1
|
Al-Sadoon MK, Abdel-Maksoud MA, Rabah DM, Badr G. Induction of apoptosis and growth arrest in human breast carcinoma cells by a snake (Walterinnesia aegyptia) venom combined with silica nanoparticles: crosstalk between Bcl2 and caspase 3. Cell Physiol Biochem 2012; 30:653-65. [PMID: 22854437 DOI: 10.1159/000341446] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2012] [Indexed: 12/11/2022] Open
Abstract
We recently demonstrated that the snake venom extracted from Walterinnesia aegyptia (WEV) either alone or combined with silica nanoparticles (WEV+NP) enhanced the proliferation of mice immune cells and simultaneously decreased the proliferation of human breast carcinoma cell line (MDA-MB-231). However, the molecular mechanism of how this venom induced growth arrest of breast cancer cells has not been studied. In this context, we extended our study to evaluate the anti-tumor potential of WEV and WEV+NP on the human breast carcinoma cell lines MDA-MB-231 and MCF-7, as well as their effects on non-tumorigenic normal breast epithelial cells (MCF-10). The IC(50 )values of WEV alone and WEV+NP in these cell lines were determined to be 50 ng/ml and 20 ng/ml, respectively. Interestingly, at these concentrations, the venom did not affect the viability of normal MCF-10 cells and treatment of all these cell lines with NP alone did not affect their viability. Using annexin-V binding assay followed by flow cytometry analysis, we found that combination of WEV with NP strongly induced apoptosis in MDA-MB-231 and MCF-7 cancer cells without significant effect on normal MCF-10 cells. Furthermore, we found that WEV+NP decreased the expression of Bcl2 and enhanced the activation of caspase 3 in MDA-MB-231 and MCF-7 cells. Most importantly, WEV+NP-treated breast cancer cells, but not normal MCF-10 cells, exhibited a significant (P<0.05) reduction in actin polymerization and cytoskeletal rearrangement in response to CXCL12. Our data reveal biological effects of WEV or WEV+NP and the underlying mechanisms to fight breast cancer cells.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
36 |
2
|
Maodaa SN, Allam AA, Ajarem J, Abdel-Maksoud MA, Al-Basher GI, Wang ZY. Effect of parsley (Petroselinum crispum, Apiaceae) juice against cadmium neurotoxicity in albino mice (Mus musculus). Behav Brain Funct 2016; 12:6. [PMID: 26846273 PMCID: PMC4743362 DOI: 10.1186/s12993-016-0090-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 01/21/2016] [Indexed: 12/31/2022] Open
Abstract
Background
Parsley was employed as an experimental probe to prevent the behavioral, biochemical and morphological changes in the brain tissue of the albino mice following chronic cadmium (Cd) administration. Methods
Non-anesthetized adult male mice were given parsley juice (Petroselinum crispum, Apiaceae) daily by gastric intubation at doses of 10 and 20 g/kg/day. The animals were divided into six groups: Group A, mice were exposed to saline; Groups B and C, were given low and high doses of parsley juice, respectively; Group D, mice were exposed to Cd; Groups E and F, were exposed to Cd and concomitantly given low and high doses of parsley, respectively. Results Cd intoxication can cause behavioral abnormalities, biochemical and histopathological disturbances in treated mice. Parsley juice has significantly improved the Cd-associated behavioral changes, reduced the elevation of lipid peroxidation and normalized the Cd effect on reduced glutathione and peroxidase activities in the brain of treated mice. Histological data have supported these foundations whereas Cd treatment has induced neuronal degeneration, chromatolysis and pyknosis in the cerebrum, cerebellum and medulla oblongata. Conclusion The low dose (5 g/kg/day) of parsley exhibited beneficial effects in reducing the deleterious changes associated with Cd treatment on the behavior, neurotransmitters level, oxidative stress and brain neurons of the Cd-treated mice.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
30 |
3
|
Okla MK, Alatar AA, Al-amri SS, Soufan WH, Ahmad A, Abdel-Maksoud MA. Antibacterial and Antifungal Activity of the Extracts of Different Parts of Avicennia marina (Forssk.) Vierh. PLANTS (BASEL, SWITZERLAND) 2021; 10:252. [PMID: 33525519 PMCID: PMC7911470 DOI: 10.3390/plants10020252] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 12/17/2022]
Abstract
Increased problems associated with side effects and bacterial resistance of chemical drugs has prompted the research focus on herbal medicines in the past few decades. In the present investigation, the antimicrobial activity of the various parts of Avicennia marina (AM), a mangrove plant, has been evaluated. The plants were collected from the Jazan area of the Kingdom of Saudi Arabia. Primary extracts of roots, stem, leaves, fruits, and seeds were made in ethanol and fractioned in ethanol, ethyl acetate, petroleum ether, chloroform, and water. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of the extracts were determined against Bacillussubtilis, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. It has been observed that the chloroform extract of roots of the AM exhibited inhibitory effects against both S. aureus (MIC = 1.5 ± 0.03 mg/mL) and E. coli (MIC = 1.7 ± 0.01 mg/mL). The ethanolic extract of the AM roots has shown antibacterial activity against Pseudomonas aeruginosa (MIC = 10.8 ± 0.78 mg/mL), Bacillussubtilis (MIC = 6.1 ± 0.27 mg/mL), Staphylococcus aureus (MIC = 2.3 ± 0.08 mg/mL), and Escherichia coli (MIC = 6.3 ± 0.28 mg/mL). The leaf extract of the AM in ethyl acetate showed antibacterial activity against S. aureus and E. coli. Antifungal activity of these extracts was also investigated against Aspergillus fumigatus and Candida albicans. Ethanolic extract of roots and seeds of the AM has shown antifungal activity against Aspergillus fumigatus when applied individually. Ethanolic extract of the AM fruits has shown an inhibitory effect on the growth of Aspergillus fumigatus and Candida albicans. It is suggested that the plant extracts of AM have tremendous antimicrobial activity against a group of microbes, and this effect depends on both the plant part and the solvent used for extraction. Therefore, this plant can be considered to treat various diseases caused by antibiotic-resistant bacteria.
Collapse
|
research-article |
4 |
19 |
4
|
Ajarem J, Altoom NG, Allam AA, Maodaa SN, Abdel-Maksoud MA, Chow BK. Oral administration of potassium bromate induces neurobehavioral changes, alters cerebral neurotransmitters level and impairs brain tissue of swiss mice. Behav Brain Funct 2016; 12:14. [PMID: 27169539 PMCID: PMC4865012 DOI: 10.1186/s12993-016-0098-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 04/08/2016] [Indexed: 11/25/2022] Open
Abstract
Background Potassium bromate (KBrO3) is widely used as a food additive and is a major water disinfection by-product. The present study reports the side effects of KBrO3 administration on the brain functions and behaviour of albino mice. Methods Animals were divided into three groups: control, low dose KBrO3 (100 mg/kg/day) and high dose KBrO3 (200 mg/kg/day) groups. Results Administration of KBrO3 led to a significant change in the body weight in the animals of the high dose group in the first, second and the last weeks while water consumption was not significantly changed. Neurobehavioral changes and a reduced Neurotransmitters levels were observed in both KBrO3 groups of mice. Also, the brain level of reduced glutathione (GSH) in KBrO3 receiving animals was decreased. Histological studies favoured these biochemical results showing extensive damage in the histological sections of brain of KBrO3-treated animals. Conclusions These results show that KBrO3 has serious damaging effects on the central nervous system and therefore, its use should be avoided.
Collapse
|
Journal Article |
9 |
17 |
5
|
Badr G, Al-Sadoon MK, Abdel-Maksoud MA, Rabah DM, El-Toni AM. Cellular and molecular mechanisms underlie the anti-tumor activities exerted by Walterinnesia aegyptia venom combined with silica nanoparticles against multiple myeloma cancer cell types. PLoS One 2012; 7:e51661. [PMID: 23251606 PMCID: PMC3518476 DOI: 10.1371/journal.pone.0051661] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 11/06/2012] [Indexed: 12/19/2022] Open
Abstract
Multiple myeloma (MM) is a clonal disease of plasma cells that remains incurable despite the advent of several novel therapeutics. In this study, we aimed to delineate the impact of snake venom extracted from Walterinnesia aegyptia (WEV) alone or in combination with silica nanoparticles (WEV+NP) on primary MM cells isolated from patients diagnosed with MM as well as on two MM cell lines, U266 and RPMI 8226. The IC50 values of WEV and WEV+NP that significantly decreased MM cell viability without affecting the viability of normal peripheral mononuclear cells (PBMCs) were determined to be 25 ng/ml and 10 ng/ml, respectively. Although both WEV (25 ng/ml) and WEV+NP (10 ng/ml) decreased the CD54 surface expression without affecting the expression of CXCR4 (CXCL12 receptor) on MM cells, they significantly reduced the ability of CXC chemokine ligand 12 (CXCL12) to induce actin cytoskeleton rearrangement and the subsequent reduction in chemotaxis. It has been established that the binding of CXCL12 to its receptor CXCR4 activates multiple intracellular signal transduction pathways that regulate MM cell chemotaxis, adhesion, and proliferation. We found that WEV and WEV+NP clearly decreased the CXCL12/CXCR4-mediated activation of AKT, ERK, NFκB and Rho-A using western blot analysis; abrogated the CXCL12-mediated proliferation of MM cells using the CFSE assay; and induced apoptosis in MM cell as determined by PI/annexin V double staining followed by flow cytometry analysis. Monitoring the expression of B-cell CCL/Lymphoma 2 (Bcl-2) family members and their role in apoptosis induction after treatment with WEV or WEV+NP revealed that the combination of WEV with NP robustly decreased the expression of the anti-apoptotic effectors Bcl-2, BclXL and Mcl-1; conversely increased the expression of the pro-apoptotic effectors Bak, Bax and Bim; and altered the mitochondrial membrane potential in MM cells. Taken together, our data reveal the biological effects of WEV and WEV+NP and the underlying mechanisms against myeloma cancer cells.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
13 |
6
|
Janani B, Okla MK, Abdel-Maksoud MA, AbdElgawad H, Thomas AM, Raju LL, Al-Qahtani WH, Khan SS. CuO loaded ZnS nanoflower entrapped on PVA-chitosan matrix for boosted visible light photocatalysis for tetracycline degradation and anti-bacterial application. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 306:114396. [PMID: 35026709 DOI: 10.1016/j.jenvman.2021.114396] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/07/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Novel photocatalyst CuO loaded ZnS nanoflower supported on carbon frame work PVA/Chitosan was synthesized by co-precipitation and ultrasonic assisted method. The co-existence of ZnS and CuO and its crystallinity in nanohybrid was verified by XRD, SAED and HR-TEM analysis. The availability of defects in ZnS was identified by EPR. FTIR and TGA verified the presence of PVA and Chitosan. Defects mediated ZnS-CuO/PVA/chitosan heterojunction promote synergistic charge separation with type II interface. Zn-vacancy facilitates two-photon excitation that improves visible-light harvesting. The photocatalytic activity of ZnS-CuO/PVA/Chitosan was 94.7% which is higher when compared to ZnS (40%) and CuO (60%). The photocatalytic mechanism was elucidated using scavenger test and both ·O2- and ·OH were found to play key role in tetracycline degradation. In addition, ZnS-CuO/PVA/Chitosan demonstrated efficient anti-microbial effect against the both gram strains on comparing with individual ZnS and CuO. Thus, the multifunctional ZnS-CuO/PVA/Chitosan is promising for the photocatalytic degradation of tetracycline and as an antimicrobial agent.
Collapse
|
|
3 |
13 |
7
|
Saeed S, Khan SU, Khan WU, Abdel-Maksoud MA, Mubarak AS, Mohammed MA, Kiani FA, Wahab A, Shah MW, Saleem MH. Genome Editing Technology: A New Frontier for the Treatment and Prevention of Cardiovascular Diseases. Curr Probl Cardiol 2023; 48:101692. [PMID: 36898595 DOI: 10.1016/j.cpcardiol.2023.101692] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
Over the past two decades, genome-editing technique has proven to be a robust editing method that revolutionizes the field of biomedicine. At the genetic level, it can be efficiently utilized to generate various disease-resistance models to elucidate the mechanism of human diseases. It also develops an outstanding tool and enables the generation of genetically modified organisms for the treatment and prevention of various diseases. The versatile and novel CRISPR/Cas9 system mitigates the challenges of various GETs such as ZFNs, and TALENs. For this reason, it has become a ground-breaking technology potentially employed to manipulate the desired gene of interest. Interestingly, this system has been broadly utilized due to its tremendous applications for treating and preventing tumors and various rare disorders; however, its applications for treating CVDs remain in infancy. More recently, two newly developed GETs, such as base editing and prime editing, have further broadened the accuracy range to treat CVDs under consideration. Furthermore, recently emerged CRISPR tools have been potentially applied in vivo and in vitro to treat CVDs. To the best of our knowledge, we strongly enlightened the applications of the CRISPR/Cas9 system that opened a new window in the field of cardiovascular research and, in detail, discussed the challenges and limitations of CVDs.
Collapse
|
Review |
2 |
12 |
8
|
Gabr SA, Alghadir AH, Allam AA, Ajarem J, Al-Basher G, Abdel-Maksoud MA, Ghfar AA, Aboud A. Correlation between vitamin D levels and apoptosis in geriatric patients infected with hepatitis C virus genotype 4. Clin Interv Aging 2016; 11:523-33. [PMID: 27217734 PMCID: PMC4862759 DOI: 10.2147/cia.s104599] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Vitamin D levels play a pivotal role in most biological processes and differ according to age. A deficiency of vitamin D in chronic hepatitis C (CHC) patients has been shown to be linked with the severity of liver fibrosis, but little is known about the mechanism of this association. Objective In this study, we evaluate the potential interrelation between vitamin D levels, oxidative stress, and apoptosis, based on liver fibrosis in geriatric patients infected with hepatitis C virus (HCV) genotype 4. Subjects and methods A total of 120 adult individuals aged 30–68 years were recruited in this study. Of these, 20 healthy subjects (15 men and five women) with a mean age of 48.3±6.1 years were selected as controls, and 100 patients with a mean age of 47.8±4.9 years with chronic HCV (CHC) who had undergone liver biopsy (80 men and 20 women) were included in this study. Based on liver radiographic (computed tomography, magnetic resonance imaging) and histological Metavir system analyses, the CHC patients were classified into three groups: asymptomatic CHC carriers (n=30), fibrosis (n=25), and cirrhosis (n=45). HCV RNA, HCV genotypes, inflammatory cytokines AFP and TNFα, 25-hydroxyvitamin D (25[OH]D) levels, apoptotic markers single-stranded DNA (ssDNA) and soluble Fas (sFas), and oxidative stress markers nitric oxide (NO) and total antioxidant capacity (TAC) were estimated by using molecular, immunoassay, and colorimetric techniques. Results Approximately 30% of the study population (n=30) were diagnosed as asymptomatic CHC carriers, and 70% of the study population (n=70) had severe fibrosis; these were classified into fibrosis and cirrhosis. There was a significant reduction in 25(OH)D levels and TAC activity, along with an increase in levels of NO, AFP, TNFα, ssDNA, and sFas in fibrosis and cirrhosis subjects compared with those of asymptomatic CHC carriers and health controls. The deficiency in 25(OH)D levels correlated positively with sFas, ssDNA, AFP, TNFα, NO, and TAC, and negatively with age, sex, liver function, body mass index, homeostatic model assessment – insulin resistance, HCV RNA, and viral load. Significant intercorrelation was reported between serum 25(OH)D concentrations and apoptotic and oxidative markers, which suggested progression of liver pathogenesis and fibrogenesis via oxidative and apoptotic mechanisms. Conclusion The data showed that vitamin D status was significantly correlated with pathogenesis and fibrogenesis of the liver in geriatric patients infected with HCV genotype 4. The deficiency in 25(OH)D levels was shown to have a pivotal role in the pathogenesis of liver via apoptotic, oxidative stress, and inflammatory mechanistic pathways. The data point to adequate vitamin D levels being recommended for a good response to treatment strategies, especially in older CHC patients.
Collapse
|
Journal Article |
9 |
11 |
9
|
Altoom NG, Ajarem J, Allam AA, Maodaa SN, Abdel-Maksoud MA. Deleterious effects of potassium bromate administration on renal and hepatic tissues of Swiss mice. Saudi J Biol Sci 2017; 25:278-284. [PMID: 29472778 PMCID: PMC5816001 DOI: 10.1016/j.sjbs.2017.01.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 01/29/2017] [Accepted: 01/30/2017] [Indexed: 11/12/2022] Open
Abstract
Potassium bromate (KBrO3) is widely used as a food additive and is a major water disinfection by-product. The present study reports the side effects of KBrO3 administration in Swiss mice. Animals were randomly divided into three groups: control, low dose KBrO3 (100 mg/kg/day) and high dose KBrO3 (200 mg/kg/day) groups. Administration of KBrO3 led to decreased white blood corpuscles (WBCs), red blood corpuscles (RBCs) and platelets count in the animals of both the high and the low dose groups. Altered lipid profile represented as low density lipoprotein (LDL), high density lipoprotein (HDL) and cholesterol levels were observed in plasma samples of both KBrO3 treated groups of mice. Also, an increased plasma level of LDH was detected in both KBrO3 treated groups. Histological investigations showed impaired renal and hepatic histology that was concomitant with increased plasma Creatinine level in both of KBrO3-treated groups. Nevertheless, decreased glutathione (GSH) level in both renal and hepatic tissue of mice after KBrO3 intake was detected. These results show that KBrO3 has serious damaging effects and therefore, its use should be avoided.
Collapse
|
Journal Article |
8 |
10 |
10
|
Balasurya S, Okla MK, Mohebaldin A, Al-Ghamdi AA, Abdel-Maksoud MA, Almunqedhi B, AbdElgawad H, Thomas AM, Raju LL, Khan SS. Self-assembling of 3D layered flower architecture of BiOI modified MgCr 2O 4 nanosphere for wider spectrum visible-light photocatalytic degradation of rhodamine B and malachite green: Mechanism, pathway, reactive sites and toxicity prediction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114614. [PMID: 35121463 DOI: 10.1016/j.jenvman.2022.114614] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
In this study, 3D BiOI nanoparticle (BOI NPs) modified MgCr2O4 nanoparticle (MCO NPs) was fabricated by simple sonochemical and coprecipitation method for the enhanced photocatalytic activity. The morphological structure of the MgCr2O4-BiOI nanocomposite (MCO-BOI NCs) was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-visible diffuse reflectance spectroscopy (DRS), electron impedance spectroscopy (EIS) and photo luminescence (PL). The lower in the PL intensity and small arc in EIS for NCs shows the effective charge separation and lower in rate of recombination of charge carriers in NCs than the pure MCO and BOI NPs. The degradation efficiency of Rhodamine B (RhB) and malachite green (MG) by MCO-BOI NCs was found to be 99.5% and 98.2% receptivity. In addition, the photocatalytic degradation of RhB and MG was studied under various environmental parameters (different pH, varying the concentration of NCs and dyes) and response surface (RSM) plot was performed. The complete mineralization of RhB and MG by MCO-BOI NCs was determined by TOC. In addition, the photocatalytic degradation pathway was elucidated based on GC-MS results and Fukui function. In addition, the toxicity of intermediate formed during the degradation of RhB and MG was predicted by ECOSAR. The present work highlights the application of MCO-BOI NCs in environmental remediation for toxic pollutant removal.
Collapse
|
|
3 |
10 |
11
|
Mao J, Huang X, Okla MK, Abdel-Maksoud MA, Mubarak A, Hameed Z, Noreen R, Chaudhary A, Ghazanfar S, Liao Y, Hameed Y, Li C. Risk Factors for TERT Promoter Mutations with Papillary Thyroid Carcinoma Patients: A Meta-Analysis and Systematic Review. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1721526. [PMID: 35535227 PMCID: PMC9078812 DOI: 10.1155/2022/1721526] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/22/2022]
Abstract
Whether TERT promoter mutation is related to more aggressive clinicopathologic features and worse outcomes in papillary thyroid carcinoma patients (PTCs) is still variable and controversial. Our intention was to investigate the risk or prognostic factors that may additionally predict the TERT promoter mutation doable of these lesions and new prevention techniques in PTCs. A total of 2,539 PTC patients with 11.50% TERT mutation have been analyzed using Revman 5.3 software in this study. The PubMed and Embase databases were systematically searched for works published until November 9, 2021. The following variables had been associated with an extended chance of TERT promoter mutation in PTC patients: age < 45 years (MD = 10.93, 95%CI = 7.25-14.61); gender = male (pooled OR = 1.63, 95%CI = 1.17-2.28); tumor size > 1 cm (MD = 0.56, 95%CI = 0.34-0.77); lymph node metastasis (pooled OR = 1.29, 95%CI = 0.93-1.79); vascular invasion (pooled OR = 1.78, 95%CI = 0.83-3.84); extrathyroidal extension (pooled OR = 2.00, 95%CI = 1.32-3.02); distant metastasis (pooled OR = 1.46, 95%CI = 1.04-2.04); advanced TNM stage (pooled OR = 3.19, 95%CI = 2.28-4.45). In addition, multifocality (pooled OR = 0.67, 95%CI = 0.14-3.24) had no affiliation with TERT promoter mutation in PTC patients. Our finding showed that age < 45 years, male, tumor size > 1 cm, lymph node metastasis, vascular invasion, and superior/advanced TNM stage were dangerous elements for TERT promoter mutation of worse effect in PTCs while that multifocality was once negatively correlated. TERT promoter mutation is drastically associated with recurrence and PTC-related mortality.
Collapse
|
Meta-Analysis |
3 |
9 |
12
|
Badr G, El-Hossary FM, Lasheen FEDM, Negm NZ, Khalaf M, Salah M, Sayed LH, Abdel-Maksoud MA, Elminshawy A. Cold atmospheric plasma induces the curing mechanism of diabetic wounds by regulating the oxidative stress mediators iNOS and NO, the pyroptotic mediators NLRP-3, Caspase-1 and IL-1β and the angiogenesis mediators VEGF and Ang-1. Biomed Pharmacother 2023; 169:115934. [PMID: 38000357 DOI: 10.1016/j.biopha.2023.115934] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/12/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023] Open
Abstract
It has been demonstrated that cold atmospheric plasma (CAP) accelerates the wound healing process, however the underlying molecular pathways behind this effect remain unclear. Thus, the goal of the proposed investigation is to elucidate the therapeutic advantages of CAP on angiogenesis, pyroptotic, oxidative stress, and inflammatory mediators during the wound-healing mechanisms associated with diabetes. Intraperitoneal administration of streptozotocin (STZ, 60 mg/Kg) of body weight was used to induce type-1 diabetes. Seventy-five male mice were randomized into 3 groups: the control non-diabetic group, the diabetic group that was not treated, and the diabetic group that was treated with CAP. The key mediators of pyroptosis and its impact on the slow healing process of diabetic wounds were examined using histological investigations employing H&E staining, immunohistochemistry, ELISA, and Western blotting analysis. Angiogenesis proteins (VEGF, Ang-1, and HO-1) showed a significant decline in expression concentrations in the diabetic wounds, indicating that diabetic animals' wounds were less likely to heal. Furthermore, compared to the controls, the major mediators of pyroptosis (NLRP-3, IL-1β, and caspase-1), oxidative stress (iNOS and NO), and inflammation (TNF-α and IL-6) have higher expression levels in the diabetic wounds. These factors substantially impede the healing mechanism of diabetic wounds. Interestingly, our results disclosed the therapeutic impacts of CAP treatment in the healing process of diabetic wounds via significantly regulating the expression levels of angiogenesis, pyroptosis, oxidative stress and pro-inflammatory mediators. Our findings demonstrated the curative likelihood of CAP and the underlying mechanisms for enhancing the healing process of diabetic wounds.
Collapse
|
|
2 |
9 |
13
|
Okla MK, Janani B, AL-ghamdi AA, Abdel-Maksoud MA, AbdElgawad H, Das A, Khan SS. Facile construction of 3D CdS-Ag2S nanospheres: a combined study of visible light responsive phtotocatalysis, antibacterial and anti-biofilm activity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
|
3 |
8 |
14
|
Kumar BH, Okla MK, Abdel-Maksoud MA, Al-Qahtani WH, AbdElgawad H, Altukhayfi MS, Thomas AM, Raju LL, Khan SS. Chitosan capped Ag/NiS nanocomposites: A novel colorimetric probe for detection of L-cysteine at nanomolar level and its anti-microbial activity. Int J Biol Macromol 2021; 193:2054-2061. [PMID: 34774598 DOI: 10.1016/j.ijbiomac.2021.11.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022]
Abstract
L-Cysteine (L-cys) plays very crucial role in biological systems. The study reports the colorimetric detection of L-cys at nanomolar level using chitosan capped Ag decorated NiS nanocomposite (chit-Ag/NiS NCs).The chemical reduction and co-precipitation methods were adopted to prepare chit-Ag/NiS NCs. The fabricated NCs was characterized by X-ray diffraction (XRD), fourier-transform infrared spectroscopy (FT-IR), FT-Raman, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), high-resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The chit-Ag/NiS NCs particularly detect L-cys even in other amino acids presence. The chit-Ag/NiS NCs showed the surface charge of -26 ± 39.9 mV. The detection of L-cys was indicated by disappearance of yellowish-brown color of Chit-Ag/NiS NCs to colorless. A good linear correlation was found between absorbance vs logarithmic concentration of L-cys (1 μM to 1 nM) with R2 value of 0.99. The chit-Ag/NiS NCs impregnated cotton swabs was prepared for real time detection of L-cys and the prepared probe was found to be highly selective and specific. The effect of pH, temperature and salinity influencing the L-cys detection was studied. Also, the antimicrobial activity of Chit-Ag/NiS NCs was investigated against gram negative (E. coli) and gram positive (B. subtilis) bacteria.
Collapse
|
|
4 |
7 |
15
|
Balasurya S, Okla MK, Alaraidh IA, Al-Ghamdi AA, Mohebaldin A, Abdel-Maksoud MA, Abdelaziz RF, Thomas AM, Raju LL, Khan SS. Sunlit photocatalytic degradation of organic pollutant by NiCr 2O 4/Bi 2S 3/Cr 2S 3 tracheid skeleton nanocomposite: Mechanism, pathway, reactive sites, genotoxicity and byproduct toxicity evaluation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115674. [PMID: 35868190 DOI: 10.1016/j.jenvman.2022.115674] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
In this study, 3D C2S3 (CS) and 2D Bi2S3 (BS) modified NiCr2O4 nanocomposite (NCO-BS-CS NCs) was prepared by sonochemical assisted co-precipitation method for the enhanced photocatalytic activity. Here, NCO-BS-CS NCs showed band gap energy of 2.23 eV and the PL intensity of NCO-BS-CS NCs was lower than NCO, BS, and CS NPs. Thus, the results indicate the fabricated NCO-BS-CS NCs enhance the charge segregation and lower in recombination rate. NCO-BS-CS NCs showed enhanced photodegradation of methyl orange (MO) (95%) and congo red (CR) (99.7%) respectively. The total organic compound (TOC) analysis shows the complete mineralization of about 91 and 98% for MO and CR respectively. Furthermore, the Fukui function was used for the prediction of reactive sites in the photodegradation pathway of MO and CR by NCs. ECOSAR program was done to determine the toxicity of the intermediate and the results conclude that the degraded product shows nontoxic to the environmental organism (fish, daphnia, and algae). Thus, the fabricated NCO-BS-CS NCs can be used for the remediation of toxic organic pollutants from the waste water by photocatalytic degradation.
Collapse
|
|
3 |
6 |
16
|
Harini G, Okla MK, Alaraidh IA, Mohebaldin A, Al-Ghamdi AA, Abdel-Maksoud MA, Abdelaziz RF, Raju LL, Thomas AM, Khan SS. Sunlit expeditious visible light-mediated photo-fenton degradation of ciprofloxacin by exfoliation of NiCo 2O 4 and Zn 0·3Fe 2·7O 4 over g-C 3N 4 matrix: A brief insight on degradation mechanism, degraded product toxicity, and genotoxic evaluation in Allium cepa. CHEMOSPHERE 2022; 303:134963. [PMID: 35588875 DOI: 10.1016/j.chemosphere.2022.134963] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/22/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Pharmaceutical pollutant in the environmental water bodies has become a major concern, which causes adverse effect to aquatic entities. This study provides an incisive insight on the photocatalytic degradation of ciprofloxacin (CIP) and the development of rationally engineered g-C3N4-NiCo2O4-Zn0.3Fe2·7O4 nanocomposite for boosted photocatalytic performance under visible light irradiation. The g-C3N4-NiCo2O4-Zn0.3Fe2·7O4 nanocomposite was synthesized via ultrasonication-assisted hydrothermal method. The characterization of the as-prepared material was evaluated by XPS, SEM, HR-TEM, PL, FT-IR, EIS, ESR, XRD, BET, and UV-Vis DRS techniques. Furthermore, the effect of catalytic dosage, drug dosage, and pH changes was explored, where g-C3N4-NiCo2O4-Zn0.3Fe2·7O4-10% unveiled excellent visible light photo-Fenton degradation of 92% for CIP at 140 min. The hydroxyl radicals (OH.) served as the predominant radical species on the photodegradation of CIP, which was confirmed by performing a radical scavenging test. Furthermore, the degradation efficiency was determined by six consecutive cycle tests, where the nanomaterial exhibited excellent stability with 98.5% reusable efficiency. The degradation of CIP was further scrutinized by GC-MS analysis, where the degraded intermediate products and the possible pathway were elucidated. The degraded product toxicity was determined by ECOSAR program, where the degraded products haven't exhibited any considerable toxic effects. In addition, the genotoxicity of the nanomaterial was determined by treating them with root tips of A. cepa, where it was found to be non-toxic. Here, the prepared g-C3N4-NiCo2O4-Zn0.3Fe2·7O4 nanocomposite (CNZ NCs) shows eco-friendly and excellent photo-Fenton activity for environmental applications.
Collapse
|
|
3 |
6 |
17
|
Al-Otaibi FS, Ajarem JS, Abdel-Maksoud MA, Maodaa S, Allam AA, Al-Basher GI, Mahmoud AM. Stone quarrying induces organ dysfunction and oxidative stress in Meriones libycus. Toxicol Ind Health 2018; 34:679-692. [PMID: 30003843 DOI: 10.1177/0748233718781290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Exposure to heavy metal-containing dust arising from stone quarrying may cause severe health problems. The aim of this study was to evaluate the impact of stone quarrying in Riyadh (Saudi Arabia) on the Libyan jird Meriones libycus. Soil samples and jirds were collected from four sites located at different distances from the quarrying area. Soil from the first (500 m away from the quarry) and second (1800 m away) sites showed a significant increase in cadmium (Cd), lead (Pb), nickel (Ni), and vanadium (V) when compared with the reference site (38,000 m away). Jirds at these sites exhibited significant increases in liver, kidney, lung, and fur levels of Cd, Pb, Ni, and V. Serum transaminases, creatinine, and malondialdehyde (MDA) levels were significantly increased in jirds, whereas reduced glutathione (GSH) levels decreased. Liver, kidney, and lung tissues of jirds, collected from the first and second sites, showed significantly increased MDA and decreased GSH levels. Additionally, animals at both sites showed altered hematological parameters and several histopathological changes in their liver, kidney, and lung. Soil and animals at the third site (7300 m away) showed no significant changes. Thus, our study showed the impact and hazardous effects of quarrying on the liver, kidney, lung, and hemogram of M. libycus. These findings can provide scientific evaluation for studying the impact of quarrying on the workers and communities living close to the studied area.
Collapse
|
Journal Article |
7 |
6 |
18
|
Harikumar B, Okla MK, Alaraidh IA, Mohebaldin A, Soufan W, Abdel-Maksoud MA, Aufy M, Thomas AM, Raju LL, Khan SS. Robust visible light active CoNiO 2-BiFeO 3-NiS ternary nanocomposite for photo-fenton degradation of rhodamine B and methyl orange: Kinetics, degradation pathway and toxicity assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115321. [PMID: 35751232 DOI: 10.1016/j.jenvman.2022.115321] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/09/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Sustainable wastewater treatment is crucial to remediate the water pollutants through the development of highly efficient, low-cost and separation free photocatalyst. The aim of this study is to construct a novel CoNiO2-BiFeO3-NiS ternary nanocomposite (NCs) for the efficient degradation of organic pollutants by utilising visible light. The NCs was characterized by various physiochemical techniques, including HR-TEM, SEM, XPS, FT-IR, ESR, EIS, PL, UV-visible DRS, and N2 adsorption and desorption analysis. The photocatalyst exhibits extraordinary degradation efficiency towards MO (99.8%) and RhB (97.8%). The intermediates were determined using GC-MS analysis and the degradation pathway was elucidated. The complete mineralization was further confirmed by TOC analysis. The CoNiO2-BiFeO3-NiS ternary NCs have shown excellent photostability, structural stability and reusability even after six cycles and it is confirmed by XRD and XPS analysis. The kinetic study reveals that the photodegradation of the dyes follows first order reaction. The influence of different pH, dye concentrations and NCs dosages were investigated. The intermediate toxicity was predicted by computational stimulation using ECOSAR software. The NCs shows promising potential for ecological safety which demonstrates its practical application in the treatment of waste water pollutants in large scale.
Collapse
|
|
3 |
6 |
19
|
Swedha M, Okla MK, Al-Amri SS, Alaraidh IA, Al-Ghamdi AA, Mohebaldin A, Abdel-Maksoud MA, Aufy M, Studenik CR, Thomas AM, Raju LL, Khan SS. Green synthesis of two-electron centre based ZnO/NiCo 2S 4 QDs-OVs using Punica granatum fruit peel extract for an exceptional visible light photocatalytic degradation of doxycycline and ciprofloxacin. CHEMOSPHERE 2022; 304:135225. [PMID: 35697102 DOI: 10.1016/j.chemosphere.2022.135225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Biosynthesis of nanomaterials using plant extract makes them attractive in the field of photocatalysis as they are environmental friendly. The current study focused on the biosynthesis of ZnO/NiCo2S4 QDs (NCs) using Punica granatum fruit peel extract as the reducing agent. The nanomaterials were characterized with XRD, FTIR, Raman, SEM, TEM, UV-vis DRS, BET, PL, EIS, and ESR analysis and were used for photocatalytic degradation of doxycycline (DOX) and ciprofloxacin (CIP). The bandgap of ZnO is 3.2 eV, and the decoration of NiCo2S4 QDs aids in narrowing the bandgap (2.8 eV), making the NCs visible light active. The fabricated NCs achieved 99 and 89% degradation of DOX and CIP respectively. The photocatalytic efficiency of ZnO/NiCo2S4 QDs was much higher compared to individual ZnO and NiCo2S4 QDs. The half-life period of DOX and CIP were evaluated to be 58 and 152 min respectively. The percentage of TOC removal in the photodegraded product of DOX and CIP was estimated to be 99 and 89% respectively, indicating the mineralization of the compounds. The enhanced photocatalytic efficiency of the NCs was attributed to the narrowed visible light active bandgap, synergistic charge transfer across the interface, and lower charge recombination. The intermediates formed during the photocatalytic degradation of DOX and CIP were analyzed using GC-MS/MS analysis, and the photodegradation pathway was elucidated. Also, the toxicity of the intermediates was computationally analyzed using ECOSAR software. The fabricated ZnO/NiCo2S4 QDs have excellent stability and reusability, confirmed by XRD and XPS analysis. The reusable efficiency of the NCs for the photocatalytic degradation of DOX and CIP were 98.93, and 99.4% respectively. Thus, the biologically fabricated NCs are shown to be an excellent photocatalyst and have wide applications in environmental remediation.
Collapse
|
|
3 |
6 |
20
|
Aufy M, Abdelaziz RF, Hussein AM, Topcagic N, Shamroukh H, Abdel-Maksoud MA, Salem TZ, Studenik CR. Impact of Enniatin B and Beauvericin on Lysosomal Cathepsin B Secretion and Apoptosis Induction. Int J Mol Sci 2023; 24:ijms24032030. [PMID: 36768354 PMCID: PMC9916760 DOI: 10.3390/ijms24032030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Enniatin B (ENN B) and Beauvericin (BEA) are cyclohexadepsipeptides that can be isolated from Fusarium and Beauveria bassiana, respectively. Both compounds are cytotoxic and ionophoric. In the present study, the mechanism of cell death induced by these compounds was investigated. Epidermal carcinoma-derived cell line KB-3-1 cells were treated with different concentrations of these compounds. The extracellular secretion of cathepsin B increased in a concentration-dependent manner, and the lysosomal staining by lysotracker red was reduced upon the treatment with any of the compounds. However, the extracellular secretion of cathepsin L and cathepsin D were not affected. Inhibition of cathepsin B with specific inhibitor CA074 significantly reduced the cytotoxic effect of both compounds, while inhibition of cathepsin D or cathepsin L did not influence the cytotoxic activities of both compounds. In vitro labelling of lysosomal cysteine cathepsins with Ethyl (2S, 3S)-epoxysuccinate-Leu-Tyr-Acp-Lys (Biotin)-NH2 (DCG04) was not affected in case of cathepsin L upon the treatment with both compounds, while it was significantly reduced in case of cathepsin B. In conclusion, ENN B and BEA increase lysosomal Ph, which inhibits delivery of cathepsin B from Golgi to lysosomes, thereby inducing cathepsin B release in cytosol, which activates caspases and hence the apoptotic pathway.
Collapse
|
research-article |
2 |
5 |
21
|
Saleem MH, Parveen A, Perveen S, Akhtar N, Abasi F, Ehsan M, Ali H, Okla MK, Saleh IA, Zomot N, Alwasel YA, Abdel-Maksoud MA, Fahad S. Alleviation of cadmium toxicity in pea (Pisum sativum L.) through Zn-Lys supplementation and its effects on growth and antioxidant defense. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:10594-10608. [PMID: 38198090 DOI: 10.1007/s11356-024-31874-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024]
Abstract
Cadmium significantly impacts plant growth and productivity by disrupting physiological, biochemical, and oxidative defenses, leading to severe damage. The application of Zn-Lys improves plant growth while reducing the stress caused by heavy metals on plants. By focusing on cadmium stress and potential of Zn-Lys on pea, we conducted a pot-based study, organized under completely randomized block design CRD-factorial at the Botanical Garden of Government College University, Faisalabad. Both pea cultivars were grown in several concentrations of cadmium @ 0, 50 and 100 μM, and Zn-Lys were exogenously applied @ 0 mg/L and 10 mg/L with three replicates for each treatment. Cd-toxicity potentially reduces plant growth, chlorophyll contents, osmoprotectants, and anthocyanin content; however, an increase in MDA, H2O2 initiation, enzymatic antioxidant activities as well as phenolic, flavonoid, proline was observed. Remarkably, exogenously applied Zn-Lys significantly enhanced the plant growth, biomass, photosynthetic attributes, osmoprotectants, and anthocyanin contents, while further increase in enzymatic antioxidant activities, total phenolic, flavonoid, and proline contents were noticed. However, application of Zn-Lys instigated a remarkable decrease in levels of MDA and H2O2. It can be suggested with recommendation to check the potential of Zn-Lys on plants under cadmium-based toxic soil.
Collapse
|
|
1 |
5 |
22
|
Janani B, Okla MK, Al-Amri SS, Mohebaldin A, Alwasel YA, AbdElgawad H, Abdel-Maksoud MA, Thomas AM, Raju LL, Khan SS. Designing novel MgFe 2O 4 coupled V 2O 5 nanorod for synergetic photodegradation of tetracycline with enhanced visible-light energy harvesting: Photoluminescence, kinetics, intrinsic mechanism and bactericidal effect. CHEMOSPHERE 2022; 296:134012. [PMID: 35183579 DOI: 10.1016/j.chemosphere.2022.134012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/27/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
The present study focused on the enhancement of degradation of an important pharmaceutical pollutant, tetracycline with the help of nano photocatalyst under visible light irradiation. The study found that the synergetic effect of novel MgFe2O4-V2O5 enhanced the photocatalytic degradation of tetracycline. Here, the photocatalyst was synthesized by sonochemical technique. Scanning electron microscopy image indicates the coupling of MgFe2O4 nanocapsules on the surface of the V2O5 nanorod. The bandgap of MgFe2O4 (1.8 eV) and V2O5 (2.5 eV) was shifted to 2.32 eV in MgFe2O4-V2O5 to promote visible-light harvesting and it was depicted by the UV-visible DRS. XPS was used to identify the presence of chemical states with the existence of Mg 1s, Fe 2p, V 2p, and O 1s. The electrochemical impedance spectroscopy and photoluminescence spectra indicate the better separation of charge carriers owing to the formation of type II heterojunction formation. The tetracycline (25 mg/L) was degraded with MgFe2O4-V2O5 (150 mg/L) that exhibited 3.3 and 5 folds enhanced rates than its counterparts (MgFe2O4 and V2O5) owing to synergism. The possible intermediate formation and degradation pathway was determined based on GC/MS analysis. TOC analysis of end products indicated maximum mineralization of tetracycline. The MgFe2O4-V2O5 showed excellent recycling ability and reusability. The key photo-degradation of tetracycline was occurred by the generation of hydroxyl radicals. The MgFe2O4-V2O5 exhibited high antibacterial activity that ensures the dual functionality of the prepared nanocomposites (NCs). Therefore, the present study displays MgFe2O4 decorated V2O5 nanorod as an ideal candidate for environmental remediation.
Collapse
|
|
3 |
5 |
23
|
Mubarak A, Almutairi S, Al-Dhabbah AD, Aldabas SY, Bhat R, Alqoufail MM, Abdel-Maksoud MA, Almanaa TN, Farrag MA, Alturaiki W. Durability of SARS-CoV-2 Specific IgG Antibody Responses Following Two Doses of Match and Mixed COVID-19 Vaccines Regimens in Saudi Population. Infect Drug Resist 2022; 15:3791-3800. [PMID: 35875613 PMCID: PMC9296867 DOI: 10.2147/idr.s369769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022] Open
Abstract
Background SARS-CoV-2 pandemic continues to threaten the human population with millions of infections and deaths worldwide. Vaccination campaigns undertaken by several countries have resulted in a notable decrease in hospitalization and deaths. However, with the emergence of new virus variants, it is critical to determine the longevity and the protection efficiency provided by the current authorized vaccines. Aim The aims of this study are to provide data about the magnitude of immune responses in individuals fully vaccinated against COVID-19 in Riyadh province of Saudi Arabia. Also, to evaluate the continuity of specific IgG levels and compare the titers in individuals who have been received two doses of the matched and mixed vaccines, including Pfizer and AstraZeneca against SARS-CoV-2 during the period of three to six months. Moreover, we analyze the current state of immune response in terms of antibody responses in thepopulation postvaccination using homogenous or hetrogenous vaccine regimen. Methods A total of 141 healthy volunteers were recruited to our study; blood (n=63) and the saliva samples (n=78) and were collected from fully vaccinated individuals in Riyadh city. We employed a specific ELISA assay in plasma and saliva of fully vaccinated individuals. Results IgG levels varied with age groups with the highest concentration in the age group 19-29 years, but the age group (≥50) had the lowest IgG concentration. The IgG levels in both serum and saliva were higher after three months and start to wane after six months. Individuals who received mixed types of vaccines had significantly better response than Pfizer vaccine alone. Conclusion The current study investigates the status of humoral responses in different age groups, in terms of antibody measurements. These data will help to evaluate the need for further COVID-19 vaccine doses and to what extent a two-dose regimen will protect vaccinated individuals.
Collapse
|
research-article |
3 |
5 |
24
|
Okla MK, Harini G, Dawoud TM, Akshhayya C, Mohebaldin A, AL-ghamdi AA, Soufan W, Abdel-Maksoud MA, AbdElgawad H, Raju LL, Thomas AM, Sudheer Khan S. Fabrication of MnFe2O4 spheres modified CeO2 nano-flakes for sustainable photodegradation of MB dye and antimicrobial activity: A brief computational investigation on reactive sites and degradation pathway. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
|
3 |
4 |
25
|
Okla MK, Saleem MH, Saleh IA, Zomot N, Perveen S, Parveen A, Abasi F, Ali H, Ali B, Alwasel YA, Abdel-Maksoud MA, Oral MA, Javed S, Ercisli S, Sarfraz MH, Hamed MH. Foliar application of iron-lysine to boost growth attributes, photosynthetic pigments and biochemical defense system in canola (Brassica napus L.) under cadmium stress. BMC PLANT BIOLOGY 2023; 23:648. [PMID: 38102555 PMCID: PMC10724993 DOI: 10.1186/s12870-023-04672-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
In the current industrial scenario, cadmium (Cd) as a metal is of great importance but poses a major threat to the ecosystem. However, the role of micronutrient - amino chelates such as iron - lysine (Fe - lys) in reducing Cr toxicity in crop plants was recently introduced. In the current experiment, the exogenous applications of Fe - lys i.e., 0 and10 mg L - 1, were examined, using an in vivo approach that involved plant growth and biomass, photosynthetic pigments, oxidative stress indicators and antioxidant response, sugar and osmolytes under the soil contaminated with varying levels of Cd i.e., 0, 50 and 100 µM using two different varieties of canola i.e., Sarbaz and Pea - 09. Results revealed that the increasing levels of Cd in the soil decreased plant growth and growth-related attributes and photosynthetic apparatus and also the soluble protein and soluble sugar. In contrast, the addition of different levels of Cd in the soil significantly increased the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2), which induced oxidative damage in both varieties of canola i.e., Sarbaz and Pea - 09. However, canola plants increased the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and non-enzymatic compounds such as phenolic, flavonoid, proline, and anthocyanin, which scavenge the over-production of reactive oxygen species (ROS). Cd toxicity can be overcome by the supplementation of Fe - lys, which significantly increased plant growth and biomass, improved photosynthetic machinery and sugar contents, and increased the activities of different antioxidative enzymes, even in the plants grown under different levels of Cd in the soil. Research findings, therefore, suggested that the Fe - lys application can ameliorate Cd toxicity in canola and result in improved plant growth and composition under metal stress.
Collapse
|
research-article |
2 |
4 |