1
|
Schäfer G, Milić J, Eldahshan A, Götz F, Zühlke K, Schillinger C, Kreuchwig A, Elkins JM, Abdul Azeez KR, Oder A, Moutty MC, Masada N, Beerbaum M, Schlegel B, Niquet S, Schmieder P, Krause G, von Kries JP, Cooper DMF, Knapp S, Rademann J, Rosenthal W, Klussmann E. Highly functionalized terpyridines as competitive inhibitors of AKAP-PKA interactions. Angew Chem Int Ed Engl 2013; 52:12187-91. [PMID: 24115519 PMCID: PMC4138556 DOI: 10.1002/anie.201304686] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Indexed: 12/25/2022]
|
Research Support, Non-U.S. Gov't |
12 |
45 |
2
|
Hanske J, Aleksić S, Ballaschk M, Jurk M, Shanina E, Beerbaum M, Schmieder P, Keller BG, Rademacher C. Intradomain Allosteric Network Modulates Calcium Affinity of the C-Type Lectin Receptor Langerin. J Am Chem Soc 2016; 138:12176-86. [DOI: 10.1021/jacs.6b05458] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
9 |
36 |
3
|
Preisitsch M, Heiden SE, Beerbaum M, Niedermeyer THJ, Schneefeld M, Herrmann J, Kumpfmüller J, Thürmer A, Neidhardt I, Wiesner C, Daniel R, Müller R, Bange FC, Schmieder P, Schweder T, Mundt S. Effects of Halide Ions on the Carbamidocyclophane Biosynthesis in Nostoc sp. CAVN2. Mar Drugs 2016; 14:21. [PMID: 26805858 PMCID: PMC4728517 DOI: 10.3390/md14010021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/09/2015] [Accepted: 12/21/2015] [Indexed: 01/28/2023] Open
Abstract
In this study, the influence of halide ions on [7.7]paracyclophane biosynthesis in the cyanobacterium Nostoc sp. CAVN2 was investigated. In contrast to KI and KF, supplementation of the culture medium with KCl or KBr resulted not only in an increase of growth but also in an up-regulation of carbamidocyclophane production. LC-MS analysis indicated the presence of chlorinated, brominated, but also non-halogenated derivatives. In addition to 22 known cylindrocyclophanes and carbamidocyclophanes, 27 putative congeners have been detected. Nine compounds, carbamidocyclophanes M-U, were isolated, and their structural elucidation by 1D and 2D NMR experiments in combination with HRMS and ECD analysis revealed that they are brominated analogues of chlorinated carbamidocyclophanes. Quantification of the carbamidocyclophanes showed that chloride is the preferably utilized halide, but incorporation is reduced in the presence of bromide. Evaluation of the antibacterial activity of 30 [7.7]paracyclophanes and related derivatives against selected pathogenic Gram-positive and Gram-negative bacteria exhibited remarkable effects especially against methicillin- and vancomycin-resistant staphylococci and Mycobacterium tuberculosis. For deeper insights into the mechanisms of biosynthesis, the carbamidocyclophane biosynthetic gene cluster in Nostoc sp. CAVN2 was studied. The gene putatively coding for the carbamoyltransferase has been identified. Based on bioinformatic analyses, a possible biosynthetic assembly is discussed.
Collapse
|
research-article |
9 |
31 |
4
|
Rutkowska A, Beerbaum M, Rajagopalan N, Fiaux J, Schmieder P, Kramer G, Oschkinat H, Bukau B. Large-scale purification of ribosome-nascent chain complexes for biochemical and structural studies. FEBS Lett 2009; 583:2407-13. [DOI: 10.1016/j.febslet.2009.06.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 06/17/2009] [Accepted: 06/22/2009] [Indexed: 10/20/2022]
|
|
16 |
31 |
5
|
Beerbaum M, Ballaschk M, Erdmann N, Schnick C, Diehl A, Uchanska-Ziegler B, Ziegler A, Schmieder P. NMR spectroscopy reveals unexpected structural variation at the protein-protein interface in MHC class I molecules. JOURNAL OF BIOMOLECULAR NMR 2013; 57:167-178. [PMID: 24006098 DOI: 10.1007/s10858-013-9777-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/28/2013] [Indexed: 06/02/2023]
Abstract
β2-Microglobulin (β2m) is a small, monomorphic protein non-covalently bound to the heavy chain (HC) in polymorphic major histocompatibility complex (MHC) class I molecules. Given the high evolutionary conservation of structural features of β2m in various MHC molecules as shown by X-ray crystallography, β2m is often considered as a mere scaffolding protein. Using nuclear magnetic resonance (NMR) spectroscopy, we investigate here whether β2m residues at the interface to the HC exhibit changes depending on HC polymorphisms and the peptides bound to the complex in solution. First we show that human β2m can effectively be produced in deuterated form using high-cell-density-fermentation and we employ the NMR resonance assignments obtained for triple-labeled β2m bound to the HLA-B*27:09 HC to examine the β2m-HC interface. We then proceed to compare the resonances of β2m in two minimally distinct subtypes, HLA-B*27:09 and HLA-B*27:05, that are differentially associated with the spondyloarthropathy Ankylosing Spondylitis. Each of these subtypes is complexed with four distinct peptides for which structural information is already available. We find that only the resonances at the β2m-HC interface show a variation of their chemical shifts between the different complexes. This indicates the existence of an unexpected plasticity that enables β2m to accommodate changes that depend on HC polymorphism as well as on the bound peptide through subtle structural variations of the protein-protein interface.
Collapse
|
|
12 |
30 |
6
|
Diesenberg K, Beerbaum M, Fink U, Schmieder P, Krauss M. SEPT9 negatively regulates ubiquitin-dependent downregulation of EGFR. J Cell Sci 2014; 128:397-407. [PMID: 25472714 DOI: 10.1242/jcs.162206] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Septins constitute a family of GTP-binding proteins that are involved in a variety of biological processes. Several isoforms have been implicated in disease, but the molecular mechanisms underlying pathogenesis are poorly understood. Here, we show that depletion of SEPT9 decreases surface levels of epidermal growth factor receptors (EGFRs) by enhancing receptor degradation. We identify a consensus motif within the SEPT9 N-terminal domain that supports its association with the adaptor protein CIN85 (also known as SH3KBP1). We further show CIN85-SEPT9 to be localized exclusively to the plasma membrane, where SEPT9 is recruited to EGF-engaged receptors in a CIN85-dependent manner. Finally, we demonstrate that SEPT9 negatively regulates EGFR degradation by preventing the association of the ubiquitin ligase Cbl with CIN85, resulting in reduced EGFR ubiquitylation. Taken together, these data provide a mechanistic explanation of how SEPT9, though acting exclusively at the plasma membrane, impairs the sorting of EGFRs into the degradative pathway.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
28 |
7
|
Naue N, Beerbaum M, Bogutzki A, Schmieder P, Curth U. The helicase-binding domain of Escherichia coli DnaG primase interacts with the highly conserved C-terminal region of single-stranded DNA-binding protein. Nucleic Acids Res 2013; 41:4507-17. [PMID: 23430154 PMCID: PMC3632105 DOI: 10.1093/nar/gkt107] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
During bacterial DNA replication, DnaG primase and the χ subunit of DNA polymerase III compete for binding to single-stranded DNA-binding protein (SSB), thus facilitating the switch between priming and elongation. SSB proteins play an essential role in DNA metabolism by protecting single-stranded DNA and by mediating several important protein-protein interactions. Although an interaction of SSB with primase has been previously reported, it was unclear which domains of the two proteins are involved. This study identifies the C-terminal helicase-binding domain of DnaG primase (DnaG-C) and the highly conserved C-terminal region of SSB as interaction sites. By ConSurf analysis, it can be shown that an array of conserved amino acids on DnaG-C forms a hydrophobic pocket surrounded by basic residues, reminiscent of known SSB-binding sites on other proteins. Using protein-protein cross-linking, site-directed mutagenesis, analytical ultracentrifugation and nuclear magnetic resonance spectroscopy, we demonstrate that these conserved amino acid residues are involved in the interaction with SSB. Even though the C-terminal domain of DnaG primase also participates in the interaction with DnaB helicase, the respective binding sites on the surface of DnaG-C do not overlap, as SSB binds to the N-terminal subdomain, whereas DnaB interacts with the ultimate C-terminus.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
26 |
8
|
Coin I, Beerbaum M, Schmieder P, Bienert M, Beyermann M. Solid-phase synthesis of a cyclodepsipeptide: cotransin. Org Lett 2008; 10:3857-60. [PMID: 18651745 DOI: 10.1021/ol800855p] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first solid-phase synthesis of cotransin--a cyclic depsipeptide having high pharmacological potential--was achieved, by a proper choice of coupling reagents and use of either TBAF or DBU for Fmoc removal to suppress the otherwise dominating, sequence-derived diketopiperazine formation. Starting the assembly from C-terminal lactic acid allowed fast and epimerization-free cyclization in solution. Novel conditions for orthogonal use of the Fmoc/Bsmoc-protection system were discovered, and an unexpected nucleophilic behavior of DBU was observed.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
23 |
9
|
Boschert V, Frisch C, Back JW, van Pee K, Weidauer SE, Muth EM, Schmieder P, Beerbaum M, Knappik A, Timmerman P, Mueller TD. The sclerostin-neutralizing antibody AbD09097 recognizes an epitope adjacent to sclerostin's binding site for the Wnt co-receptor LRP6. Open Biol 2017; 6:rsob.160120. [PMID: 27558933 PMCID: PMC5008011 DOI: 10.1098/rsob.160120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/25/2016] [Indexed: 11/12/2022] Open
Abstract
The glycoprotein sclerostin has been identified as a negative regulator of bone growth. It exerts its function by interacting with the Wnt co-receptor LRP5/6, blocks the binding of Wnt factors and thereby inhibits Wnt signalling. Neutralizing anti-sclerostin antibodies are able to restore Wnt activity and enhance bone growth thereby presenting a new osteoanabolic therapy approach for diseases such as osteoporosis. We have generated various Fab antibodies against human and murine sclerostin using a phage display set-up. Biochemical analyses have identified one Fab developed against murine sclerostin, AbD09097 that efficiently neutralizes sclerostin's Wnt inhibitory activity. In vitro interaction analysis using sclerostin variants revealed that this neutralizing Fab binds to sclerostin's flexible second loop, which has been shown to harbour the LRP5/6 binding motif. Affinity maturation was then applied to AbD09097, providing a set of improved neutralizing Fab antibodies which particularly bind human sclerostin with enhanced affinity. Determining the crystal structure of AbD09097 provides first insights into how this antibody might recognize and neutralize sclerostin. Together with the structure-function relationship derived from affinity maturation these new data will foster the rational design of new and highly efficient anti-sclerostin antibodies for the therapy of bone loss diseases such as osteoporosis.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
9 |
10
|
Fiebig JE, Weidauer SE, Qiu LY, Bauer M, Schmieder P, Beerbaum M, Zhang JL, Oschkinat H, Sebald W, Mueller TD. The clip-segment of the von Willebrand domain 1 of the BMP modulator protein Crossveinless 2 is preformed. Molecules 2013; 18:11658-82. [PMID: 24071977 PMCID: PMC6270503 DOI: 10.3390/molecules181011658] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/17/2013] [Accepted: 09/17/2013] [Indexed: 11/19/2022] Open
Abstract
Bone Morphogenetic Proteins (BMPs) are secreted protein hormones that act as morphogens and exert essential roles during embryonic development of tissues and organs. Signaling by BMPs occurs via hetero-oligomerization of two types of serine/threonine kinase transmembrane receptors. Due to the small number of available receptors for a large number of BMP ligands ligand-receptor promiscuity presents an evident problem requiring additional regulatory mechanisms for ligand-specific signaling. Such additional regulation is achieved through a plethora of extracellular antagonists, among them members of the Chordin superfamily, that modulate BMP signaling activity by binding. The key-element in Chordin-related antagonists for interacting with BMPs is the von Willebrand type C (VWC) module, which is a small domain of about 50 to 60 residues occurring in many different proteins. Although a structure of the VWC domain of the Chordin-member Crossveinless 2 (CV2) bound to BMP-2 has been determined by X-ray crystallography, the molecular mechanism by which the VWC domain binds BMPs has remained unclear. Here we present the NMR structure of the Danio rerio CV2 VWC1 domain in its unbound state showing that the key features for high affinity binding to BMP-2 is a pre-oriented peptide loop.
Collapse
|
research-article |
12 |
8 |
11
|
Schäfer G, Milić J, Eldahshan A, Götz F, Zühlke K, Schillinger C, Kreuchwig A, Elkins JM, Abdul Azeez KR, Oder A, Moutty MC, Masada N, Beerbaum M, Schlegel B, Niquet S, Schmieder P, Krause G, von Kries JP, Cooper DMF, Knapp S, Rademann J, Rosenthal W, Klussmann E. Hoch funktionalisierte Terpyridine als kompetitive Inhibitoren von AKAP-PKA-Wechselwirkungen. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201304686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
|
12 |
6 |
12
|
Ziegler A, Beerbaum M, Ballaschk M, Erdmann N, Schnick C, Diehl A, Uchanska-Ziegler B, Schmieder P. 30-OR. Hum Immunol 2013. [DOI: 10.1016/j.humimm.2013.08.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
|
12 |
|