1
|
Yagoda N, von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS, Fridman DJ, Wolpaw AJ, Smukste I, Peltier JM, Boniface JJ, Smith R, Lessnick SL, Sahasrabudhe S, Stockwell BR. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 2007; 447:864-8. [PMID: 17568748 PMCID: PMC3047570 DOI: 10.1038/nature05859] [Citation(s) in RCA: 1190] [Impact Index Per Article: 66.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 04/17/2007] [Indexed: 02/06/2023]
Abstract
Therapeutics that discriminate between the genetic makeup of normal cells and tumour cells are valuable for treating and understanding cancer. Small molecules with oncogene-selective lethality may reveal novel functions of oncoproteins and enable the creation of more selective drugs. Here we describe the mechanism of action of the selective anti-tumour agent erastin, involving the RAS-RAF-MEK signalling pathway functioning in cell proliferation, differentiation and survival. Erastin exhibits greater lethality in human tumour cells harbouring mutations in the oncogenes HRAS, KRAS or BRAF. Using affinity purification and mass spectrometry, we discovered that erastin acts through mitochondrial voltage-dependent anion channels (VDACs)--a novel target for anti-cancer drugs. We show that erastin treatment of cells harbouring oncogenic RAS causes the appearance of oxidative species and subsequent death through an oxidative, non-apoptotic mechanism. RNA-interference-mediated knockdown of VDAC2 or VDAC3 caused resistance to erastin, implicating these two VDAC isoforms in the mechanism of action of erastin. Moreover, using purified mitochondria expressing a single VDAC isoform, we found that erastin alters the permeability of the outer mitochondrial membrane. Finally, using a radiolabelled analogue and a filter-binding assay, we show that erastin binds directly to VDAC2. These results demonstrate that ligands to VDAC proteins can induce non-apoptotic cell death selectively in some tumour cells harbouring activating mutations in the RAS-RAF-MEK pathway.
Collapse
|
Journal Article |
18 |
1190 |
2
|
Bertsche U, Kast T, Wolf B, Fraipont C, Aarsman MEG, Kannenberg K, von Rechenberg M, Nguyen-Distèche M, den Blaauwen T, Höltje JV, Vollmer W. Interaction between two murein (peptidoglycan) synthases, PBP3 and PBP1B, in Escherichia coli. Mol Microbiol 2006; 61:675-90. [PMID: 16803586 DOI: 10.1111/j.1365-2958.2006.05280.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The murein (peptidoglycan) sacculus is an essential polymer embedded in the bacterial envelope. The Escherichia coli class B penicillin-binding protein (PBP) 3 is a murein transpeptidase and essential for cell division. In an affinity chromatography experiment, the bifunctional transglycosylase-transpeptidase murein synthase PBP1B was retained by PBP3-sepharose when a membrane fraction of E. coli was applied. The direct protein-protein interaction between purified PBP3 and PBP1B was characterized in vitro by surface plasmon resonance. The interaction was confirmed in vivo employing two different methods: by a bacterial two-hybrid system, and by cross-linking/co-immunoprecipitation. In the bacterial two-hybrid system, a truncated PBP3 comprising the N-terminal 56 amino acids interacted with PBP1B. Both synthases could be cross-linked in vivo in wild-type cells and in cells lacking FtsW or FtsN. PBP1B localized diffusely and in foci at the septation site and also at the side wall. Statistical analysis of the immunofluorescence signals revealed that the localization of PBP1B at the septation site depended on the physical presence of PBP3, but not on the activity of PBP3. These studies have demonstrated, for the first time, a direct interaction between a class B PBP (PBP3) and a class A PBP (PBP1B) in vitro and in vivo, indicating that different murein synthases might act in concert to enlarge the murein sacculus during cell division.
Collapse
|
|
19 |
143 |
3
|
Dreiza CM, Brophy CM, Komalavilas P, Furnish EJ, Joshi L, Pallero MA, Murphy-Ullrich JE, von Rechenberg M, Ho YSJ, Richardson B, Xu N, Zhen Y, Peltier JM, Panitch A. Transducible heat shock protein 20 (HSP20) phosphopeptide alters cytoskeletal dynamics. FASEB J 2004; 19:261-3. [PMID: 15598710 DOI: 10.1096/fj.04-2911fje] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Activation of cyclic nucleotide dependent signaling pathways leads to relaxation of smooth muscle, alterations in the cytoskeleton of cultured cells, and increases in the phosphorylation of HSP20. To determine the effects of phosphorylated HSP20 on the actin cytoskeleton, phosphopeptide analogs of HSP20 were synthesized. These peptides contained 1) the amino acid sequence surrounding the phosphorylation site of HSP20, 2) a phosphoserine, and 3) a protein transduction domain. Treatment of Swiss 3T3 cells with phosphopeptide analogs of HSP20 led to loss of actin stress fibers and focal adhesion complexes as demonstrated by immunocytochemistry, interference reflection microscopy, and biochemical quantitation of globular-actin. Treatment with phosphopeptide analogs of HSP20 also led to dephosphorylation of the actin depolymerizing protein cofilin. Pull-down assays demonstrated that 14-3-3 proteins associated with phosphopeptide analogs of HSP20 (but not peptide analogs in which the serine was not phosphorylated). The binding of 14-3-3 protein to phosphopeptide analogs of HSP20 prevented the association of cofilin with 14-3-3. These data suggest that HSP20 may modulate actin cytoskeletal dynamics by competing with the actin depolymerizing protein cofilin for binding to the scaffolding protein 14-3-3. Interestingly, the entire protein was not needed for this effect, suggesting that the association is modulated by phosphopeptide motifs of HSP20. These data also suggest the possibility that cyclic nucleotide dependent relaxation of smooth muscle may be mediated by a thin filament (actin) regulatory process. Finally, these data suggest that protein transduction can be used as a tool to elucidate the specific function of peptide motifs of proteins.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
83 |
4
|
Disch JS, Duffy JM, Lee ECY, Gikunju D, Chan B, Levin B, Monteiro MI, Talcott SA, Lau AC, Zhou F, Kozhushnyan A, Westlund NE, Mullins PB, Yu Y, von Rechenberg M, Zhang J, Arnautova YA, Liu Y, Zhang Y, McRiner AJ, Keefe AD, Kohlmann A, Clark MA, Cuozzo JW, Huguet C, Arora S. Bispecific Estrogen Receptor α Degraders Incorporating Novel Binders Identified Using DNA-Encoded Chemical Library Screening. J Med Chem 2021; 64:5049-5066. [PMID: 33844532 DOI: 10.1021/acs.jmedchem.1c00127] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bispecific degraders (PROTACs) of ERα are expected to be advantageous over current inhibitors of ERα signaling (aromatase inhibitors/SERMs/SERDs) used to treat ER+ breast cancer. Information from DNA-encoded chemical library (DECL) screening provides a method to identify novel PROTAC binding features as the linker positioning, and binding elements are determined directly from the screen. After screening ∼120 billion DNA-encoded molecules with ERα WT and 3 gain-of-function (GOF) mutants, with and without estradiol to identify features that enrich ERα competitively, the off-DNA synthesized small molecule exemplar 7 exhibited nanomolar ERα binding, antagonism, and degradation. Click chemistry synthesis on an alkyne E3 ligase engagers panel and an azide variant of 7 rapidly generated bispecific nanomolar degraders of ERα, with PROTACs 18 and 21 inhibiting ER+ MCF7 tumor growth in a mouse xenograft model of breast cancer. This study validates this approach toward identifying novel bispecific degrader leads from DECL screening with minimal optimization.
Collapse
|
Journal Article |
4 |
40 |
5
|
von Rechenberg M, Blake BK, Ho YSJ, Zhen Y, Chepanoske CL, Richardson BE, Xu N, Kery V. Ampicillin/penicillin-binding protein interactions as a model drug-target system to optimize affinity pull-down and mass spectrometric strategies for target and pathway identification. Proteomics 2005; 5:1764-73. [PMID: 15761956 DOI: 10.1002/pmic.200301088] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The identification and validation of the targets of active compounds identified in cell-based assays is an important step in preclinical drug development. New analytical approaches that combine drug affinity pull-down assays with mass spectrometry (MS) could lead to the identification of new targets and druggable pathways. In this work, we investigate a drug-target system consisting of ampicillin- and penicillin-binding proteins (PBPs) to evaluate and compare different amino-reactive resins for the immobilization of the affinity compound and mass spectrometric methods to identify proteins from drug affinity pull-down assays. First, ampicillin was immobilized onto various amino-reactive resins, which were compared in the ampicillin-PBP model with respect to their nonspecific binding of proteins from an Escherichia coli membrane extract. Dynal M-270 magnetic beads were chosen to further study the system as a model for capturing and identifying the targets of ampicillin, PBPs that were specifically and covalently bound to the immobilized ampicillin. The PBPs were identified, after in situ digestion of proteins bound to ampicillin directly on the beads, by using either one-dimensional (1-D) or two-dimensional (2-D) liquid chromatography (LC) separation techniques followed by tandem mass spectrometry (MS/MS) analysis. Alternatively, an elution with N-lauroylsarcosine (sarcosyl) from the ampicillin beads followed by in situ digestion and 2-D LC-MS/MS analysis identified proteins potentially interacting noncovalently with the PBPs or the ampicillin. The in situ approach required only little time, resources, and sample for the analysis. The combination of drug affinity pull-down assays with in situ digestion and 2-D LC-MS/MS analysis is a useful tool in obtaining complex information about a primary drug target as well as its protein interactors.
Collapse
|
Journal Article |
20 |
30 |
6
|
Li AM, Kimani S, Wilson B, Noureldin M, González-Álvarez H, Mamai A, Hoffer L, Guilinger JP, Zhang Y, von Rechenberg M, Disch JS, Mulhern CJ, Slakman BL, Cuozzo JW, Dong A, Poda G, Mohammed M, Saraon P, Mittal M, Modh P, Rathod V, Patel B, Ackloo S, Santhakumar V, Szewczyk MM, Barsyte-Lovejoy D, Arrowsmith CH, Marcellus R, Guié MA, Keefe AD, Brown PJ, Halabelian L, Al-awar R, Vedadi M. Discovery of Nanomolar DCAF1 Small Molecule Ligands. J Med Chem 2023; 66:5041-5060. [PMID: 36948210 PMCID: PMC10108359 DOI: 10.1021/acs.jmedchem.2c02132] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Indexed: 03/24/2023]
Abstract
DCAF1 is a substrate receptor of two distinct E3 ligases (CRL4DCAF1 and EDVP), plays a critical physiological role in protein degradation, and is considered a drug target for various cancers. Antagonists of DCAF1 could be used toward the development of therapeutics for cancers and viral treatments. We used the WDR domain of DCAF1 to screen a 114-billion-compound DNA encoded library (DEL) and identified candidate compounds using similarity search and machine learning. This led to the discovery of a compound (Z1391232269) with an SPR KD of 11 μM. Structure-guided hit optimization led to the discovery of OICR-8268 (26e) with an SPR KD of 38 nM and cellular target engagement with EC50 of 10 μM as measured by cellular thermal shift assay (CETSA). OICR-8268 is an excellent tool compound to enable the development of next-generation DCAF1 ligands toward cancer therapeutics, further investigation of DCAF1 functions in cells, and the development of DCAF1-based PROTACs.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
25 |
7
|
An SS, Askovich PS, Zarembinski TI, Ahn K, Peltier JM, von Rechenberg M, Sahasrabudhe S, Fredberg JJ. A novel small molecule target in human airway smooth muscle for potential treatment of obstructive lung diseases: a staged high-throughput biophysical screening. Respir Res 2011; 12:8. [PMID: 21232113 PMCID: PMC3034681 DOI: 10.1186/1465-9921-12-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 01/13/2011] [Indexed: 11/23/2022] Open
Abstract
Background A newly identified mechanism of smooth muscle relaxation is the interaction between the small heat shock protein 20 (HSP20) and 14-3-3 proteins. Focusing upon this class of interactions, we describe here a novel drug target screening approach for treating airflow obstruction in asthma. Methods Using a high-throughput fluorescence polarization (FP) assay, we screened a library of compounds that could act as small molecule modulators of HSP20 signals. We then applied two quantitative, cell-based biophysical methods to assess the functional efficacy of these molecules and rank-ordered their abilities to relax isolated human airway smooth muscle (ASM). Scaling up to the level of an intact tissue, we confirmed in a concentration-responsive manner the potency of the cell-based hit compounds. Results Among 58,019 compound tested, 268 compounds caused 20% or more reduction of the polarized emission in the FP assay. A small subset of these primary screen hits, belonging to two scaffolds, caused relaxation of isolated ASM cell in vitro and attenuated active force development of intact tissue ex vivo. Conclusions This staged biophysical screening paradigm provides proof-of-principle for high-throughput and cost-effective discovery of new small molecule therapeutic agents for obstructive lung diseases.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
22 |
8
|
Chepanoske CL, Richardson BE, von Rechenberg M, Peltier JM. Average peptide score: a useful parameter for identification of proteins derived from database searches of liquid chromatography/tandem mass spectrometry data. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2005; 19:9-14. [PMID: 15573416 DOI: 10.1002/rcm.1741] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The quantity and variable quality of data that can be generated from liquid chromatography (LC)/mass spectrometry (MS)-based proteomics analyses creates many challenges in interpreting the spectra in terms of the actual proteins in a complex sample. In spite of improvements in algorithms that match putative peptide sequences to MS/MS spectra, the assembly of these lists of possible or probable peptides into a 'correct' set of proteins is still problematic. We have observed a trend in a simple relationship, derived from standard database search outputs, which can be useful in assessing the quality of a MS/MS-based protein identification. Specifically, the ratio of the protein score and number of non-redundant peptides, or average peptide score (APS), can facilitate initial filtering of database search results in addition to providing a useful measure of confidence for the proteins identified. This parameter has been applied to results from the analysis of multi-protein complexes derived from pull-down experiments analyzed using a two-dimensional LC/MS/MS workflow. In particular, the complex list of protein identifications derived from a drug affinity pull-down with immobilized ampicillin and an E. coli lysate was greatly simplified by applying the APS as a filter, allowing for facile identification of the penicillin-binding proteins known to interact with ampicillin. Furthermore, an APS threshold can be used for any data sets derived from electrospray ionization (ESI)- or matrix-assisted laser desorption/ionization (MALDI)-MS/MS experiments and is also not specific to any database search program.
Collapse
|
|
20 |
17 |
9
|
Lee ECY, McRiner AJ, Georgiadis KE, Liu J, Wang Z, Ferguson AD, Levin B, von Rechenberg M, Hupp CD, Monteiro MI, Keefe AD, Olszewski A, Eyermann CJ, Centrella P, Liu Y, Arora S, Cuozzo JW, Zhang Y, Clark MA, Huguet C, Kohlmann A. Discovery of Novel, Potent Inhibitors of Hydroxy Acid Oxidase 1 (HAO1) Using DNA-Encoded Chemical Library Screening. J Med Chem 2021; 64:6730-6744. [PMID: 33955740 DOI: 10.1021/acs.jmedchem.0c02271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inhibition of hydroxy acid oxidase 1 (HAO1) is a strategy to mitigate the accumulation of toxic oxalate that results from reduced activity of alanine-glyoxylate aminotransferase (AGXT) in primary hyperoxaluria 1 (PH1) patients. DNA-Encoded Chemical Library (DECL) screening provided two novel chemical series of potent HAO1 inhibitors, represented by compounds 3-6. Compound 5 was further optimized via various structure-activity relationship (SAR) exploration methods to 29, a compound with improved potency and absorption, distribution, metabolism, and excretion (ADME)/pharmacokinetic (PK) properties. Since carboxylic acid-containing compounds are often poorly permeable and have potential active glucuronide metabolites, we undertook a brief, initial exploration of acid replacements with the aim of identifying non-acid-containing HAO1 inhibitors. Structure-based drug design initiated with Compound 5 led to the identification of a nonacid inhibitor of HAO1, 31, which has weaker potency and increased permeability.
Collapse
|
Journal Article |
4 |
6 |
10
|
Kery V, Savage JR, Widjaja K, Blake BK, Conklin DR, Ho YSJ, Long X, von Rechenberg M, Zarembinski TI, Boniface JJ. Expression screen by enzyme-linked immunofiltration assay designed for high-throughput purification of affinity-tagged proteins. Anal Biochem 2003; 317:255-8. [PMID: 12758265 DOI: 10.1016/s0003-2697(03)00116-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
High-throughput purification of affinity-tagged fusion proteins is currently one of the fastest developing areas of molecular proteomics. A prerequisite for success in protein purification is sufficient soluble protein expression of the target protein in a heterologous host. Hence, a fast and quantitative evaluation of the soluble-protein levels in an expression system is one of the key steps in the entire process. Here we describe a high-throughput expression screen for affinity-tagged fusion proteins based on an enzyme linked immunofiltration assay (ELIFA). An aliquot of a crude Escherichia coli extract containing the analyte, an affinity-tagged protein, is adsorbed onto the membrane. Subsequent binding of specific antibodies followed by binding of a secondary antibody horseradish peroxidase (HRP) complex then allows quantitative evaluation of the analyte using tetramethylbenzidine as the substrate for HRP. The method is accurate and quantitative, as shown by comparison with results from western blotting and an enzymatic glutathione S-transferase (GST) assay. Furthermore, it is a far more rapid assay and less cumbersome than western blotting, lending itself more readily to high-throughput analysis. It can be used at the expression level (cell lysates) or during the subsequent purification steps to monitor yield of specific protein.
Collapse
|
|
22 |
4 |
11
|
Ackloo S, Li F, Szewczyk M, Seitova A, Loppnau P, Zeng H, Xu J, Ahmad S, Arnautova YA, Baghaie AJ, Beldar S, Bolotokova A, Centrella PA, Chau I, Clark MA, Cuozzo JW, Dehghani-Tafti S, Disch JS, Dong A, Dumas A, Feng JA, Ghiabi P, Gibson E, Gilmer J, Goldman B, Green SR, Guié MA, Guilinger JP, Harms N, Herasymenko O, Houliston S, Hutchinson A, Kearnes S, Keefe AD, Kimani SW, Kramer T, Kutera M, Kwak HA, Lento C, Li Y, Liu J, Loup J, Machado RAC, Mulhern CJ, Perveen S, Righetto GL, Riley P, Shrestha S, Sigel EA, Silva M, Sintchak MD, Slakman BL, Taylor RD, Thompson J, Torng W, Underkoffler C, von Rechenberg M, Walsh RT, Watson I, Wilson DJ, Wolf E, Yadav M, Yazdi AK, Zhang J, Zhang Y, Santhakumar V, Edwards AM, Barsyte-Lovejoy D, Schapira M, Brown PJ, Halabelian L, Arrowsmith CH. A Target Class Ligandability Evaluation of WD40 Repeat-Containing Proteins. J Med Chem 2025; 68:1092-1112. [PMID: 39495097 PMCID: PMC11770632 DOI: 10.1021/acs.jmedchem.4c02010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/08/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
Target class-focused drug discovery has a strong track record in pharmaceutical research, yet public domain data indicate that many members of protein families remain unliganded. Here we present a systematic approach to scale up the discovery and characterization of small molecule ligands for the WD40 repeat (WDR) protein family. We developed a comprehensive suite of protocols for protein production, crystallography, and biophysical, biochemical, and cellular assays. A pilot hit-finding campaign using DNA-encoded chemical library selection followed by machine learning (DEL-ML) to predict ligands from virtual libraries yielded first-in-class, drug-like ligands for 7 of the 16 WDR domains screened, thus demonstrating the broader ligandability of WDRs. This study establishes a template for evaluation of protein family wide ligandability and provides an extensive resource of WDR protein biochemical and chemical tools, knowledge, and protocols to discover potential therapeutics for this highly disease-relevant, but underexplored target class.
Collapse
|
Research Support, N.I.H., Extramural |
1 |
|
12
|
Keefe AD, Disch JS, Duffy J, Lee EC, Gikunju D, Chan B, Levin BD, Monteiro MI, Talcott SA, Lau A, Zhou F, Kozhushnyan A, Westlund NE, Mullins PB, Yu Y, von Rechenberg M, Zhang J, Arnautova Y, Liu Y, Zhang Y, McRiner AJ, Kohlmann A, Clark MA, Cuozzo JW, Huguet C, Arora S. Abstract 5346: Discovery of new targeted protein degraders using DNA-encoded chemistry. Cancer Res 2023. [DOI: 10.1158/1538-7445.am2023-5346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Abstract
Bispecific degraders (PROTACs) of ERα are expected to be advantageous over current inhibitors of ERα signaling (aromatase inhibitors/SERMs/SERDs) used to treat ER+ breast cancer. Information from DNA-encoded chemical library screening provides a method to identify novel PROTAC binding features as the linker positioning, and binding elements are determined directly from the screen. After screening ∼120 billion DNA-encoded molecules with ERα WT and 3 gain-of-function mutants, with and without estradiol to identify features that enrich ERα competitively, the off-DNA synthesized small molecule exemplars exhibited nanomolar ERα binding, antagonism, and degradation. Click chemistry synthesis on an alkyne E3 ligase engagers panel and an azide variant that rapidly generated bispecific nanomolar degraders of ERα, with PROTACs inhibiting ER+ MCF7 tumor growth in a mouse xenograft model of breast cancer. This study validates this approach toward identifying novel bispecific degrader leads from DECL screening with minimal optimization.
Citation Format: Anthony D. Keefe, Jeremy S. Disch, Jennifer Duffy, Esther C. Lee, Diana Gikunju, Betty Chan, Benjamin D. Levin, Michael I. Monteiro, Sarah A. Talcott, Anthony Lau, Fei Zhou, Anton Kozhushnyan, Neil E. Westlund, Patrick B. Mullins, Yan Yu, Moritz von Rechenberg, Junyi Zhang, Yelena Arnautova, Yanbin Liu, Ying Zhang, Andrew J. McRiner, Anna Kohlmann, Matthew A. Clark, John W. Cuozzo, Christelle Huguet, Shilpi Arora. Discovery of new targeted protein degraders using DNA-encoded chemistry. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 5346.
Collapse
|
|
2 |
|
13
|
Ahmad S, Xu J, Feng JA, Hutchinson A, Zeng H, Ghiabi P, Dong A, Centrella PA, Clark MA, Guié MA, Guilinger JP, Keefe AD, Zhang Y, Cerruti T, Cuozzo JW, von Rechenberg M, Bolotokova A, Li Y, Loppnau P, Seitova A, Li YY, Santhakumar V, Brown PJ, Ackloo S, Halabelian L. Discovery of a First-in-Class Small-Molecule Ligand for WDR91 Using DNA-Encoded Chemical Library Selection Followed by Machine Learning. J Med Chem 2023; 66:16051-16061. [PMID: 37996079 DOI: 10.1021/acs.jmedchem.3c01471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
WD40 repeat-containing protein 91 (WDR91) regulates early-to-late endosome conversion and plays vital roles in endosome fusion, recycling, and transport. WDR91 was recently identified as a potential host factor for viral infection. We employed DNA-encoded chemical library (DEL) selection against the WDR domain of WDR91, followed by machine learning to predict ligands from the synthetically accessible Enamine REAL database. Screening of predicted compounds identified a WDR91 selective compound 1, with a KD of 6 ± 2 μM by surface plasmon resonance. The co-crystal structure confirmed the binding of 1 to the WDR91 side pocket, in proximity to cysteine 487, which led to the discovery of covalent analogues 18 and 19. The covalent adduct formation for 18 and 19 was confirmed by intact mass liquid chromatography-mass spectrometry. The discovery of 1, 18, and 19, accompanying structure-activity relationship, and the co-crystal structures provide valuable insights for designing potent and selective chemical tools against WDR91 to evaluate its therapeutic potential.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
|