1
|
Michelsen KS, Wong MH, Shah PK, Zhang W, Yano J, Doherty TM, Akira S, Rajavashisth TB, Arditi M. Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc Natl Acad Sci U S A 2004; 101:10679-84. [PMID: 15249654 PMCID: PMC489994 DOI: 10.1073/pnas.0403249101] [Citation(s) in RCA: 796] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Toll-like receptors (TLRs) and the downstream adaptor molecule myeloid differentiation factor 88 (MyD88) play an essential role in the innate immune responses. Here, we demonstrate that genetic deficiency of TLR4 or MyD88 is associated with a significant reduction of aortic plaque areas in atherosclerosis-prone apolipoprotein E-deficient mice, despite persistent hypercholesterolemia, implying an important role for the innate immune system in atherogenesis. Apolipoprotein E-deficient mice that also lacked TLR4 or MyD88 demonstrated reduced aortic atherosclerosis that was associated with reductions in circulating levels of proinflammatory cytokines IL-12 or monocyte chemoattractant protein 1, plaque lipid content, numbers of macrophage, and cyclooxygenase 2 immunoreactivity in their plaques. Endothelial-leukocyte adhesion in response to minimally modified low-density lipoprotein was reduced in aortic endothelial cells derived from MyD88-deficient mice. Taken together, our results suggest an important role for TLR4 and MyD88 signaling in atherosclerosis in a hypercholesterolemic mouse model, providing a pathophysiologic link between innate immunity, inflammation, and atherogenesis.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antigens, Differentiation/genetics
- Antigens, Differentiation/immunology
- Aorta/cytology
- Aorta/pathology
- Apolipoproteins E/genetics
- Apolipoproteins E/metabolism
- Arteriosclerosis/genetics
- Arteriosclerosis/immunology
- Arteriosclerosis/pathology
- Cells, Cultured
- Chemokine CCL2/metabolism
- Cyclooxygenase 2
- Endothelial Cells/cytology
- Endothelial Cells/metabolism
- Female
- Humans
- Immunity, Innate/physiology
- Interleukin-12/blood
- Isoenzymes/metabolism
- Lipid Metabolism
- Lipids/chemistry
- Macrophages/metabolism
- Male
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Membrane Proteins
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myeloid Differentiation Factor 88
- Phenotype
- Prostaglandin-Endoperoxide Synthases/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Signal Transduction/physiology
- Toll-Like Receptor 4
- Toll-Like Receptors
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
796 |
2
|
Abreu MT, Vora P, Faure E, Thomas LS, Arnold ET, Arditi M. Decreased expression of Toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell protection against dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:1609-16. [PMID: 11466383 DOI: 10.4049/jimmunol.167.3.1609] [Citation(s) in RCA: 503] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The lumenal surface of the colonic epithelium is continually exposed to Gram-negative commensal bacteria and LPS. Recognition of LPS by Toll-like receptor (TLR)-4 results in proinflammatory gene expression in diverse cell types. Normally, however, commensal bacteria and their components do not elicit an inflammatory response from intestinal epithelial cells (IEC). The aim of this study is to understand the molecular mechanisms by which IEC limit chronic activation in the presence of LPS. Three IEC lines (Caco-2, T84, HT-29) were tested for their ability to activate an NF-kappaB reporter gene in response to purified, protein-free LPS. No IEC line responded to LPS, whereas human dermal microvessel endothelial cells (HMEC) did respond to LPS. IEC responded vigorously to IL-1beta in this assay, demonstrating that the IL-1 receptor signaling pathway shared by TLRs was intact. To determine the reason for LPS hyporesponsiveness in IEC, we examined the expression of TLR4 and MD-2, a critical coreceptor for TLR4 signaling. IEC expressed low levels of TLR4 compared with HMEC and none expressed MD-2. To determine whether the low level of TLR4 expression or absent MD-2 was responsible for the LPS signaling defect in IEC, the TLR4 or MD-2 gene was transiently expressed in IEC lines. Transient transfection of either gene individually was not sufficient to restore LPS signaling, but cotransfection of TLR4 and MD-2 in IEC led to synergistic activation of NF-kappaB and IL-8 reporter genes in response to LPS. We conclude that IEC limit dysregulated LPS signaling by down-regulating expression of MD-2 and TLR4. The remainder of the intracellular LPS signaling pathway is functionally intact.
Collapse
|
|
24 |
503 |
3
|
Zhang FX, Kirschning CJ, Mancinelli R, Xu XP, Jin Y, Faure E, Mantovani A, Rothe M, Muzio M, Arditi M. Bacterial lipopolysaccharide activates nuclear factor-kappaB through interleukin-1 signaling mediators in cultured human dermal endothelial cells and mononuclear phagocytes. J Biol Chem 1999; 274:7611-4. [PMID: 10075645 DOI: 10.1074/jbc.274.12.7611] [Citation(s) in RCA: 473] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial lipopolysaccharide (LPS)-mediated immune responses, including activation of monocytes, macrophages, and endothelial cells, play an important role in the pathogenesis of Gram-negative bacteria-induced sepsis syndrome. Activation of NF-kappaB is thought to be required for cytokine release from LPS-responsive cells, a critical step for endotoxic effects. Here we investigated the role and involvement of interleukin-1 (IL-1) and tumor necrosis factor (TNF-alpha) signal transducer molecules in LPS signaling in human dermal microvessel endothelial cells (HDMEC) and THP-1 monocytic cells. LPS stimulation of HDMEC and THP-1 cells initiated an IL-1 receptor-like NF-kappaB signaling cascade. In transient cotransfection experiments, dominant negative mutants of the IL-1 signaling pathway, including MyD88, IRAK, IRAK2, and TRAF6 inhibited both IL-1- and LPS-induced NF-kappaB-luciferase activity. LPS-induced NF-kappaB activation was not inhibited by a dominant negative mutant of TRAF2 that is involved in TNF signaling. LPS-induced activation of NF-kappaB-responsive reporter gene was not inhibited by IL-1 receptor antagonist. TLR2 and TLR4 were expressed on the cell surface of HDMEC and THP-1 cells. These findings suggest that a signal transduction molecule in the LPS receptor complex may belong to the IL-1 receptor/toll-like receptor (TLR) super family, and the LPS signaling cascade uses an analogous molecular framework for signaling as IL-1 in mononuclear phagocytes and endothelial cells.
Collapse
|
|
26 |
473 |
4
|
Xu XH, Shah PK, Faure E, Equils O, Thomas L, Fishbein MC, Luthringer D, Xu XP, Rajavashisth TB, Yano J, Kaul S, Arditi M. Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL. Circulation 2001; 104:3103-8. [PMID: 11748108 DOI: 10.1161/hc5001.100631] [Citation(s) in RCA: 452] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Inflammation is implicated in atherogenesis and plaque disruption. Toll-like receptor 2 (TLR-2) and TLR-4, a human homologue of drosophila Toll, play an important role in the innate and inflammatory signaling responses to microbial agents. To investigate a potential role of these receptors in atherosclerosis, we assessed the expression of TLR-2 and TLR-4 in murine and human atherosclerotic plaques. METHODS AND RESULTS Aortic root lesions of high-fat diet-fed apoE-deficient mice (n=5) and human coronary atherosclerotic plaques (n=9) obtained at autopsy were examined for TLR-4 and TLR-2 expression by immunohistochemistry. Aortic atherosclerotic lesions in all apoE-deficient mice expressed TLR-4, whereas aortic tissue obtained from control C57BL/6J mice showed no TLR-4 expression. All 5 lipid-rich human plaques expressed TRL-4, whereas the 4 fibrous plaques and 4 normal human arteries showed no or minimal expression. Serial sections and double immunostaining showed TLR-4 colocalizing with macrophages both in murine atherosclerotic lesions and at the shoulder region of human coronary artery plaques. In contrast to TLR-4, none of the plaques expressed TLR-2. Furthermore, basal TLR-4 mRNA expression by human monocyte-derived macrophages was upregulated by ox-LDL in vitro. CONCLUSIONS Our study demonstrates that TLR-4 is preferentially expressed by macrophages in murine and human lipid-rich atherosclerotic lesions, where it may play a role to enhance and sustain the innate immune and inflammatory responses. Moreover, upregulation of TLR-4 in macrophages by oxidized LDL suggests that TLR-4 may provide a potential pathophysiological link between lipids and infection/inflammation and atherosclerosis.
Collapse
|
|
24 |
452 |
5
|
Faure E, Equils O, Sieling PA, Thomas L, Zhang FX, Kirschning CJ, Polentarutti N, Muzio M, Arditi M. Bacterial lipopolysaccharide activates NF-kappaB through toll-like receptor 4 (TLR-4) in cultured human dermal endothelial cells. Differential expression of TLR-4 and TLR-2 in endothelial cells. J Biol Chem 2000; 275:11058-63. [PMID: 10753909 DOI: 10.1074/jbc.275.15.11058] [Citation(s) in RCA: 438] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A missense mutation in the cytoplasmic domain of the Toll-like receptor-4 (TLR-4) has been identified as the defect responsible for lipopolysaccharide (LPS) hyporesponsiveness in C3H/HeJ mice. TLR-4 and TLR-2 have recently been implicated in LPS signaling in studies where these receptors were overexpressed in LPS non-responsive 293 human embryonic kidney cells. However, the signaling role of TLR-4 or TLR-2 in human cells with natural LPS response remains largely undefined. Here we show that human dermal microvessel endothelial cells (HMEC) and human umbilical vein endothelial cells express predominantly TLR-4 but very weak TLR-2 and respond vigorously to LPS but not to Mycobacterium tuberculosis 19-kDa lipoprotein. Transient transfection of non-signaling mutant forms of TLR-4 and anti-TLR-4 monoclonal antibody inhibited LPS-induced NF-kappaB activation in HMEC, while a monoclonal antibody against TLR-2 was ineffective. In contrast to LPS responsiveness, the ability of HMEC to respond to 19-kDa lipoprotein correlated with the expression of TLR-2. Transfection of TLR-2 into HMEC conferred responsiveness to 19-kDa lipoprotein. These data indicate that TLR-4 is the LPS signaling receptor in HMEC and that human endothelial cells (EC) express predominantly TLR-4 and weak TLR-2, which may explain why they do not respond to 19-kDa lipoprotein. The differential expression of TLRs on human EC may have important implications in the participation of vascular EC in innate immune defense mechanisms against various infectious pathogens, which may use different TLRs to signal.
Collapse
|
|
25 |
438 |
6
|
Abreu MT, Fukata M, Arditi M. TLR signaling in the gut in health and disease. THE JOURNAL OF IMMUNOLOGY 2005; 174:4453-60. [PMID: 15814663 DOI: 10.4049/jimmunol.174.8.4453] [Citation(s) in RCA: 424] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The human intestine has evolved in the presence of diverse enteric microflora. TLRs convert the recognition of pathogen-associated molecules in the gut into signals for anti-microbial peptide expression, barrier fortification, and proliferation of epithelial cells. Healing of injured intestinal epithelium and clearance of intramucosal bacteria require the presence of intact TLR signaling. Nucleotide oligomerization domain (Nod)1 and Nod2 are additional pattern recognition receptors that are required for defense against invasive enteric pathogens. Through spatial and functional localization of TLR and Nod molecules, the normal gut maintains a state of controlled inflammation. By contrast, patients with inflammatory bowel disease demonstrate inflammation in response to the normal flora. A subset of these patients carry polymorphisms in TLR and CARD15/NOD2 genes. A better understanding of the delicate regulation of TLR and Nod molecules in the gut may lead to improved treatment for enteric infections and idiopathic inflammatory bowel diseases.
Collapse
|
Review |
20 |
424 |
7
|
Wolf AJ, Reyes CN, Liang W, Becker C, Shimada K, Wheeler ML, Cho HC, Popescu NI, Coggeshall KM, Arditi M, Underhill DM. Hexokinase Is an Innate Immune Receptor for the Detection of Bacterial Peptidoglycan. Cell 2016; 166:624-636. [PMID: 27374331 PMCID: PMC5534359 DOI: 10.1016/j.cell.2016.05.076] [Citation(s) in RCA: 416] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 03/11/2016] [Accepted: 05/25/2016] [Indexed: 12/31/2022]
Abstract
Degradation of Gram-positive bacterial cell wall peptidoglycan in macrophage and dendritic cell phagosomes leads to activation of the NLRP3 inflammasome, a cytosolic complex that regulates processing and secretion of interleukin (IL)-1β and IL-18. While many inflammatory responses to peptidoglycan are mediated by detection of its muramyl dipeptide component in the cytosol by NOD2, we report here that NLRP3 inflammasome activation is caused by release of N-acetylglucosamine that is detected in the cytosol by the glycolytic enzyme hexokinase. Inhibition of hexokinase by N-acetylglucosamine causes its dissociation from mitochondria outer membranes, and we found that this is sufficient to activate the NLRP3 inflammasome. In addition, we observed that glycolytic inhibitors and metabolic conditions affecting hexokinase function and localization induce inflammasome activation. While previous studies have demonstrated that signaling by pattern recognition receptors can regulate metabolic processes, this study shows that a metabolic enzyme can act as a pattern recognition receptor. PAPERCLIP.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
416 |
8
|
Fukata M, Michelsen KS, Eri R, Thomas LS, Hu B, Lukasek K, Nast CC, Lechago J, Xu R, Naiki Y, Soliman A, Arditi M, Abreu MT. Toll-like receptor-4 is required for intestinal response to epithelial injury and limiting bacterial translocation in a murine model of acute colitis. Am J Physiol Gastrointest Liver Physiol 2005; 288:G1055-65. [PMID: 15826931 DOI: 10.1152/ajpgi.00328.2004] [Citation(s) in RCA: 381] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inflammatory bowel disease (IBD) arises from a dysregulated mucosal immune response to luminal bacteria. Toll-like receptor (TLR)4 recognizes LPS and transduces a proinflammatory signal through the adapter molecule myeloid differentiation marker 88 (MyD88). We hypothesized that TLR4 participates in the innate immune response to luminal bacteria and the development of colitis. TLR4-/- and MyD88-/- mice and littermate controls were given 2.5% dextran sodium sulfate (DSS) for 5 or 7 days followed by a 7-day recovery. Colitis was assessed by weight loss, rectal bleeding, and histopathology. Immunostaining was performed for macrophage markers, chemokine expression, and cell proliferation markers. DSS treatment of TLR4-/- mice was associated with striking reduction in acute inflammatory cells compared with wild-type mice despite similar degrees of epithelial injury. TLR4-/- mice experienced earlier and more severe bleeding than control mice. Similar results were seen with MyD88-/- mice, suggesting that this is the dominant downstream pathway. Mesenteric lymph nodes from TLR4-/- and MyD88-/- mice more frequently grew gram-negative bacteria. Altered neutrophil recruitment was due to diminished macrophage inflammatory protein-2 expression by lamina propria macrophages in TLR4-/- and MyD88-/- mice. The similarity in crypt epithelial damage between TLR4-/- or MyD88-/- and wild-type mice was seen despite decreased epithelial proliferation in knockout mice. TLR4 through the adapter molecule MyD88 is important in intestinal response to injury and in limiting bacterial translocation. Despite the diversity of luminal bacteria, other TLRs do not substitute for the role of TLR4 in this acute colitis model. A defective innate immune response may result in diminished bacterial clearance and ultimately dysregulated response to normal flora.
Collapse
|
|
20 |
381 |
9
|
Faure E, Thomas L, Xu H, Medvedev A, Equils O, Arditi M. Bacterial lipopolysaccharide and IFN-gamma induce Toll-like receptor 2 and Toll-like receptor 4 expression in human endothelial cells: role of NF-kappa B activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:2018-24. [PMID: 11160251 DOI: 10.4049/jimmunol.166.3.2018] [Citation(s) in RCA: 347] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Toll-like receptor (TLR) 4 has been identified as the primary receptor for enteric LPS, whereas TLR2 has been implicated as the receptor for Gram-positive and fungal cell wall components and for bacterial, mycobacterial, and spirochetal lipoproteins. Vascular endothelial cell (EC) activation or injury by microbial cell wall components such as LPS is of critical importance in the development of sepsis and septic shock. We have previously shown that EC express predominantly TLR4, and have very little TLR2. These cells respond vigorously to LPS via TLR4, but are unresponsive to lipoproteins and other TLR2 ligands. Here we show that LPS, TNF-alpha, or IFN-gamma induce TLR2 expression in both human dermal microvessel EC and HUVEC. Furthermore, LPS and IFN-gamma act synergistically to induce TLR2 expression in EC, and LPS-induced TLR2 expression is NF-kappaB dependent. LPS and IFN-gamma also up-regulate TLR4 mRNA expression in EC. These data indicate that TLR2 and TLR4 expression in ECs is regulated by inflammatory molecules such as LPS, TNF-alpha, or IFN-gamma. TLR2 and TLR4 molecules may render EC responsive to TLR2 ligands and may help to explain the synergy between LPS and lipoproteins, and between LPS and IFN-gamma, in inducing shock associated with Gram-negative sepsis.
Collapse
|
|
24 |
347 |
10
|
Fukata M, Chen A, Klepper A, Krishnareddy S, Vamadevan AS, Thomas LS, Xu R, Inoue H, Arditi M, Dannenberg AJ, Abreu MT. Cox-2 is regulated by Toll-like receptor-4 (TLR4) signaling: Role in proliferation and apoptosis in the intestine. Gastroenterology 2006; 131:862-77. [PMID: 16952555 PMCID: PMC2169292 DOI: 10.1053/j.gastro.2006.06.017] [Citation(s) in RCA: 338] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 06/02/2006] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS We recently showed that mice deficient in Toll-like receptor 4 (TLR4) or its adapter molecule MyD88 have increased signs of colitis compared with wild-type (WT) mice after dextran sodium sulfate (DSS)-induced injury. We wished to test the hypothesis that cyclooxygenase 2 (Cox-2)-derived prostaglandin E2 (PGE2) is important in TLR4-related mucosal repair. METHODS Cox-2 expression was analyzed by real-time polymerase chain reaction, immunohistochemistry, Western blotting, and luciferase reporter constructs. Small interfering RNA was used to inhibit expression of MyD88. TLR4-/- or WT mice were given 2.5% DSS for 7 days. Proliferation and apoptosis were assessed using bromodeoxyuridine staining and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assays, respectively. PGE2 was given orally to DSS-treated mice. RESULTS Intestinal epithelial cell lines up-regulated Cox-2 expression in a TLR4- and MyD88-dependent fashion. Lipopolysaccharide-mediated stimulation of PGE2 production was blocked by a selective Cox-2 inhibitor or small interfering RNA against MyD88. After DSS injury, Cox-2 expression increased only in WT mice. TLR4-/- mice have significantly reduced proliferation and increased apoptosis after DSS injury compared with WT mice. PGE2 supplementation of TLR4-/- mice resulted in improvement in clinical signs of colitis and restoration of proliferation and apoptosis to WT values. The mechanism for improved epithelial repair may be through PGE2-dependent activation of the epidermal growth factor receptor. CONCLUSIONS We describe an important link between TLR4 signaling and Cox-2 expression in the gut. TLR4 and MyD88 signaling are required for optimal proliferation and protection against apoptosis in the injured intestine. Although TLR4 signaling is beneficial in the short term, chronic signaling through TLR4 may lower the threshold for colitis-associated cancer.
Collapse
|
research-article |
19 |
338 |
11
|
Bulut Y, Faure E, Thomas L, Equils O, Arditi M. Cooperation of Toll-like receptor 2 and 6 for cellular activation by soluble tuberculosis factor and Borrelia burgdorferi outer surface protein A lipoprotein: role of Toll-interacting protein and IL-1 receptor signaling molecules in Toll-like receptor 2 signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:987-94. [PMID: 11441107 DOI: 10.4049/jimmunol.167.2.987] [Citation(s) in RCA: 326] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Toll-like receptor 2 (TLR2) and TLR4 play important roles in innate immune responses to various microbial agents. We have previously shown that human dermal endothelial cells (HMEC) express TLR4, but very little TLR2, and respond to LPS, but not to Mycobacterium tuberculosis 19-kDa lipoprotein, unless transfected with TLR2. Here we report that HMEC are unresponsive to several additional biologically relevant TLR2 ligands, including, phenol-soluble modulin (PSM), a complex of three small secreted polypeptides from the skin commensal Staphylococcus epidermidis, soluble tuberculosis factor (STF), and Borrelia burgdorferi outer surface protein A lipoprotein (OspA-L). Expression of TLR2 renders HMEC responsive to all these ligands. We further characterized the signaling pathway in response to STF, OspA-L, and PSM in TLR2-transfected HMEC. The TLR2 signaling pathway for NF-kappaB trans-activation shares the IL-1R signaling molecules. Dominant negative constructs of TLR2 or TLR6 inhibit the responses of STF and OspA-L as well as PSM in TLR2-transfected HMEC, supporting the concept of functional cooperation between TLR2 and TLR6 for all these TLR2 ligands. Moreover, we show that Toll-interacting protein (Tollip) coimmunoprecipitates with TLR2 and TLR4 using HEK 293 cells, and overexpression of Tollip inhibits NF-kappaB activation in response to TLR2 and TLR4 signaling. Collectively, these findings suggest that there is functional interaction between TLR2 and TLR6 in the cellular response to STF and OspA-L in addition to S. epidermidis (PSM) Ags, and that engagement of TLR2 triggers a signaling cascade, which shares the IL-1R signaling molecules, similar to the TLR4-LPS signaling cascade. Our data also suggest that Tollip may be an important constituent of both the TLR2 and TLR4 signaling pathways.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Antigens, Differentiation/physiology
- Antigens, Surface/pharmacology
- Bacterial Outer Membrane Proteins/pharmacology
- Bacterial Toxins/pharmacology
- Bacterial Vaccines
- Borrelia burgdorferi Group/immunology
- Carrier Proteins/biosynthesis
- Carrier Proteins/genetics
- Carrier Proteins/physiology
- Cell Line
- Cell Line, Transformed
- Drosophila Proteins
- Drug Synergism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Humans
- Interleukin-1 Receptor-Associated Kinases
- Intracellular Signaling Peptides and Proteins
- Ligands
- Lipopolysaccharides/pharmacology
- Lipoproteins
- Lyme Disease Vaccines/pharmacology
- Membrane Glycoproteins/antagonists & inhibitors
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/physiology
- Mycobacterium tuberculosis/immunology
- Myeloid Differentiation Factor 88
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/metabolism
- Protein Kinases/physiology
- Proteins/physiology
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/physiology
- Receptors, Immunologic
- Signal Transduction/immunology
- Solubility
- TNF Receptor-Associated Factor 6
- Toll-Like Receptor 2
- Toll-Like Receptor 4
- Toll-Like Receptor 6
- Toll-Like Receptors
- Transfection
- Tumor Cells, Cultured
Collapse
|
|
24 |
326 |
12
|
Melmed G, Thomas LS, Lee N, Tesfay SY, Lukasek K, Michelsen KS, Zhou Y, Hu B, Arditi M, Abreu MT. Human intestinal epithelial cells are broadly unresponsive to Toll-like receptor 2-dependent bacterial ligands: implications for host-microbial interactions in the gut. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:1406-15. [PMID: 12538701 DOI: 10.4049/jimmunol.170.3.1406] [Citation(s) in RCA: 326] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intestinal epithelial cells (IEC) interact with a high density of Gram-positive bacteria and are active participants in mucosal immune responses. Recognition of Gram-positive organisms by Toll-like receptor (TLR)2 induces proinflammatory gene expression by diverse cells. We hypothesized that IEC are unresponsive to Gram-positive pathogen-associated molecular patterns and sought to characterize the functional responses of IEC to TLR2-specific ligands. Human colonic epithelial cells isolated by laser capture microscopy and IEC lines (Caco-2, T84, HT-29) were analyzed for expression of TLR2, TLR6, TLR1, and Toll inhibitory protein (Tollip) mRNA by RT-PCR and quantitative real-time PCR. Response to Gram-positive bacterial ligands was measured by NF-kappa B reporter gene activation and IL-8 secretion. TLR2 protein expression was analyzed by immunofluorescence and flow cytometry. Colonic epithelial cells and lamina propria cells from both uninflamed and inflamed tissue demonstrate low expression of TLR2 mRNA compared with THP-1 monocytes. IECs were unresponsive to TLR2 ligands including the staphylococcal-derived Ags phenol soluble modulin, peptidoglycan, and lipotechoic acid and the mycobacterial-derived Ag soluble tuberculosis factor. Transgenic expression of TLR2 and TLR6 restored responsiveness to phenol soluble modulin and peptidoglycan in IEC. In addition to low levels of TLR2 protein expression, IEC also express high levels of the inhibitory molecule Tollip. We conclude that IEC are broadly unresponsive to TLR2 ligands secondary to deficient expression of TLR2 and TLR6. The relative absence of TLR2 protein expression by IEC and high level of Tollip expression may be important in preventing chronic proinflammatory cytokine secretion in response to commensal Gram-positive bacteria in the gut.
Collapse
|
|
22 |
326 |
13
|
Jilling T, Simon D, Lu J, Meng FJ, Li D, Schy R, Thomson RB, Soliman A, Arditi M, Caplan MS. The roles of bacteria and TLR4 in rat and murine models of necrotizing enterocolitis. THE JOURNAL OF IMMUNOLOGY 2006; 177:3273-82. [PMID: 16920968 PMCID: PMC2697969 DOI: 10.4049/jimmunol.177.5.3273] [Citation(s) in RCA: 321] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bacteria are thought to contribute to the pathogenesis of necrotizing enterocolitis (NEC), but it is unknown whether their interaction with the epithelium can participate in the initiation of mucosal injury or they can act only following translocation across a damaged intestinal barrier. Our aims were to determine whether bacteria and intestinal epithelial TLR4 play roles in a well-established neonatal rat model and a novel neonatal murine model of NEC. Neonatal rats, C57BL/6J, C3HeB/FeJ (TLR4 wild type), and C3H/HeJ (TLR4 mutant) mice were delivered by Cesarean section and were subjected to formula feeding and cold asphyxia stress or were delivered naturally and were mother-fed. NEC incidence was evaluated by histological scoring, and gene expression was quantified using quantitative real-time PCR from cDNA generated from intestinal total RNA or from RNA obtained by laser capture microdissection. Spontaneous feeding catheter colonization or supplementation of cultured bacterial isolates to formula increased the incidence of experimental NEC. During the first 72 h of life, i.e., the time frame of NEC development in this model, intestinal TLR4 mRNA gradually decreases in mother-fed but increases in formula feeding and cold asphyxia stress, correlating with induced inducible NO synthase. TLR4, inducible NO synthase, and inflammatory cytokine induction occurred in the intestinal epithelium but not in the submucosa. NEC incidence was diminished in C3H/HeJ mice, compared with C3HeB/FeJ mice. In summary, bacteria and TLR4 play significant roles in experimental NEC, likely via an interaction of intraluminal bacteria and aberrantly overexpressed TLR4 in enterocytes.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
321 |
14
|
Wheeler ML, Limon JJ, Bar AS, Leal CA, Gargus M, Tang J, Brown J, Funari VA, Wang HL, Crother TR, Arditi M, Underhill DM, Iliev ID. Immunological Consequences of Intestinal Fungal Dysbiosis. Cell Host Microbe 2016; 19:865-73. [PMID: 27237365 DOI: 10.1016/j.chom.2016.05.003] [Citation(s) in RCA: 311] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/11/2016] [Accepted: 05/04/2016] [Indexed: 12/17/2022]
Abstract
Compared to bacteria, the role of fungi within the intestinal microbiota is poorly understood. In this study we investigated whether the presence of a "healthy" fungal community in the gut is important for modulating immune function. Prolonged oral treatment of mice with antifungal drugs resulted in increased disease severity in acute and chronic models of colitis, and also exacerbated the development of allergic airway disease. Microbiota profiling revealed restructuring of fungal and bacterial communities. Specifically, representation of Candida spp. was reduced, while Aspergillus, Wallemia, and Epicoccum spp. were increased. Oral supplementation with a mixture of three fungi found to expand during antifungal treatment (Aspergillus amstelodami, Epicoccum nigrum, and Wallemia sebi) was sufficient to recapitulate the exacerbating effects of antifungal drugs on allergic airway disease. Taken together, these results indicate that disruption of commensal fungal populations can influence local and peripheral immune responses and enhance relevant disease states.
Collapse
|
Journal Article |
9 |
311 |
15
|
Abreu MT, Arnold ET, Thomas LS, Gonsky R, Zhou Y, Hu B, Arditi M. TLR4 and MD-2 expression is regulated by immune-mediated signals in human intestinal epithelial cells. J Biol Chem 2002; 277:20431-7. [PMID: 11923281 DOI: 10.1074/jbc.m110333200] [Citation(s) in RCA: 285] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The normal intestinal epithelium is not inflamed despite contact with a high density of commensal bacteria. Intestinal epithelial cells (IEC) express low levels of TLR4 and MD-2 and are lipopolysaccharide (LPS)-unresponsive. We hypothesized that immune-mediated signals regulate the expression of TLR4 and MD-2 in IEC. Expression of TLR4 and MD-2 was examined in normal colonic epithelial cells or intestinal epithelial cell lines. The effect of the cytokines interferon (IFN)-gamma, IFN-alpha, and tumor necrosis factor-alpha (TNF-alpha) on TLR4 and MD-2 expression was examined by reverse transcription-PCR and Western blot. NF-kappaB transcriptional activation and interleukin-8 secretion were used as measures of LPS responsiveness. Native colonic epithelial cells and IEC lines express a low level of TLR4 and MD-2 mRNA. IFN-gamma regulates MD-2 expression in both IEC lines, whereas IFN-gamma and TNF-alpha regulate TLR4 mRNA expression in IEC lines. Pre-incubation with IFN-gamma and/or TNF-alpha sensitizes IEC to LPS-dependent interleukin-8 secretion. To examine MD-2 transcriptional regulation, we cloned a 1-kb sequence proximal to the MD-2 gene translational start site. This promoter directed expression of a reporter gene in endothelial cells and IEC. IFN-gamma positively regulated MD-2 promoter activity in IEC. Co-expression of a STAT inhibitor, SOCS3, blocked IFN-gamma-mediated MD-2 promoter activation. T cell-derived cytokines lead to increased expression of TLR4 and MD-2 and LPS-dependent pro-inflammatory cytokine secretion in IEC. IFN-gamma regulates expression of the critical TLR4 co-receptor MD-2 through the Janus tyrosine kinase-STAT pathway. Th1 cytokines may initiate or perpetuate intestinal inflammation by altering toll-like receptor expression and bacterial reactivity.
Collapse
|
|
23 |
285 |
16
|
Curtin JF, Liu N, Candolfi M, Xiong W, Assi H, Yagiz K, Edwards MR, Michelsen KS, Kroeger KM, Liu C, Muhammad AKMG, Clark MC, Arditi M, Comin-Anduix B, Ribas A, Lowenstein PR, Castro MG. HMGB1 mediates endogenous TLR2 activation and brain tumor regression. PLoS Med 2009; 6:e10. [PMID: 19143470 PMCID: PMC2621261 DOI: 10.1371/journal.pmed.1000010] [Citation(s) in RCA: 277] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 11/19/2008] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor that carries a 5-y survival rate of 5%. Attempts at eliciting a clinically relevant anti-GBM immune response in brain tumor patients have met with limited success, which is due to brain immune privilege, tumor immune evasion, and a paucity of dendritic cells (DCs) within the central nervous system. Herein we uncovered a novel pathway for the activation of an effective anti-GBM immune response mediated by high-mobility-group box 1 (HMGB1), an alarmin protein released from dying tumor cells, which acts as an endogenous ligand for Toll-like receptor 2 (TLR2) signaling on bone marrow-derived GBM-infiltrating DCs. METHODS AND FINDINGS Using a combined immunotherapy/conditional cytotoxic approach that utilizes adenoviral vectors (Ad) expressing Fms-like tyrosine kinase 3 ligand (Flt3L) and thymidine kinase (TK) delivered into the tumor mass, we demonstrated that CD4(+) and CD8(+) T cells were required for tumor regression and immunological memory. Increased numbers of bone marrow-derived, tumor-infiltrating myeloid DCs (mDCs) were observed in response to the therapy. Infiltration of mDCs into the GBM, clonal expansion of antitumor T cells, and induction of an effective anti-GBM immune response were TLR2 dependent. We then proceeded to identify the endogenous ligand responsible for TLR2 signaling on tumor-infiltrating mDCs. We demonstrated that HMGB1 was released from dying tumor cells, in response to Ad-TK (+ gancyclovir [GCV]) treatment. Increased levels of HMGB1 were also detected in the serum of tumor-bearing Ad-Flt3L/Ad-TK (+GCV)-treated mice. Specific activation of TLR2 signaling was induced by supernatants from Ad-TK (+GCV)-treated GBM cells; this activation was blocked by glycyrrhizin (a specific HMGB1 inhibitor) or with antibodies to HMGB1. HMGB1 was also released from melanoma, small cell lung carcinoma, and glioma cells treated with radiation or temozolomide. Administration of either glycyrrhizin or anti-HMGB1 immunoglobulins to tumor-bearing Ad-Flt3L and Ad-TK treated mice, abolished therapeutic efficacy, highlighting the critical role played by HMGB1-mediated TLR2 signaling to elicit tumor regression. Therapeutic efficacy of Ad-Flt3L and Ad-TK (+GCV) treatment was demonstrated in a second glioma model and in an intracranial melanoma model with concomitant increases in the levels of circulating HMGB1. CONCLUSIONS Our data provide evidence for the molecular and cellular mechanisms that support the rationale for the clinical implementation of antibrain cancer immunotherapies in combination with tumor killing approaches in order to elicit effective antitumor immune responses, and thus, will impact clinical neuro-oncology practice.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
277 |
17
|
Gorce JM, Arditi M, Schneider M. Influence of bubble size distribution on the echogenicity of ultrasound contrast agents: a study of SonoVue. Invest Radiol 2000; 35:661-71. [PMID: 11110302 DOI: 10.1097/00004424-200011000-00003] [Citation(s) in RCA: 275] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
RATIONALE AND OBJECTIVES To study the relative contributions of different bubble size classes to SonoVue's echogenicity in fundamental acoustic imaging modes. SonoVue is a contrast agent, previously known as BR1, with a bubble size distribution extending from approximately 0.7 to 10 microm. METHODS A model for the acoustic response of SonoVue was determined and validated for a set of experimental data. This model was used to simulate the acoustic response of a standard batch of SonoVue as the sum of responses of non-overlapping bubble size classes. RESULTS The simulation was first validated for a standard SonoVue bubble size distribution. When this distribution was considered as five size classes with equal numbers of bubbles, it was found that bubbles smaller than 2 microm accounted for 60% of the total number but contained only 5% of the total gas volume. The simulation results indicated marked differences in the acoustic contributions from these classes, with 80% of the acoustic efficacy provided by bubbles 3 to 9 microm in diameter. The study also compared bubble distributions in number, surface, and volume, with the distribution computed in terms of acoustic efficacy. CONCLUSIONS This study shows why bubble volume is a much better indicator of SonoVue's efficacy than is bubble count. A low threshold in diameter was found for SonoVue microbubbles at approximately 2 microm, under which size bubbles do not contribute appreciably to the echogenicity at medical ultrasound frequencies.
Collapse
|
|
25 |
275 |
18
|
Bulut Y, Faure E, Thomas L, Karahashi H, Michelsen KS, Equils O, Morrison SG, Morrison RP, Arditi M. Chlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:1435-40. [PMID: 11801686 DOI: 10.4049/jimmunol.168.3.1435] [Citation(s) in RCA: 273] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Active inflammation and NF-kappaB activation contribute fundamentally to atherogenesis and plaque disruption. Accumulating evidence has implicated specific infectious agents including Chlamydia pneumoniae in the progression of atherogenesis. Chlamydial heat shock protein 60 (cHSP60) has been implicated in the induction of deleterious immune responses in human chlamydial infections and has been found to colocalize with infiltrating macrophages in atheroma lesions. cHSP60 might stimulate, enhance, and maintain innate immune and inflammatory responses and contribute to atherogenesis. In this study, we investigated the signaling mechanism of cHSP60. Recombinant cHSP60 rapidly activated NF-kappaB in human microvascular endothelial cells (EC) and in mouse macrophages, and induced human IL-8 promoter activity in EC. The inflammatory effect of cHSP60 was heat labile, thus excluding a role of contaminating LPS, and was blocked by specific anti-chlamydial HSP60 mAb. In human vascular EC which express Toll-like receptor 4 (TLR4) mRNA and protein, nonsignaling TLR4 constructs that act as dominant negative blocked cHSP60-mediated NF-kappaB activation. Furthermore, an anti-TLR4 Ab abolished cHSP60-induced cellular activation, whereas a control Ab had no effect. In 293 cells, cHSP60-mediated NF-kappaB activation required both TLR4 and MD2. A dominant-negative MyD88 construct also inhibited cHSP60-induced NF-kappaB activation. Collectively, our results indicate that cHSP60 is a potent inducer of vascular EC and macrophage inflammatory responses, which are very relevant to atherogenesis. The inflammatory effects are mediated through the innate immune receptor complex TLR4-MD2 and proceeds via the MyD88-dependent signaling pathway. These findings may help elucidate the mechanisms by which chronic asymptomatic chlamydial infection contribute to atherogenesis.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antigens, Differentiation/physiology
- Antigens, Surface/physiology
- Cell Line
- Cell Line, Transformed
- Chaperonin 60/genetics
- Chaperonin 60/isolation & purification
- Chaperonin 60/physiology
- Chlamydia trachomatis/genetics
- Chlamydia trachomatis/immunology
- Dose-Response Relationship, Immunologic
- Drosophila Proteins
- Drug Contamination
- Endothelium, Vascular/cytology
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Humans
- Lipopolysaccharides/pharmacology
- Luciferases/genetics
- Lymphocyte Antigen 96
- Macrophage Activation/immunology
- Membrane Glycoproteins/physiology
- Mice
- Myeloid Differentiation Factor 88
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Promoter Regions, Genetic/drug effects
- Receptors, Cell Surface/physiology
- Receptors, Immunologic/physiology
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/pharmacology
- Signal Transduction/immunology
- Toll-Like Receptor 4
- Toll-Like Receptors
Collapse
|
|
23 |
273 |
19
|
Vora P, Youdim A, Thomas LS, Fukata M, Tesfay SY, Lukasek K, Michelsen KS, Wada A, Hirayama T, Arditi M, Abreu MT. Beta-defensin-2 expression is regulated by TLR signaling in intestinal epithelial cells. THE JOURNAL OF IMMUNOLOGY 2004; 173:5398-405. [PMID: 15494486 DOI: 10.4049/jimmunol.173.9.5398] [Citation(s) in RCA: 261] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The intestinal epithelium serves as a barrier to the intestinal flora. In response to pathogens, intestinal epithelial cells (IEC) secrete proinflammatory cytokines. To aid in defense against bacteria, IEC also secrete antimicrobial peptides, termed defensins. The aim of our studies was to understand the role of TLR signaling in regulation of beta-defensin expression by IEC. The effect of LPS and peptidoglycan on beta-defensin-2 expression was examined in IEC lines constitutively or transgenically expressing TLRs. Regulation of beta-defensin-2 was assessed using promoter-reporter constructs of the human beta-defensin-2 gene. LPS and peptidoglycan stimulated beta-defensin-2 promoter activation in a TLR4- and TLR2-dependent manner, respectively. A mutation in the NF-kappaB or AP-1 site within the beta-defensin-2 promoter abrogated this response. In addition, inhibition of Jun kinase prevents up-regulation of beta-defensin-2 protein expression in response to LPS. IEC respond to pathogen-associated molecular patterns with expression of the antimicrobial peptide beta-defensin-2. This mechanism may protect the intestinal epithelium from pathogen invasion and from potential invaders among the commensal flora.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
261 |
20
|
Schneider M, Arditi M, Barrau MB, Brochot J, Broillet A, Ventrone R, Yan F. BR1: a new ultrasonographic contrast agent based on sulfur hexafluoride-filled microbubbles. Invest Radiol 1995; 30:451-7. [PMID: 8557510 DOI: 10.1097/00004424-199508000-00001] [Citation(s) in RCA: 257] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
RATIONALE AND OBJECTIVES The basic characteristics of BR1, a novel echo contrast agent based on stabilized sulfur hexafluoride (SF6) microbubbles have been evaluated. METHODS The authors determined the physicochemical properties (bubble concentration, bubble size distribution, resistance to pressure, and stability) and the acoustic properties (backscatter and attenuation coefficients) of BR1. The diagnostic value of BR1 was evaluated further in minipigs. Left heart images were recorded before and after injection of different doses of BR1. RESULTS BR1 is formulated as a lyophilized product, which after addition of saline, provides a suspension containing 2 x 10(8) SF6 microbubbles/mL with a number mean diameter of 2.5 microns. More than 90% of the bubbles are below 8 microns. The use of SF6 rather than air provides an improved resistance to pressure increases such as the ones occuring in the left heart during systole. After reconstitution, the echogenicity and the bubble characteristics are unchanged for more than 8 hours. The high echogenicity remains almost constant over the entire medical frequency range (1-10 MHz). BR1 injections in animals resulted in a homogenous, dose-dependent opacification of the left heart. CONCLUSIONS Considering its high echogenicity, outstanding stability, and resistance to pressure changes, BR1 is a very promising ultrasound contrast agent.
Collapse
|
|
30 |
257 |
21
|
Medvedev AE, Lentschat A, Kuhns DB, Blanco JCG, Salkowski C, Zhang S, Arditi M, Gallin JI, Vogel SN. Distinct mutations in IRAK-4 confer hyporesponsiveness to lipopolysaccharide and interleukin-1 in a patient with recurrent bacterial infections. J Exp Med 2003; 198:521-31. [PMID: 12925671 PMCID: PMC2194174 DOI: 10.1084/jem.20030701] [Citation(s) in RCA: 225] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We identified previously a patient with recurrent bacterial infections who failed to respond to gram-negative LPS in vivo, and whose leukocytes were profoundly hyporesponsive to LPS and IL-1 in vitro. We now demonstrate that this patient also exhibits deficient responses in a skin blister model of aseptic inflammation. A lack of IL-18 responsiveness, coupled with diminished LPS and/or IL-1-induced nuclear factor-kappaB and activator protein-1 translocation, p38 phosphorylation, gene expression, and dysregulated IL-1R-associated kinase (IRAK)-1 activity in vitro support the hypothesis that the defect lies within the signaling pathway common to toll-like receptor 4, IL-1R, and IL-18R. This patient expresses a "compound heterozygous" genotype, with a point mutation (C877T in cDNA) and a two-nucleotide, AC deletion (620-621del in cDNA) encoded by distinct alleles of the IRAK-4 gene (GenBank/EMBL/DDBJ accession nos. AF445802 and AY186092). Both mutations encode proteins with an intact death domain, but a truncated kinase domain, thereby precluding expression of full-length IRAK-4 (i.e., a recessive phenotype). When overexpressed in HEK293T cells, neither truncated form augmented endogenous IRAK-1 kinase activity, and both inhibited endogenous IRAK-1 activity modestly. Thus, IRAK-4 is pivotal in the development of a normal inflammatory response initiated by bacterial or nonbacterial insults.
Collapse
|
research-article |
22 |
225 |
22
|
Xian H, Liu Y, Rundberg Nilsson A, Gatchalian R, Crother TR, Tourtellotte WG, Zhang Y, Aleman-Muench GR, Lewis G, Chen W, Kang S, Luevanos M, Trudler D, Lipton SA, Soroosh P, Teijaro J, de la Torre JC, Arditi M, Karin M, Sanchez-Lopez E. Metformin inhibition of mitochondrial ATP and DNA synthesis abrogates NLRP3 inflammasome activation and pulmonary inflammation. Immunity 2021; 54:1463-1477.e11. [PMID: 34115964 PMCID: PMC8189765 DOI: 10.1016/j.immuni.2021.05.004] [Citation(s) in RCA: 224] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/30/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022]
Abstract
Acute respiratory distress syndrome (ARDS), an inflammatory condition with high mortality rates, is common in severe COVID-19, whose risk is reduced by metformin rather than other anti-diabetic medications. Detecting of inflammasome assembly in post-mortem COVID-19 lungs, we asked whether and how metformin inhibits inflammasome activation while exerting its anti-inflammatory effect. We show that metformin inhibited NLRP3 inflammasome activation and interleukin (IL)-1β production in cultured and alveolar macrophages along with inflammasome-independent IL-6 secretion, thus attenuating lipopolysaccharide (LPS)- and SARS-CoV-2-induced ARDS. By targeting electron transport chain complex 1 and independently of AMP-activated protein kinase (AMPK) or NF-κB, metformin blocked LPS-induced and ATP-dependent mitochondrial (mt) DNA synthesis and generation of oxidized mtDNA, an NLRP3 ligand. Myeloid-specific ablation of LPS-induced cytidine monophosphate kinase 2 (CMPK2), which is rate limiting for mtDNA synthesis, reduced ARDS severity without a direct effect on IL-6. Thus, inhibition of ATP and mtDNA synthesis is sufficient for ARDS amelioration.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
224 |
23
|
Arditi M, Mason EO, Bradley JS, Tan TQ, Barson WJ, Schutze GE, Wald ER, Givner LB, Kim KS, Yogev R, Kaplan SL. Three-year multicenter surveillance of pneumococcal meningitis in children: clinical characteristics, and outcome related to penicillin susceptibility and dexamethasone use. Pediatrics 1998; 102:1087-97. [PMID: 9794939 DOI: 10.1542/peds.102.5.1087] [Citation(s) in RCA: 193] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES To evaluate the antibiotic susceptibility of Streptococcus pneumoniae isolates obtained from the blood and cerebrospinal fluid of children with meningitis. To describe and compare the clinical and microbiological characteristics, treatment, and outcome of children with meningitis caused by S pneumoniae based on antimicrobial susceptibility of isolates and the administration of dexamethasone. DESIGN AND PATIENTS Children with pneumococcal meningitis were identified from among a group of patients with systemic infections caused by S pneumoniae who were enrolled prospectively in the United States Pediatric Multicenter Pneumococcal Surveillance Study at eight children's hospitals in the United States. From September 1, 1993 to August 31, 1996, 180 children with 181 episodes of pneumococcal meningitis were identified and data were collected by retrospective chart review. OUTCOME Clinical and laboratory characteristics were assessed. All pneumococcal isolates were serotyped and antibiotic susceptibilities for penicillin and ceftriaxone were determined. Clinical presentation, hospital course, and outcome parameters at discharge were compared between children infected with penicillin-susceptible isolates and those with nonsusceptible isolates and for children who did and did not receive dexamethasone. RESULTS Fourteen (7.7%) of 180 children died; none of the fatalities were because of a documented failure of treatment caused by a resistant strain. Only 1 child, who had mastoiditis and a lymphangioma, experienced a bacteriologic failure with a penicillin-resistant (minimum inhibitory concentration = 2 microgram/mL) organism. Of the 166 surviving children, 41 (25%) developed neurologic sequelae (motor deficits) and 48 (32%) of 151 children had unilateral (n = 26) or bilateral (n = 22) moderate to severe hearing loss at discharge. Overall, 12.7% and 6.6% of the pneumococcal isolates were intermediate and resistant to penicillin and 4.4% and 2.8% were intermediate and resistant to ceftriaxone, respectively. Clinical presentation, cerebrospinal fluid indices on admission, and hospital course, morbidity, and mortality rates were similar for patients infected with penicillin- or ceftriaxone-susceptible versus nonsusceptible organisms. However, the relatively small numbers of nonsusceptible isolates and the inclusion of vancomycin in the treatment regimen for the majority of the patients limit the power of this study to detect significant differences in outcome between patients infected with susceptible and nonsusceptible isolates. Nonetheless, our results show that the nonsusceptible organisms do not seem to be intrinsically more virulent. Forty children (22%) received dexamethasone (>/=8 doses) initiated before or within 1 hour after the first dose of antibiotics. The incidence of any moderate or severe hearing loss was significantly higher in the dexamethasone group (46%) compared with children not receiving any dexamethasone (23%). The incidence of any neurologic deficits, including hearing loss, also was significantly higher in the dexamethasone group (55% vs 33%). However, children in the dexamethasone group more frequently required intubation and mechanical ventilation and had lower initial concentration of glucose in the cerebrospinal fluid than children who did not receive any dexamethasone. When we controlled for the confounding factor, severity of illness (intubation), the incidence of any deafness and of any neurologic sequelae, including deafness, were no longer significantly different between children who did or did not receive dexamethasone. CONCLUSIONS Children with pneumococcal meningitis caused by penicillin- or ceftriaxone-nonsusceptible organisms and those infected by susceptible strains had similar clinical presentation and outcome. The use of dexamethasone was not associated with a beneficial effect in this retrospective and nonrandomized study. (ABSTRACT TRUNCATED)
Collapse
|
Multicenter Study |
27 |
193 |
24
|
de Couto G, Liu W, Tseliou E, Sun B, Makkar N, Kanazawa H, Arditi M, Marbán E. Macrophages mediate cardioprotective cellular postconditioning in acute myocardial infarction. J Clin Invest 2015. [PMID: 26214527 DOI: 10.1172/jci81321] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ischemic injury in the heart induces an inflammatory cascade that both repairs damage and exacerbates scar tissue formation. Cardiosphere-derived cells (CDCs) are a stem-like population that is derived ex vivo from cardiac biopsies; they confer both cardioprotection and regeneration in acute myocardial infarction (MI). While the regenerative effects of CDCs in chronic settings have been studied extensively, little is known about how CDCs confer the cardioprotective process known as cellular postconditioning. Here, we used an in vivo rat model of ischemia/reperfusion (IR) injury-induced MI and in vitro coculture assays to investigate how CDCs protect stressed cardiomyocytes. Compared with control animals, animals that received CDCs 20 minutes after IR had reduced infarct size when measured at 48 hours. CDCs modified the myocardial leukocyte population after ischemic injury. Specifically, introduction of CDCs reduced the number of CD68+ macrophages, and these CDCs secreted factors that polarized macrophages toward a distinctive cardioprotective phenotype that was not M1 or M2. Systemic depletion of macrophages with clodronate abolished CDC-mediated cardioprotection. Using both in vitro coculture assays and a rat model of adoptive transfer after IR, we determined that CDC-conditioned macrophages attenuated cardiomyocyte apoptosis and reduced infarct size, thereby recapitulating the beneficial effects of CDC therapy. Together, our data indicate that CDCs limit acute injury by polarizing an effector macrophage population within the heart.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
193 |
25
|
McCauley ME, O'Rourke JG, Yáñez A, Markman JL, Ho R, Wang X, Chen S, Lall D, Jin M, Muhammad AKMG, Bell S, Landeros J, Valencia V, Harms M, Arditi M, Jefferies C, Baloh RH. C9orf72 in myeloid cells suppresses STING-induced inflammation. Nature 2020; 585:96-101. [PMID: 32814898 PMCID: PMC7484469 DOI: 10.1038/s41586-020-2625-x] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 07/07/2020] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative disorders that overlap in their clinical presentation, pathology and genetic origin. Autoimmune disorders are also overrepresented in both ALS and FTD, but this remains an unexplained epidemiologic observation1-3. Expansions of a hexanucleotide repeat (GGGGCC) in the C9orf72 gene are the most common cause of familial ALS and FTD (C9-ALS/FTD), and lead to both repeat-containing RNA and dipeptide accumulation, coupled with decreased C9orf72 protein expression in brain and peripheral blood cells4-6. Here we show in mice that loss of C9orf72 from myeloid cells alone is sufficient to recapitulate the age-dependent lymphoid hypertrophy and autoinflammation seen in animals with a complete knockout of C9orf72. Dendritic cells isolated from C9orf72-/- mice show marked early activation of the type I interferon response, and C9orf72-/- myeloid cells are selectively hyperresponsive to activators of the stimulator of interferon genes (STING) protein-a key regulator of the innate immune response to cytosolic DNA. Degradation of STING through the autolysosomal pathway is diminished in C9orf72-/- myeloid cells, and blocking STING suppresses hyperactive type I interferon responses in C9orf72-/- immune cells as well as splenomegaly and inflammation in C9orf72-/- mice. Moreover, mice lacking one or both copies of C9orf72 are more susceptible to experimental autoimmune encephalitis, mirroring the susceptibility to autoimmune diseases seen in people with C9-ALS/FTD. Finally, blood-derived macrophages, whole blood and brain tissue from patients with C9-ALS/FTD all show an elevated type I interferon signature compared with samples from people with sporadic ALS/FTD; this increased interferon response can be suppressed with a STING inhibitor. Collectively, our results suggest that patients with C9-ALS/FTD have an altered immunophenotype because their reduced levels of C9orf72 cannot suppress the inflammation mediated by the induction of type I interferons by STING.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
189 |