 7:16968-16979. [PMID: 35647451 PMCID: PMC9134222 DOI: 10.1021/acsomega.1c07254] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/03/2022] [Indexed: 06/15/2023]
Abstract
In the present work, an attempt was undertaken to improve the oral bioavailability and anticancer activity of abiraterone acetate. Solid lipid nanoparticles (SLNs) were developed using the quality by design (QbD) principles and evaluated through in vitro, ex vivo, and in vivo studies. Solid lipid suitability was evaluated by equilibrium solubility study, while surfactant and cosurfactant were screened based on the ability to form microemulsion with the selected lipid. SLNs were prepared by emulsion/solvent evaporation method using glyceryl monostearate, Tween 80, and Poloxamer 407 as the solid lipid, surfactant, and cosurfactant, respectively. Box-Behnken design was applied for optimization of material attributes and evaluating their impact on particle size, polydispersity index, zeta potential, and entrapment efficiency of the SLNs. In vitro drug release study was evaluated in simulated gastric and intestinal fluids. Cell culture studies on PC-3 cells were performed to evaluate the cytotoxicity of the drug-loaded SLNs in comparison to the free drug suspension. Qualitative uptake was evaluated for Rhodamine B-loaded SLNs and compared with free dye solution. Ex vivo permeability was evaluated on Wistar rat intestine and in vivo pharmacokinetic evaluation on Wistar rats for SLNs and free drug suspension. Concisely, the SLNs showed potential for significant improvement in the biopharmaceutical performance of the selected drug candidate over the existing formulations of abiraterone acetate.
Collapse
|
research-article |
3 |
14 |
9
|
Kanagasabai T, Venkatesan T, Natarajan U, Alobid S, Alhazzani K, Algahtani M, Rathinavelu A. Regulation of cell cycle by MDM2 in prostate cancer cells through Aurora Kinase-B and p21WAF1 /CIP1 mediated pathways. Cell Signal 2019; 66:109435. [PMID: 31706019 DOI: 10.1016/j.cellsig.2019.109435] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/23/2019] [Accepted: 10/02/2019] [Indexed: 01/10/2023]
Abstract
Overexpression of MDM2 oncoprotein has been detected in a large number of diverse human malignancies and has been shown to play both p53-dependent and p53-independent roles in oncogenesis. Our study was designed to explore the impact of MDM2 overexpression on the levels of various cell cycle regulatory proteins including Aurora kinase-B (AURK-B), CDC25C and CDK1, which are known to promote tumor progression and increase metastatic potential. Our data from human cell cycle RT2 profiler PCR array experiments revealed significant changes in the expression profile of genes that are involved in different phases of cell cycle regulation in LNCaP-MST (MDM2 transfected) prostate cancer cells. Our current study has demonstrated a significant increase in the expression level of AURK-B, CDC25C, Cyclin A2, Cyclin B and CDK1 in LNCaP-MST cells as compared with wild type LNCaP cells that were modulated by MDM2 specific inhibitor Nutlin-3. In fact, the expression levels of the above- mentioned proteins were significantly altered at both mRNA and protein levels after treating the cells with 20 μM Nutlin-3 for 24h. Additionally, the pro-apoptotic proteins including p53, p21, and Bax were elevated with the concomitant decrease in the key anti-apoptotic proteins following MDM2 inhibitor treatment. Also, Nutlin-3 treated cells demonstrated caspase-3 activation was observed with an in-vitro caspase-3 fluorescent assay performed with caspase 3/7 specific DEVD-amc substrate. Our results offer significant evidence towards the effectiveness of MDM2 inhibition in causing cell cycle arrest via blocking the transmission of signals through AURKB-CDK1 axis and inducing apoptosis in LNCaP-MST cancer cells. It is evident from our data that MDM2 overexpression probably is the primary cause for CDK1 up-regulation in the LNCaP-MST cells, which might have occurred possibly through activation of AURK-B. However, further studies in this direction should shed more light on the intracellular mechanisms involved in the regulation of Aurora kinase-B and CDK1 axis in MDM2 positive cancers.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
13 |
10
|
Almutairi MM, Nadeem A, Ansari MA, Bakheet SA, Attia SM, Albekairi TH, Alhosaini K, Algahtani M, Alsaad AMS, Al-Mazroua HA, Ahmad SF. Lead (Pb) exposure exacerbates behavioral and immune abnormalities by upregulating Th17 and NF-κB-related signaling in BTBR T + Itpr3 tf/J autistic mouse model. Neurotoxicology 2022; 91:340-348. [PMID: 35760230 DOI: 10.1016/j.neuro.2022.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022]
Abstract
Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental disorder that are characterized by abnormal social interaction impairments in communication and repetitive and restricted activities or interests. Even though the exact etiology of ASD remains unknown. Lead (Pb) is a toxin known to harm many organs in the body, it is one of the most ubiquitous metal exposures which is associated with neurological deficits. Previous studies have shown that the exposure to Pb may play a role in ASD. BTBR T+ Itpr3tf/J (BTBR) mouse model is commonly used as a preclinical model for ASD. In this study, we investigated the effects of Pb exposure on sociability, self-grooming and marble burying behaviors tests in BTBR mice. We further examined the effects of Pb on IL-17A- RORγT-, STAT3-, NF-κB p65-, iNOS-, TLR-2- and TLR-4-producing CD45+ cells in spleen using flow cytometry. We also explored the effects of Pb on IL-17A, RORγT, STAT3, NF-κB p65, and TLR-2 mRNA expression in the brain tissue using RT-PCR analysis. Our results demonstrated that Pb exposure substantially increased repetitive behavior, marble burying and decrease social interactions in BTBR mice. In addition, in spleen cells, Pb exposure exaggerated CD45+IL-17A+, CD45+RORγT+, CD45+STAT3+, CD45+NF-κB p65+, CD45+iNOS+, CD45+TLR-2+ and CD45+TLR-4+ in BTBR mice. We also found that Pb significantly increased IL-17A, RORγT, STAT3, NF-κB p65, and TLR-2 mRNA in the brain tissue. Therefore, Pb exposure exacerbates behavioral and neuroimmune function in BTBR mice, suggesting a potentially strong role for Pb in ASD.
Collapse
|
|
3 |
13 |
11
|
Algahtani M, Heptinstall S. Novel strategies for assessing platelet reactivity. Future Cardiol 2016; 13:33-47. [PMID: 27990840 DOI: 10.2217/fca-2016-0054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
There are many approaches to assessing platelet reactivity and many uses for such measurements. Initially, measurements were based on the ability of platelets separated from other blood cells to aggregate together following activation with an appropriate 'aggregating agent'. Later, measurements of platelet aggregation in blood itself were performed, and this led to a point-of-care approach to platelet function testing. Measurement of secretory activity through the appearance of the activation marker P-selectin on platelets now provides an alternative approach, which enables remote testing. Measurement of vasodilator-stimulated phosphoprotein phosphorylation is also moving toward application in situations remote from the testing laboratory. Here we provide an overview of the various approaches that are now available, assess their advantages and disadvantages, and describe some of the clinical situations in which they are being used.
Collapse
|
Review |
9 |
13 |
12
|
Mukerjee N, Al-Khafaji K, Maitra S, Suhail Wadi J, Sachdeva P, Ghosh A, Buchade RS, Chaudhari SY, Jadhav SB, Das P, Hasan MM, Rahman MH, Albadrani GM, Altyar AE, Kamel M, Algahtani M, Shinan K, Theyab A, Abdel-Daim MM, Ashraf GM, Rahman MM, Sharma R. Recognizing novel drugs against Keap1 in Alzheimer's disease using machine learning grounded computational studies. Front Mol Neurosci 2022; 15:1036552. [PMID: 36561895 PMCID: PMC9764216 DOI: 10.3389/fnmol.2022.1036552] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/21/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder in the world, affecting an estimated 50 million individuals. The nerve cells become impaired and die due to the formation of amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs). Dementia is one of the most common symptoms seen in people with AD. Genes, lifestyle, mitochondrial dysfunction, oxidative stress, obesity, infections, and head injuries are some of the factors that can contribute to the development and progression of AD. There are just a few FDA-approved treatments without side effects in the market, and their efficacy is restricted due to their narrow target in the etiology of AD. Therefore, our aim is to identify a safe and potent treatment for Alzheimer's disease. We chose the ursolic acid (UA) and its similar compounds as a compounds' library. And the ChEMBL database was adopted to obtain the active and inactive chemicals against Keap1. The best Quantitative structure-activity relationship (QSAR) model was created by evaluating standard machine learning techniques, and the best model has the lowest RMSE and greatest R2 (Random Forest Regressor). We chose pIC50 of 6.5 as threshold, where the top five potent medicines (DB06841, DB04310, DB11784, DB12730, and DB12677) with the highest predicted pIC50 (7.091184, 6.900866, 6.800155, 6.768965, and 6.756439) based on QSAR analysis. Furthermore, the top five medicines utilize as ligand molecules were docked in Keap1's binding region. The structural stability of the nominated medications was then evaluated using molecular dynamics simulations, RMSD, RMSF, Rg, and hydrogen bonding. All models are stable at 20 ns during simulation, with no major fluctuations observed. Finally, the top five medications are shown as prospective inhibitors of Keap1 and are the most promising to battle AD.
Collapse
|
research-article |
3 |
12 |
13
|
Eid RA, Soltan MA, Eldeen MA, Shati AA, Dawood SA, Eissa M, Zaki MSA, Algahtani M, Theyab A, Abdel-Daim MM, Kim B. Assessment of RACGAP1 as a Prognostic and Immunological Biomarker in Multiple Human Tumors: A Multiomics Analysis. Int J Mol Sci 2022; 23:ijms232214102. [PMID: 36430577 PMCID: PMC9695706 DOI: 10.3390/ijms232214102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
Several recent studies have pointed out that arc GTPase activating protein 1 (RACGAP1) is a putative oncogene in many human tumors. However, to date, no pan-cancer analysis has been performed to study the different aspects of this gene expression and behavior in tumor tissues. Here, we applied several bioinformatics tools to perform a comprehensive analysis for RACGAP1. First, we assessed the expression of RACGAP1 in several types of human tumors and tried to correlate that with the stage of the tumors analyzed. We then performed a survival analysis to study the correlation between RACGAP1 upregulation in tumors and the clinical outcome. Additionally, we investigated the mutation forms, the correlation with several immune cell infiltration, the phosphorylation status of the interested protein in normal and tumor tissues, and the potential molecular mechanisms of RACGAP1 in cancerous tissue. The results demonstrated that RACGAP1, a highly expressed gene across several types of tumors, correlated with a poor prognosis in several types of human cancers. Moreover, it was found that RACGAP1 affects the tumor immune microenvironment by influencing the infiltration level of several immune cells. Collectively, the current study provides a comprehensive overview of the oncogenic roles of RACGAP1, where our results nominate it as a potential prognostic biomarker and a target for antitumor therapy development.
Collapse
|
research-article |
3 |
8 |
14
|
Puri A, Mohite P, Maitra S, Subramaniyan V, Kumarasamy V, Uti DE, Sayed AA, El-Demerdash FM, Algahtani M, El-Kott AF, Shati AA, Albaik M, Abdel-Daim MM, Atangwho IJ. From nature to nanotechnology: The interplay of traditional medicine, green chemistry, and biogenic metallic phytonanoparticles in modern healthcare innovation and sustainability. Biomed Pharmacother 2024; 170:116083. [PMID: 38163395 DOI: 10.1016/j.biopha.2023.116083] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/12/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
As we navigate the modern era, the intersection of time-honoured natural remedies and contemporary scientific approaches forms a burgeoning frontier in global healthcare. For generations, natural products have been foundational to health solutions, serving as the primary healthcare choice for 80% to 85% of the world's population. These herbal-based, nature-derived substances, significant across diverse geographies, necessitate a renewed emphasis on enhancing their quality, efficacy, and safety. In the current century, the advent of biogenic phytonanoparticles has emerged as an innovative therapeutic conduit, perfectly aligning with principles of environmental safety and scientific ingenuity. Utilizing green chemistry techniques, a spectrum of metallic nanoparticles including elements such as copper, silver, iron, zinc, and titanium oxide can be produced with attributes of non-toxicity, sustainability, and economic efficiency. Sophisticated herb-mediated processes yield an array of plant-originated nanomaterials, each demonstrating unique physical, chemical, and biological characteristics. These attributes herald new therapeutic potentials, encompassing antioxidants, anti-aging applications, and more. Modern technology further accelerates the synthesis of natural products within laboratory settings, providing an efficient alternative to conventional isolation methods. The collaboration between traditional wisdom and advanced methodologies now signals a new epoch in healthcare. Here, the augmentation of traditional medicine is realized through rigorous scientific examination. By intertwining ethical considerations, cutting-edge technology, and natural philosophy, the realms of biogenic phytonanoparticles and traditional medicine forge promising pathways for research, development, and healing. The narrative of this seamless integration marks an exciting evolution in healthcare, where the fusion of sustainability and innovation crafts a future filled with endless possibilities for human well-being. The research in the development of metallic nanoparticles is crucial for unlocking their potential in revolutionizing fields such as medicine, catalysis, and electronics, promising groundbreaking applications with enhanced efficiency and tailored functionalities in future technologies. This exploration is essential for harnessing the unique properties of metallic nanoparticles to address pressing challenges and advance innovations across diverse scientific and industrial domains.
Collapse
|
Review |
1 |
8 |
15
|
Mahmoud AM, Mahnashi MH, Alhazzani K, Az A, Algahtani MM, Alaseem A, Alyami BA, AlQarni AO, El-Wekil MM. Nitrogen doped graphene quantum dots based on host guest interaction for selective dual readout of dopamine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119516. [PMID: 33561682 DOI: 10.1016/j.saa.2021.119516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/10/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Herein, yellow emissive nitrogen doped graphene quantum dots (N@GQDs) were prepared by a novel advanced thermal driven oxidation. The N@GQDs was functionalized with β-cyclodextrin (β-CD) to improve its catalytic performance towards dopamine (DA) detection. The β-CD/N@GQDs exhibited strong fluorescence at λem. = 550 nm after excitation at 460 nm with a quantum yield of 38.6%. The β-CD/N@GQDs showed good peroxidase like activity via catalyzing the oxidation of tetramethylbenzidine (TMB) in presence of H2O2 to form blue colored product at λmax = 652 nm. In the colorimetric assay of DA, the detection based on the oxidation of TMB by H2O2 in presence of β-CD/N@GQDs as a catalyst. Then, the color of the blue oxidized TMB (oxTMB) product was reduced by addition of DA. While the fluorometric detection of DA based on the "inner filter effect" of the overlapped emission spectrum of β-CD/N@GQDs with the absorption spectrum of oxTMB, where, addition of DA reduces oxTMB to TMB and restores the fluorescence intensity of β-CD/N@GQDs. Under the optimized conditions, the colorimetric method achieved linearity range of 0.12-7.5 µM and LOD (S/N = 3) of 0.04 µM, while the fluorometric method achieved linearity range of 0.028-1.5 µM and LOD (S/N = 3) of 0.009 µM. The peroxidase like activity of β-CD/N@GQDs was used to detect DA in human plasma and serum samples with good % recoveries. The colorimetric and fluorometric methods exhibited good sensitivity and selectivity toward DA detection.
Collapse
|
|
4 |
8 |
16
|
Algahtani MM, Alshehri S, Alqarni SS, Ahmad SF, Al-Harbi NO, Alqarni SA, Alfardan AS, Ibrahim KE, Attia SM, Nadeem A. Inhibition of ITK Signaling Causes Amelioration in Sepsis-Associated Neuroinflammation and Depression-like State in Mice. Int J Mol Sci 2023; 24:ijms24098101. [PMID: 37175808 PMCID: PMC10179574 DOI: 10.3390/ijms24098101] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Sepsis affects millions of people worldwide and is associated with multiorgan dysfunction that is a major cause of increased morbidity and mortality. Sepsis is associated with several morbidities, such as lung, liver, and central nervous system (CNS) dysfunction. Sepsis-associated CNS dysfunction usually leads to several mental problems including depression. IL-17A is one of the crucial cytokines that is expressed and secreted by Th17 cells. Th17 cells are reported to be involved in the pathogenesis of depression and anxiety in humans and animals. One of the protein tyrosine kinases that plays a key role in controlling the development/differentiation of Th17 cells is ITK. However, the role of ITK in sepsis-associated neuroinflammation and depression-like symptoms in mice has not been investigated earlier. Therefore, this study investigated the efficacy of the ITK inhibitor, BMS 509744, in sepsis-linked neuroinflammation (ITK, IL-17A, NFkB, iNOS, MPO, lipid peroxides, IL-6, MCP-1, IL-17A) and a battery of depression-like behavioral tests, such as sucrose preference, tail suspension, and the marble burying test. Further, the effect of the ITK inhibitor on anti-inflammatory signaling (Foxp3, IL-10, Nrf2, HO-1, SOD-2) was assessed in the CNS. Our data show that sepsis causes increased ITK protein expression, IL-17A signaling, and neuroinflammatory mediators in the CNS that are associated with a depression-like state in mice. ITK inhibitor-treated mice with sepsis show attenuated IL-17A signaling, which is associated with the upregulation of IL-10/Nrf2 signaling and the amelioration of depression-like symptoms in mice. Our data show, for the first time, that the ITK inhibition strategy may counteract sepsis-mediated depression through a reduction in IL-17A signaling in the CNS.
Collapse
|
|
2 |
7 |
17
|
Rahmani AH, Almatroudi A, Allemailem KS, Alharbi HOA, Alwanian WM, Alhunayhani BA, Algahtani M, Theyab A, Almansour NM, Algefary AN, Aldeghaim SSA, Khan AA. Role of Mangiferin in Management of Cancers through Modulation of Signal Transduction Pathways. Biomedicines 2023; 11:3205. [PMID: 38137424 PMCID: PMC10741126 DOI: 10.3390/biomedicines11123205] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer is a major public health concern worldwide in terms of mortality. The exact reason behind the development of cancer is not understood clearly, but it is evidenced that alcohol consumption, radiation, and exposure to chemicals are main players in this pathogenesis. The current mode of treatments such as surgery, chemotherapy, and radiotherapy are effective, but, still, cancer is a major problem leading to death and other side effects. However, safer and effective treatment modules are needed to overcome the adverse effects of current treatment modules. In this regard, natural compounds have been recognized to ameliorate diseases by exerting anti-inflammatory, anti-oxidative, and anti-tumor potential through several mechanisms. Mangiferin, a xanthone C-glucoside, is found in several plant species including Mangifera indica (mango), and its role in disease prevention has been confirmed through its antioxidant and anti-inflammatory properties. Furthermore, its anti-cancer-potential mechanism has been designated through modulation of cell signaling pathways such as inflammation, angiogenesis, PI3K/AKT, apoptosis, and cell cycle. This article extensively reviews the anticancer potential of mangiferin in different cancers through the modulation of cell signaling pathways. Moreover, the synergistic effects of this compound with some commonly used anti-cancer drugs against different cancer cells are discussed. More clinical trials should be performed to reconnoiter the anti-cancer potential of this compound in human cancer treatment. Further, understanding of mechanisms of action and the safety level of this compound can help to manage diseases, including cancer.
Collapse
|
Review |
2 |
7 |
18
|
Hussein MM, Althagafi HA, Alharthi F, Albrakati A, Alsharif KF, Theyab A, Kassab RB, Mufti AH, Algahtani M, Oyouni AAA, Baty RS, Abdel Moneim AE, Lokman MS. Apigenin attenuates molecular, biochemical, and histopathological changes associated with renal impairments induced by gentamicin exposure in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:65276-65288. [PMID: 35484458 DOI: 10.1007/s11356-022-20235-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/09/2022] [Indexed: 04/16/2023]
Abstract
Gentamicin (GM) is an aminoglycoside antibiotic used to treat bacterial infections. However, its application is accompanied by renal impairments. Apigenin is a flavonoid found in many edible plants with potent therapeutic values. This study was designed to elucidate the therapeutic effects of apigenin on GM-induced nephrotoxicity. Animals were injected orally with three different doses of apigenin (5 mg kg-1 day-1, 10 mg kg-1 day-1, and 20 mg kg-1 day-1). Apigenin administration abolished the alterations in the kidney index and serum levels of kidney-specific functions markers, namely blood urea nitrogen and creatinine, and KIM-1, NGAL, and cystatin C following GM exposure. Additionally, apigenin increased levels of enzymatic (glutathione reductase, glutathione peroxidase, superoxide dismutase, and catalase) and non-enzymatic antioxidant proteins (reduced glutathione) and decreased levels of lipid peroxide, nitric oxide, and downregulated nitric oxide synthase-2 in the kidney tissue following GM administration. At the molecular scope, apigenin administration was found to upregulate the mRNA expression of Nfe2l2 and Hmox1 in the kidney tissue. Moreover, apigenin administration suppressed renal inflammation and apoptosis by decreasing levels of interleukin-1β, tumor necrosis factor-alpha, nuclear factor kappa-B, Bax, and caspase-3, while increasing B-cell lymphoma-2 compared with those in GM-administered group. The recorded data suggests that apigenin treatment could be used to alleviate renal impairments associated with GM administration.
Collapse
|
|
3 |
7 |
19
|
Alrumaihi FA, Khan MA, Allemailem KS, Alsahli MA, Almatroudi A, Younus H, Alsuhaibani SA, Algahtani M, Khan A. Methanolic Fenugreek Seed Extract Induces p53-Dependent Mitotic Catastrophe in Breast Cancer Cells, Leading to Apoptosis. J Inflamm Res 2021; 14:1511-1535. [PMID: 33889009 PMCID: PMC8057839 DOI: 10.2147/jir.s300025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/24/2021] [Indexed: 12/29/2022] Open
Abstract
PURPOSE The plant Trigonella foenum-graecum, well-known as fenugreek, has been shown to control type-2 diabetes, the level of cholesterol, inflammation of wounds, disorders related to gastrointestinal tracts, and cancer as well. The present study aimed to evaluate the anti-cancer potential of methanolic fenugreek seed extract (FSE) and its possible molecular mechanism of action in breast cancer cells. METHODS The anticancer potential of FSE was evaluated in MCF-7 and SK-BR3 breast cancer cells through various cellular assays after selecting the IC10, IC25, IC35, and IC50 doses by the cell cytotoxicity assay. Furthermore, the oral acute toxicity of FSE was examined in mice, according to the guidelines of the Organization for Economic Co-operation and Development (OECD). RESULTS FSE exhibited dose-dependent cytotoxicity, as the IC50 was found to be 150 and 40 μg/mL for MCF-7 and SK-BR3 breast cancer cells, respectively. The cytological observations showed the typical apoptotic morphology in both of the breast cancer cells upon treatment with FSE, as it inhibited the migration and adhesion, in a dose-dependent manner. The flow cytometry analysis revealed that FSE induced a significant shift from G2/M, and polyploidy (>G) at higher concentrations that suggested the activation of p53-mediated mitotic catastrophe, consequently leading to apoptosis. FSE induced a significant increase in the mitochondrial depolarization, ROS as well as a Bax/Bcl-2 ratio, and also exhibited the mitochondrial associated p53 signaling pathway. The in vivo acute toxicity data revealed that the oral administration of FSE did not induce any toxic effect in mice. CONCLUSION This study, for the first time, reports the mechanistic details of the anti-cancer potential of FSE. It requires a detailed analysis to understand the effect of FSE to induce the apoptosis through the multiple signaling pathways at varying concentrations. The nontoxic effect of FSE in mice suggests to utilize it safely for pharmaceutical formulations in different cancer systems.
Collapse
|
research-article |
4 |
5 |
20
|
Alhazzani K, Alrewily SQ, Aljerian K, Alhosaini K, Algahtani MM, Almutery MF, Alhamed AS, Nadeem A, Alotaibi MR, Alanazi AZ. Hydroxychloroquine ameliorates dasatinib-induced liver injury via decrease in hepatic lymphocytes infiltration. Hum Exp Toxicol 2023; 42:9603271231188492. [PMID: 37431997 DOI: 10.1177/09603271231188492] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Dasatinib is an effective treatment for chronic myeloid leukemia. However, cases of idiosyncratic hepatotoxicity were reported. This study was conducted to investigate the chemopreventive effects of hydroxychloroquine against dasatinib-induced hepatotoxicity. Balb/c mice were randomly assigned into four groups; vehicle control (5% DMSO, i.p., n = 6), dasatinib (50 mg/kg; i.p., n = 6), hydroxychloroquine (10 mg/kg, i.p., n = 6), and hydroxychloroquine + dasatinib (10 mg/kg + 50 mg/kg; i.p., n = 6). Treatments were given once every 2 days for 14 days. Serum and histopathological assessments of liver architecture and fibrosis were performed using H&E, Masson's trichrome, and reticulin staining. The infiltration of lymphocytes was assessed using immunohistochemistry. The gene expression of antioxidant enzymes (CAT, SOD-2, GPX-1) was assessed using real-time quantitative PCR. Dasatinib showed a significant increase in liver injury biomarkers (AST and ALT) with higher lymphocytes infiltration (as indicated by CD3+, CD4+, CD8+, and CD20+ immunohistochemistry). Hepatic tissue of Dasatinib group exhibited significant downregulation in the gene expression of antioxidant enzymes (CAT, SOD-2, and GPX-1) compared to the control group. However, the combination of hydroxychloroquine with dasatinib showed a slight increase in AST and ALT. Also, hydroxychloroquine + dasatinib treated mice showed a significant reduction in lymphocytes infiltration as compared to dasatinib. The results showed that dasatinib induces an immune response leading to an increase in lymphocytes infiltration which promotes hepatocyte destruction and persistent liver injury. The results also suggest that hydroxychloroquine ameliorates dasatinib-induced hepatotoxicity via reduction in hepatic infiltration of T and B immune cells.
Collapse
|
|
2 |
5 |
21
|
Algahtani MM, Ahmad SF, Alkharashi LA, Al-Harbi NO, Alanazi WA, Alhamed AS, Attia SM, Bakheet SA, Ibrahim KE, Nadeem A. Exposure to Methylmercury at Juvenile Stage Worsens Autism-like Symptoms in Adult BTBR T+tf/J Mice Due to Lack of Nuclear Factor Erythroid 2-Related Factor 2 Signaling Upregulation in Periphery and Brain. TOXICS 2023; 11:546. [PMID: 37368646 DOI: 10.3390/toxics11060546] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
Autism spectrum disorder (ASD) is a multifaceted developmental condition that first appears in infancy. The condition is characterized by recurrent patterns in behavior and impairments in social and vocalization abilities. Methylmercury is a toxic environmental pollutant, and its derivatives are the major source of organic mercury to human beings. Inorganic mercury, which is released from a variety of pollutants into oceans, rivers, and streams, is transformed into methylmercury by bacteria and plankton in the water, which later builds up in fish and shellfish, and then enters humans through the consumption of fish and shellfish and increases the risk of developing ASD by disturbing the oxidant-antioxidant balance. However, there has been no prior research to determine the effect of juvenile exposure of methylmercury chloride on adult BTBR mice. Therefore, the current study evaluated the effect of methylmercury chloride administered during the juvenile stage on autism-like behavior (three-chambered sociability, marble burying, self-grooming tests) and oxidant-antioxidant balance (specifically Nrf2, HO-1, SOD-1, NF-kB, iNOS, MPO, and 3-nitrotyrosine) in the peripheral neutrophils and cortex of adult BTBR and C57BL/6 (B6) mice. Our results show that exposure to methylmercury chloride at a juvenile stage results in autism-like symptoms in adult BTBR mice which are related to a lack of upregulation of the Nrf2 signaling pathway as demonstrated by no significant changes in the expression of Nrf2, HO-1, and SOD-1 in the periphery and cortex. On the other hand, methylmercury chloride administration at a juvenile stage increased oxidative inflammation as depicted by a significant increase in the levels of NF-kB, iNOS, MPO, and 3-nitrotyrosine in the periphery and cortex of adult BTBR mice. This study suggests that juvenile exposure to methylmercury chloride contributes to the worsening of autism-like behavior in adult BTBR mice through the disruption of the oxidant-antioxidant balance in the peripheral compartment and CNS. Strategies that elevate Nrf2 signaling may be useful to counteract toxicant-mediated worsening of ASD and may improve quality of life.
Collapse
|
|
2 |
5 |
22
|
Alhamed AS, Alqinyah M, Alsufayan MA, Alhaydan IA, Alassmrry YA, Alnefaie HO, Algahtani MM, Alghaith AF, Alhamami HN, Albogami AM, Alhazzani K, AZ A. Blockade of store-operated calcium entry sensitizes breast cancer cells to cisplatin therapy via modulating inflammatory response. Saudi Pharm J 2023; 31:245-254. [PMID: 36942275 PMCID: PMC10023550 DOI: 10.1016/j.jsps.2022.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022] Open
Abstract
Store-operated calcium entry (SOCE) is an important pathway for calcium signaling that regulates calcium influx across the plasma membrane upon the depletion of calcium stores in the endoplasmic reticulum. SOCE participates in regulating a number of physiological processes including cell proliferation and migration while SOCE dysregulation has been linked with pathophysiological conditions such as inflammation and cancer. The crosslink between cancer and inflammation has been well-established where abundant evidence demonstrate that inflammation plays a role in cancer pathophysiology and the response of cancer cells to chemotherapeutic agents including cisplatin. Indeed, the efficacy of cisplatin against cancer cells is reduced by inflammation. Interestingly, it was shown that SOCE enhances inflammatory signaling in immune cells. Therefore, the main objectives of this study are to examine the impact of SOCE inhibition on the cisplatin sensitivity of breast cancer cells and to explore its related mechanism in modulating the inflammatory response in breast cancer cells. Our findings showed that SOCE inhibitor (BTP2) enhanced cisplatin cytotoxicity against resistant breast cancer cells via inhibition of cell proliferation and migration as well as induction of apoptosis. We also found an upregulation in the gene expression of two major components of SOCE, STIM1 and ORAI1, in cisplatin-resistant breast cancer cells compared to cisplatin-sensitive breast cancer cells. In addition, cisplatin treatment increased the gene expression of STIM1 and ORAI1 in cisplatin-resistant breast cancer cells. Finally, this study also demonstrated that cisplatin therapy caused an increase in the gene expression of inflammatory mediators COX2, IL-8, and TNF-α as well as COX2 protein and upon SOCE inhibition using BTP2, the effect of cisplatin on the inflammatory mediators was reversed. Altogether, this study has proven the pivotal role of SOCE in cisplatin resistance of breast cancer cells and showed the importance of targeting this pathway in improving breast cancer therapy.
Collapse
|
research-article |
2 |
5 |
23
|
Smriti, Singla M, Gupta S, Porwal O, Nasser Binjawhar D, Sayed AA, Mittal P, El-Demerdash FM, Algahtani M, Singh SK, Dua K, Gupta G, Bawa P, Altyar AE, Abdel-Daim MM. Theoretical design for covering Engeletin with functionalized nanostructure-lipid carriers as neuroprotective agents against Huntington's disease via the nasal-brain route. Front Pharmacol 2023; 14:1218625. [PMID: 37492081 PMCID: PMC10364480 DOI: 10.3389/fphar.2023.1218625] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023] Open
Abstract
Objective: To propose a theoretical formulation of engeletin-nanostructured lipid nanocarriers for improved delivery and increased bioavailability in treating Huntington's disease (HD). Methods: We conducted a literature review of the pathophysiology of HD and the limitations of currently available medications. We also reviewed the potential therapeutic benefits of engeletin, a flavanol glycoside, in treating HD through the Keap1/nrf2 pathway. We then proposed a theoretical formulation of engeletin-nanostructured lipid nanocarriers for improved delivery across the blood-brain barrier (BBB) and increased bioavailability. Results: HD is an autosomal dominant neurological illness caused by a repetition of the cytosine-adenine-guanine trinucleotide, producing a mutant protein called Huntingtin, which degenerates the brain's motor and cognitive functions. Excitotoxicity, mitochondrial dysfunction, oxidative stress, elevated concentration of ROS and RNS, neuroinflammation, and protein aggregation significantly impact HD development. Current therapeutic medications can postpone HD symptoms but have long-term adverse effects when used regularly. Herbal medications such as engeletin have drawn attention due to their minimal side effects. Engeletin has been shown to reduce mitochondrial dysfunction and suppress inflammation through the Keap1/NRF2 pathway. However, its limited solubility and permeability hinder it from reaching the target site. A theoretical formulation of engeletin-nanostructured lipid nanocarriers may allow for free transit over the BBB due to offering a similar composition to the natural lipids present in the body a lipid solubility and increase bioavailability, potentially leading to a cure or prevention of HD. Conclusion: The theoretical formulation of engeletin-nanostructured lipid nanocarriers has the potential to improve delivery and increase the bioavailability of engeletin in the treatment of HD, which may lead to a cure or prevention of this fatal illness.
Collapse
|
research-article |
2 |
4 |
24
|
Hijazy HHA, Dahran N, Althagafi HA, Alharthi F, Habotta OA, Oyouni AAA, Algahtani M, Theyab A, Al-Amer O, Lokman MS, Alsharif KF, Albrakati A, Amin HK, Dawood SM, Kassab RB, Ellethy RA. Thymoquinone counteracts oxidative and inflammatory machinery in carrageenan-induced murine paw edema model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16597-16611. [PMID: 36184707 DOI: 10.1007/s11356-022-23343-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Thymoquinone (TQ) is an active constituent in Nigella sativa (black cumin) and is extensively reported for its distinguished antioxidant and anti-inflammatory bioactivities. Despite the local protective response of acute inflammation, it contributes to the development of various disease conditions such as cell death, organ damage, or carcinogenesis. Hence, in this study, the effects of orally administered TQ (50 mg/kg and 100 mg/kg) for 14 days against edema development, oxidative stress, and inflammation were investigated in paw edema induced by carrageenan in mice. Indomethacin (10 mg/kg) was used as a reference drug. The results revealed that TQ reduced the paw edema volume in a time-dependent manner, attenuated acetic acid-provoked writhing movements, and reduced xylene-triggered ear edema. Hematological findings revealed marked normalization of altered counts of WBCs, and platelets. Furthermore, paw tissue levels of malondialdehyde and nitric oxide showed marked decreases together with increases in nuclear factor erythroid 2-related factor 2, glutathione, superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase after TQ administration. Additionally, TQ decreased pro-inflammatory mediators, such as interleukin-1 beta, tumor necrosis factor-alpha, interleukin-6, monocyte chemoattractant protein-1, C-reactive protein, myeloperoxidase, and nuclear factor kappa-B in the inflamed paw tissue. Moreover, appreciable decreases were recorded in cyclooxygenase-2 and its product prostaglandin E2 and the immune reaction of tumor necrosis factor-alpha in TQ-treated mice. Histopathological findings further validated the potential antiedematous, anti-inflammatory power of TQ in inflamed tissues. Conclusively, the results encourage the potent application of TQ to subside acute inflammatory events because of its striking antioxidant and anti-inflammatory properties in inflamed paw tissue.
Collapse
|
|
2 |
4 |
25
|
Theyab A, Alsharif KF, Alzahrani KJ, Oyouni AAA, Hawsawi YM, Algahtani M, Alghamdi S, Alshammary AF. New insight into strategies used to develop long-acting G-CSF biologics for neutropenia therapy. Front Oncol 2023; 12:1026377. [PMID: 36686781 PMCID: PMC9850083 DOI: 10.3389/fonc.2022.1026377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023] Open
Abstract
Over the last 20 years, granulocyte colony-stimulating factors (G-CSFs) have become the major therapeutic option for the treatment of patients with neutropenia. Most of the current G-CSFs require daily injections, which are inconvenient and expensive for patients. Increased understanding of G-CSFs' structure, expression, and mechanism of clearance has been very instrumental in the development of new generations of long-acting G-CSFs with improved efficacy. Several approaches to reducing G-CSF clearance via conjugation techniques have been investigated. PEGylation, glycosylation, polysialylation, or conjugation with immunoglobulins or albumins have successfully increased G-CSFs' half-lives. Pegfilgrastim (Neulasta) has been successfully approved and marketed for the treatment of patients with neutropenia. The rapidly expanding market for G-CSFs has increased demand for G-CSF biosimilars. Therefore, the importance of this review is to highlight the principle, elimination's route, half-life, clearance, safety, benefits, and limitations of different strategies and techniques used to increase the half-life of biotherapeutic G-CSFs. Understanding these strategies will allow for a new treatment with more competitive manufacturing and lower unit costs compared with that of Neulasta.
Collapse
|
review-article |
2 |
3 |