1
|
Naderinezhad S, Zhang G, Wang Z, Zheng D, Hulsurkar M, Bakhoum M, Su N, Yang H, Shen T, Li W. A novel GRK3-HDAC2 regulatory pathway is a key direct link between neuroendocrine differentiation and angiogenesis in prostate cancer progression. Cancer Lett 2023; 571:216333. [PMID: 37543278 PMCID: PMC11235056 DOI: 10.1016/j.canlet.2023.216333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
The mechanisms underlying the progression of prostate cancer (PCa) to neuroendocrine prostate cancer (NEPC), an aggressive PCa variant, are largely unclear. Two prominent NEPC phenotypes are elevated NE marker expression and heightened angiogenesis. Identifying the still elusive direct molecular links connecting angiogenesis and neuroendocrine differentiation (NED) is crucial for our understanding and targeting of NEPC. Here we found that histone deacetylase 2 (HDAC2), whose role in NEPC has not been reported, is one of the most upregulated epigenetic regulators in NEPC. HDAC2 promotes both NED and angiogenesis. G protein-coupled receptor kinase 3 (GRK3), also upregulated in NEPC, is a critical promoter for both phenotypes too. Of note, GRK3 phosphorylates HDAC2 at S394, which enhances HDAC2's epigenetic repression of potent anti-angiogenic factor Thrombospondin 1 (TSP1) and master NE-repressor RE1 Silencing Transcription Factor (REST). Intriguingly, REST suppresses angiogenesis while TSP1 suppresses NE marker expression in PCa cells, indicative of their novel functions and their synergy in cross-repressing the two phenotypes. Furthermore, the GRK3-HDAC2 pathway is activated by androgen deprivation therapy and hypoxia, both known to promote NED and angiogenesis in PCa. These results indicate that NED and angiogenesis converge on GRK3-enhanced HDAC2 suppression of REST and TSP1, which constitutes a key missing link between two prominent phenotypes of NEPC.
Collapse
|
2
|
Moreira LM, Takawale A, Hulsurkar M, Menassa DA, Antanaviciute A, Lahiri SK, Mehta N, Evans N, Psarros C, Robinson P, Sparrow AJ, Gillis MA, Ashley N, Naud P, Barallobre-Barreiro J, Theofilatos K, Lee A, Norris M, Clarke MV, Russell PK, Casadei B, Bhattacharya S, Zajac JD, Davey RA, Sirois M, Mead A, Simmons A, Mayr M, Sayeed R, Krasopoulos G, Redwood C, Channon KM, Tardif JC, Wehrens XHT, Nattel S, Reilly S. Paracrine signalling by cardiac calcitonin controls atrial fibrogenesis and arrhythmia. Nature 2020; 587:460-465. [PMID: 33149301 DOI: 10.1038/s41586-020-2890-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/13/2020] [Indexed: 11/10/2022]
Abstract
Atrial fibrillation, the most common cardiac arrhythmia, is an important contributor to mortality and morbidity, and particularly to the risk of stroke in humans1. Atrial-tissue fibrosis is a central pathophysiological feature of atrial fibrillation that also hampers its treatment; the underlying molecular mechanisms are poorly understood and warrant investigation given the inadequacy of present therapies2. Here we show that calcitonin, a hormone product of the thyroid gland involved in bone metabolism3, is also produced by atrial cardiomyocytes in substantial quantities and acts as a paracrine signal that affects neighbouring collagen-producing fibroblasts to control their proliferation and secretion of extracellular matrix proteins. Global disruption of calcitonin receptor signalling in mice causes atrial fibrosis and increases susceptibility to atrial fibrillation. In mice in which liver kinase B1 is knocked down specifically in the atria, atrial-specific knockdown of calcitonin promotes atrial fibrosis and increases and prolongs spontaneous episodes of atrial fibrillation, whereas atrial-specific overexpression of calcitonin prevents both atrial fibrosis and fibrillation. Human patients with persistent atrial fibrillation show sixfold lower levels of myocardial calcitonin compared to control individuals with normal heart rhythm, with loss of calcitonin receptors in the fibroblast membrane. Although transcriptome analysis of human atrial fibroblasts reveals little change after exposure to calcitonin, proteomic analysis shows extensive alterations in extracellular matrix proteins and pathways related to fibrogenesis, infection and immune responses, and transcriptional regulation. Strategies to restore disrupted myocardial calcitonin signalling thus may offer therapeutic avenues for patients with atrial fibrillation.
Collapse
|
3
|
Campbell HM, Quick AP, Abu-Taha I, Chiang DY, Kramm CF, Word TA, Brandenburg S, Hulsurkar M, Alsina KM, Liu HB, Martin B, Uhlenkamp D, Moore OM, Lahiri SK, Corradini E, Kamler M, Heck AJR, Lehnart SE, Dobrev D, Wehrens XHT. Loss of SPEG Inhibitory Phosphorylation of Ryanodine Receptor Type-2 Promotes Atrial Fibrillation. Circulation 2020; 142:1159-1172. [PMID: 32683896 DOI: 10.1161/circulationaha.120.045791] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Enhanced diastolic calcium (Ca2+) release through ryanodine receptor type-2 (RyR2) has been implicated in atrial fibrillation (AF) promotion. Diastolic sarcoplasmic reticulum Ca2+ leak is caused by increased RyR2 phosphorylation by PKA (protein kinase A) or CaMKII (Ca2+/calmodulin-dependent kinase-II) phosphorylation, or less dephosphorylation by protein phosphatases. However, considerable controversy remains regarding the molecular mechanisms underlying altered RyR2 function in AF. We thus aimed to determine the role of SPEG (striated muscle preferentially expressed protein kinase), a novel regulator of RyR2 phosphorylation, in AF pathogenesis. METHODS Western blotting was performed with right atrial biopsies from patients with paroxysmal AF. SPEG atrial knockout mice were generated using adeno-associated virus 9. In mice, AF inducibility was determined using intracardiac programmed electric stimulation, and diastolic Ca2+ leak in atrial cardiomyocytes was assessed using confocal Ca2+ imaging. Phosphoproteomics studies and Western blotting were used to measure RyR2 phosphorylation. To test the effects of RyR2-S2367 phosphorylation, knockin mice with an inactivated S2367 phosphorylation site (S2367A) and a constitutively activated S2367 residue (S2367D) were generated by using CRISPR-Cas9. RESULTS Western blotting revealed decreased SPEG protein levels in atrial biopsies from patients with paroxysmal AF in comparison with patients in sinus rhythm. SPEG atrial-specific knockout mice exhibited increased susceptibility to pacing-induced AF by programmed electric stimulation and enhanced Ca2+ spark frequency in atrial cardiomyocytes with Ca2+ imaging, establishing a causal role for decreased SPEG in AF pathogenesis. Phosphoproteomics in hearts from SPEG cardiomyocyte knockout mice identified RyR2-S2367 as a novel kinase substrate of SPEG. Western blotting demonstrated that RyR2-S2367 phosphorylation was also decreased in patients with paroxysmal AF. RyR2-S2367A mice exhibited an increased susceptibility to pacing-induced AF, and aberrant atrial sarcoplasmic reticulum Ca2+ leak, as well. In contrast, RyR2-S2367D mice were resistant to pacing-induced AF. CONCLUSIONS Unlike other kinases (PKA, CaMKII) that increase RyR2 activity, SPEG phosphorylation reduces RyR2-mediated sarcoplasmic reticulum Ca2+ release. Reduced SPEG levels and RyR2-S2367 phosphorylation typified patients with paroxysmal AF. Studies in S2367 knockin mouse models showed a causal relationship between reduced S2367 phosphorylation and AF susceptibility. Thus, modulating SPEG activity and phosphorylation levels of the novel S2367 site on RyR2 may represent a novel target for AF treatment.
Collapse
|
4
|
Ni L, Scott L, Campbell HM, Pan X, Alsina KM, Reynolds J, Philippen LE, Hulsurkar M, Lagor WR, Li N, Wehrens XHT. Atrial-Specific Gene Delivery Using an Adeno-Associated Viral Vector. Circ Res 2019; 124:256-262. [PMID: 30582449 DOI: 10.1161/circresaha.118.313811] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Somatic overexpression in mice using an adeno-associated virus (AAV) as gene transfer vectors has become a valuable tool to analyze the roles of specific genes in cardiac diseases. The lack of atrial-specific AAV vector has been a major obstacle for studies into the pathogenesis of atrial diseases. Moreover, gene therapy studies for atrial fibrillation would benefit from atrial-specific vectors. Atrial natriuretic factor (ANF) promoter drives gene expression specifically in atrial cardiomyocytes. OBJECTIVE To establish the platform of atrial specific in vivo gene delivery by AAV-ANF. METHODS AND RESULTS We constructed AAV vectors based on serotype 9 (AAV9) that are driven by the atrial-specific ANF promoter. Hearts from mice injected with AAV9-ANF-GFP (green fluorescent protein) exhibited strong and atrial-specific GFP expression without notable GFP in ventricular tissue. In contrast, similar vectors containing a cardiac troponin T promoter (AAV9-TNT4-GFP) showed GFP expression in all 4 chambers of the heart, while AAV9 with an enhanced chicken β-actin promoter (AAV-enCB-GFP) caused ubiquitous GFP expression. Next, we used Rosa26mT/mG (membrane-targeted tandem dimer Tomato/membrane-targeted GFP), a double-fluorescent Cre reporter mouse that expresses membrane-targeted tandem dimer Tomato before Cre-mediated excision, and membrane-targeted GFP after excision. AAV9-ANF-Cre led to highly efficient LoxP recombination in membrane-targeted tandem dimer Tomato/membrane-targeted green fluorescent protein mice with high specificity for the atria. We measured the frequency of transduced cardiomyocytes in atria by detecting Cre-dependent GFP expression from the Rosa26mT/mG allele. AAV9 dose was positively correlated with the number of GFP-positive atrial cardiomyocytes. Finally, we assessed whether the AAV9-ANF-Cre vector could be used to induce atrial-specific gene knockdown in proof-of-principle experiments using conditional JPH2 (junctophilin-2) knockdown mice. Four weeks after AAV9-ANF-Cre injection, a strong reduction in atrial expression of JPH2 protein was observed. Furthermore, there was evidence for abnormal Ca2+ handling in atrial myocytes isolated from mice with atrial-restricted JPH2 deficiency. CONCLUSIONS AAV9-ANF vectors produce efficient, dose-dependent, and atrial-specific gene expression following a single-dose systemic delivery in mice. This vector is a novel reagent for both mechanistic and gene therapy studies on atrial diseases.
Collapse
|
5
|
Zhang Y, Zheng D, Zhou T, Hulsurkar M, Ittmann M, Shao L, Gleave M, Li W. Abstract 186: Androgen deprivation promotes neuroendocrine differentiation and angiogenesis through CREB-EZH2-TSP1 pathway in prostate cancers. Cancer Res 2019. [DOI: 10.1158/1538-7445.am2019-186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The incidence of aggressive neuroendocrine prostate cancers (NEPC) related to androgen-deprivation therapy (ADT) is rising. NEPC is still poorly understood, such as its neuroendocrine differentiation (NED) and angiogenic phenotypes. Here we reveal that NED and angiogenesis are molecularly connected through EZH2 (enhancer of zeste homolog 2). NED and angiogenesis are both regulated by ADT-activated CREB (cAMP response element-binding protein) that in turn enhances EZH2 activity. We also uncover anti-angiogenic factor TSP1 (thrombospondin-1, THBS1) as a direct target of EZH2 epigenetic repression. TSP1 is downregulated in advanced prostate cancer patient samples and negatively correlates with NE markers and EZH2. Furthermore, castration activates the CREB/EZH2 axis, concordantly affecting TSP1, angiogenesis and NE phenotypes in tumor xenografts. Notably, repressing CREB inhibits the CREB/EZH2 axis, tumor growth, NED and angiogenesis in vivo. Taken together, we elucidate a new critical pathway, consisting of CREB/EZH2/TSP1, underlying ADT-enhanced NED and angiogenesis during prostate cancer progression.
Citation Format: Yan Zhang, Dayong Zheng, Ting Zhou, Mohit Hulsurkar, Michael Ittmann, Long Shao, Martin Gleave, Wenliang Li. Androgen deprivation promotes neuroendocrine differentiation and angiogenesis through CREB-EZH2-TSP1 pathway in prostate cancers [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 186.
Collapse
|
6
|
Alsina KM, Hulsurkar M, Brandenburg S, Kownatzki-Danger D, Lenz C, Urlaub H, Abu-Taha I, Kamler M, Chiang DY, Lahiri SK, Reynolds JO, Quick AP, Scott L, Word TA, Gelves MD, Heck AJR, Li N, Dobrev D, Lehnart SE, Wehrens XHT. Loss of Protein Phosphatase 1 Regulatory Subunit PPP1R3A Promotes Atrial Fibrillation. Circulation 2019; 140:681-693. [PMID: 31185731 DOI: 10.1161/circulationaha.119.039642] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Abnormal calcium (Ca2+) release from the sarcoplasmic reticulum (SR) contributes to the pathogenesis of atrial fibrillation (AF). Increased phosphorylation of 2 proteins essential for normal SR-Ca2+ cycling, the type-2 ryanodine receptor (RyR2) and phospholamban (PLN), enhances the susceptibility to AF, but the underlying mechanisms remain unclear. Protein phosphatase 1 (PP1) limits steady-state phosphorylation of both RyR2 and PLN. Proteomic analysis uncovered a novel PP1-regulatory subunit (PPP1R3A [PP1 regulatory subunit type 3A]) in the RyR2 macromolecular channel complex that has been previously shown to mediate PP1 targeting to PLN. We tested the hypothesis that reduced PPP1R3A levels contribute to AF pathogenesis by reducing PP1 binding to both RyR2 and PLN. METHODS Immunoprecipitation, mass spectrometry, and complexome profiling were performed from the atrial tissue of patients with AF and from cardiac lysates of wild-type and Pln-knockout mice. Ppp1r3a-knockout mice were generated by CRISPR-mediated deletion of exons 2 to 3. Ppp1r3a-knockout mice and wild-type littermates were subjected to in vivo programmed electrical stimulation to determine AF susceptibility. Isolated atrial cardiomyocytes were used for Stimulated Emission Depletion superresolution microscopy and confocal Ca2+ imaging. RESULTS Proteomics identified the PP1-regulatory subunit PPP1R3A as a novel RyR2-binding partner, and coimmunoprecipitation confirmed PPP1R3A binding to RyR2 and PLN. Complexome profiling and Stimulated Emission Depletion imaging revealed that PLN is present in the PPP1R3A-RyR2 interaction, suggesting the existence of a previously unknown SR nanodomain composed of both RyR2 and PLN/sarco/endoplasmic reticulum calcium ATPase-2a macromolecular complexes. This novel RyR2/PLN/sarco/endoplasmic reticulum calcium ATPase-2a complex was also identified in human atria. Genetic ablation of Ppp1r3a in mice impaired binding of PP1 to both RyR2 and PLN. Reduced PP1 targeting was associated with increased phosphorylation of RyR2 and PLN, aberrant SR-Ca2+ release in atrial cardiomyocytes, and enhanced susceptibility to pacing-induced AF. Finally, PPP1R3A was progressively downregulated in the atria of patients with paroxysmal and persistent (chronic) AF. CONCLUSIONS PPP1R3A is a novel PP1-regulatory subunit within the RyR2 channel complex. Reduced PPP1R3A levels impair PP1 targeting and increase phosphorylation of both RyR2 and PLN. PPP1R3A deficiency promotes abnormal SR-Ca2+ release and increases AF susceptibility in mice. Given that PPP1R3A is downregulated in patients with AF, this regulatory subunit may represent a new target for AF therapeutic strategies.
Collapse
|
7
|
Hulsurkar M, Quick AP, Wehrens XH. STAT3: a link between CaMKII-βIV-spectrin and maladaptive remodeling? J Clin Invest 2018; 128:5219-5221. [PMID: 30418170 PMCID: PMC6264720 DOI: 10.1172/jci124778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
βIV-Spectrin, along with ankyrin and Ca2+/calmodulin-dependent kinase II (CaMKII), has been shown to form local signaling domains at the intercalated disc, while playing a key role in the regulation of Na+ and K+ channels in cardiomyocytes. In this issue of the JCI, Unudurthi et al. show that under chronic pressure overload conditions, CaMKII activation leads to βIV-spectrin degradation, resulting in the release of sequestered STAT3 from the intercalated discs. This in turn leads to dysregulation of STAT3-mediated gene transcription, maladaptive remodeling, fibrosis, and decreased cardiac function. Overall, this study presents interesting findings regarding the role of CaMKII and βIV-spectrin under physiological as well as pathological conditions.
Collapse
|
8
|
Zhang Y, Zheng D, Zhou T, Song H, Hulsurkar M, Su N, Liu Y, Wang Z, Shao L, Ittmann M, Gleave M, Han H, Xu F, Liao W, Wang H, Li W. Androgen deprivation promotes neuroendocrine differentiation and angiogenesis through CREB-EZH2-TSP1 pathway in prostate cancers. Nat Commun 2018; 9:4080. [PMID: 30287808 PMCID: PMC6172226 DOI: 10.1038/s41467-018-06177-2] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 08/20/2018] [Indexed: 01/19/2023] Open
Abstract
The incidence of aggressive neuroendocrine prostate cancers (NEPC) related to androgen-deprivation therapy (ADT) is rising. NEPC is still poorly understood, such as its neuroendocrine differentiation (NED) and angiogenic phenotypes. Here we reveal that NED and angiogenesis are molecularly connected through EZH2 (enhancer of zeste homolog 2). NED and angiogenesis are both regulated by ADT-activated CREB (cAMP response element-binding protein) that in turn enhances EZH2 activity. We also uncover anti-angiogenic factor TSP1 (thrombospondin-1, THBS1) as a direct target of EZH2 epigenetic repression. TSP1 is downregulated in advanced prostate cancer patient samples and negatively correlates with NE markers and EZH2. Furthermore, castration activates the CREB/EZH2 axis, concordantly affecting TSP1, angiogenesis and NE phenotypes in tumor xenografts. Notably, repressing CREB inhibits the CREB/EZH2 axis, tumor growth, NED, and angiogenesis in vivo. Taken together, we elucidate a new critical pathway, consisting of CREB/EZH2/TSP1, underlying ADT-enhanced NED and angiogenesis during prostate cancer progression.
Collapse
|
9
|
Sang M, Hulsurkar M, Zhang X, Song H, Zheng D, Zhang Y, Li M, Xu J, Zhang S, Ittmann M, Li W. GRK3 is a direct target of CREB activation and regulates neuroendocrine differentiation of prostate cancer cells. Oncotarget 2018; 7:45171-45185. [PMID: 27191986 PMCID: PMC5216714 DOI: 10.18632/oncotarget.9359] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 04/23/2016] [Indexed: 01/22/2023] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is an aggressive subtype of prostate cancer that commonly arises through neuroendocrine differentiation (NED) of prostate adenocarcinoma (PAC) after therapy, such as radiation therapy and androgen deprivation treatment (ADT). No effective therapeutic is available for NEPC and its molecular mechanisms remain poorly understood. We have reported that G protein-coupled receptor kinase 3 (GRK3, also called ADRBK2) promotes prostate cancer progression. In this study, we demonstrate that the ADT-activated cAMP response element binding protein (CREB) directly targets and induces GRK3. We show GRK3 expression is higher in NEPC than in PAC cells and mouse models, and it positively correlates with the expression and activity of CREB in human prostate cancers. Notably, overexpression of GRK3 in PAC cells increased the expression of NE markers in a kinase activity dependent manner. Conversely, silencing GRK3 blocked CREB-induced NED in PAC cells, reversed NE phenotypes and inhibited proliferation of NEPC cells. Taken together, these results indicate that GRK3 is a new critical activator of NE phenotypes and mediator of CREB activation in promoting NED of prostate cancer cells.
Collapse
|
10
|
Zheng D, Hulsurkar M, Sang M, Zhang S, Xu J, Gleave M, Ittmann M, Li W. Abstract 1577: GRK3 is a direct target of ADT-induced CREB1 activation and it promotes neuroendocrine differentiation of prostate cancer cells. Cancer Res 2017. [DOI: 10.1158/1538-7445.am2017-1577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Treatment-related neuroendocrine prostate cancer (t-NEPC) is an aggressive subtype of prostate cancer that is believed to arise through neuroendocrine differentiation (NED) from prostate adenocarcinoma (PAC) upon castration resistance to androgen deprivation treatment (ADT). t-NEPC is highly metastatic with poor prognosis. With the recent introduction of potent ADT drugs in clinic, the incidence of t-NEPC is expected to increase dramatically. No effective therapeutic is available for t-NEPC and its molecular mechanisms remain poorly understood. We reported that GRK3 (G protein-coupled receptor kinase 3) promotes prostate cancer progression. We further demonstrated that the ADT activates CREB1 (cAMP response element binding protein 1), which directly targets and induces GRK3. GRK3 expression is higher in t-NEPC than in PAC cells and mouse models, and it positively correlates with the expression and activity of CREB1 in human prostate cancers. Notably, overexpression of GRK3 in PAC cells increased the expression of NE markers. Conversely, silencing GRK3 blocked CREB1-induced NED in PAC cells, reversed NE phenotypes and inhibited proliferation of t-NEPC cells in culture and in xenograft. Currently, we are investigating the mechanisms underlying NEPC progression promoted by the CREB1/GRK3 axis. Taken together, these results indicate that GRK3 is a new critical activator of NE phenotypes and mediator of CREB1 activation in promoting NED of prostate cancer cells.
Citation Format: Dayong Zheng, Mohit Hulsurkar, Meixiang Sang, Songlin Zhang, Jianming Xu, Martin Gleave, Michael Ittmann, Wenliang Li. GRK3 is a direct target of ADT-induced CREB1 activation and it promotes neuroendocrine differentiation of prostate cancer cells [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 1577. doi:10.1158/1538-7445.AM2017-1577
Collapse
|
11
|
Hulsurkar M, Li Z, Zhang Y, Li X, Zheng D, Li W. Beta-adrenergic signaling promotes tumor angiogenesis and prostate cancer progression through HDAC2-mediated suppression of thrombospondin-1. Oncogene 2017; 36:1525-1536. [PMID: 27641328 DOI: 10.1038/onc.2016.319] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 06/22/2016] [Accepted: 07/22/2016] [Indexed: 12/19/2022]
Abstract
Chronic behavioral stress and beta-adrenergic signaling have been shown to promote cancer progression, whose underlying mechanisms are largely unclear, especially the involvement of epigenetic regulation. Histone deacetylase-2 (HDAC2), an epigenetic regulator, is critical for stress-induced cardiac hypertrophy. It is unknown whether it is necessary for beta-adrenergic signaling-promoted cancer progression. Using xenograft models, we showed that chronic behavioral stress and beta-adrenergic signaling promote angiogenesis and prostate cancer progression. HDAC2 was induced by beta-adrenergic signaling in vitro and in mouse xenografts. We next uncovered that HDAC2 is a direct target of cAMP response element-binding protein (CREB) that is activated by beta-adrenergic signaling. Notably, HDAC2 is necessary for beta-adrenergic signaling to induce angiogenesis. We further demonstrated that, upon CREB activation, HDAC2 represses thrombospondin-1 (TSP1), a potent angiogenesis inhibitor, through epigenetic regulation. Together, these data establish a novel pathway that HDAC2 and TSP1 act downstream of CREB activation in beta-adrenergic signaling to promote cancer progression.
Collapse
|
12
|
Li L, Hulsurkar M, Amato R, Chang J, Du G, Li W. Abstract B34: CDKL2 promotes epithelial-mesenchymal transition and breast cancer progression. Cancer Res 2016. [DOI: 10.1158/1538-7445.tummet15-b34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The epithelial-mesenchymal transition (EMT) confers mesenchymal properties on epithelial cells and has been closely associated with the acquisition of aggressive traits by epithelial cancer cells. To identify novel regulators of EMT, we carried out cDNA screens that covered 500 human kinases. Subsequent characterization of candidate kinases led us to uncover cyclin-dependent kinase-like 2 (CDKL2) as a novel potent promoter for EMT and breast cancer progression. CDKL2-expressing human mammary gland epithelial cells displayed enhanced mesenchymal traits and stem cell-like phenotypes, which was acquired through activating a ZEB1/E-cadherin/beta-catenin positive feedback loop and regulating CD44 mRNA alternative splicing to promote conversion of CD24-high cells to CD44-high cells. Furthermore, CDKL2 enhanced primary tumor formation and metastasis in a breast cancer xenograft model. Notably, CDKL2 is expressed significantly higher in mesenchymal human breast cancer cell lines than in epithelial lines, and its over-expression/amplification in human breast cancers is associated with shorter disease-free survival. Taken together, our study uncovered a major role for CDKL2 in promoting EMT and breast cancer progression.
Citation Format: Linna Li, Mohit Hulsurkar, Robert Amato, Jeffrey Chang, Guangwei Du, Wenliang Li. CDKL2 promotes epithelial-mesenchymal transition and breast cancer progression. [abstract]. In: Proceedings of the AACR Special Conference on Tumor Metastasis; 2015 Nov 30-Dec 3; Austin, TX. Philadelphia (PA): AACR; Cancer Res 2016;76(7 Suppl):Abstract nr B34.
Collapse
|
13
|
Li L, Ai N, Hulsurkar M, Li W. Abstract A57: Characterization of novel regulators of epithelial-mesenchymal transition in human cancer cells. Cancer Res 2013. [DOI: 10.1158/1538-7445.tim2013-a57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The epithelial-mesenchymal transition (EMT) confers mesenchymal properties on epithelial cells and has been closely associated with the acquisition of aggressive traits by cancer cells of several cancer types. Recently, a few kinases, such as FYN and c-Met, were reported to participate in regulating EMT. However, the roles of the majority of >700 human kinases in EMT and cancer progression are still unknown. Here we carried out human kinase cDNA screens to identify novel regulators of EMT. Many unknown EMT regulators and a few known ones such as PI3K, PDGFRA, FYN and c-Met, were found to up-regulate mesenchymal marker vimentin. Some also increase expression of fibronectin and N-cadherin, as well as EMT transcriptional regulators, such as ZEB1/2, Snail and Slug. At the same time, the cells acquired mesenchymal phenotypes, such as increased migration/invasion activity, enhanced capability to survive and proliferate in growth factor deprivation condition or under drug treatments. Interestingly, FACS analysis also showed a substantial increase in CD44hiCD24low population in kinase-transducted mammary gland epithelial cells. The increase of CD44hi population could be attributed to increase of a CD44 mesenchymal variant — the standard form CD44s and decrease of the epithelial variant CD44 v8-10. And this alternation was associated with down-regulation of ESRP1 and ESRP2, two splicing factors that regulate CD44 splicing and EMT. Furthermore, the mammary gland epithelial cells undergoing EMT showed increase capability of forming mammosphere and differentiating into other lineage, such as osteoblast and adipocyte. Importantly, some of these novel EMT regulators are associated with tumor progression and stemness of human cancers. Further study of these novel EMT regulators promises to provide new mechanisms of cancer progression, and may also lead to development of new prognostic markers and therapeutics for metastasis.
Citation Format: Linna Li, Nanping Ai, Mohit Hulsurkar, Wenliang Li. Characterization of novel regulators of epithelial-mesenchymal transition in human cancer cells. [abstract]. In: Proceedings of the AACR Special Conference on Tumor Invasion and Metastasis; Jan 20-23, 2013; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2013;73(3 Suppl):Abstract nr A57.
Collapse
|