Arjama M, Mehnath S, Rajan M, Jeyaraj M. Engineered Hyaluronic Acid-Based Smart Nanoconjugates for Enhanced Intracellular Drug Delivery.
J Pharm Sci 2021;
112:1603-1614. [PMID:
34678274 DOI:
10.1016/j.xphs.2021.10.005]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022]
Abstract
Bacterial polysaccharides can be easily modified to offer dual stimuli-responsive drug delivery systems with double targeting potential. In this research work, bacterial polysaccharides hyaluronic acid (HA) were functionalized with α-tocopherol polyethylene glycol succinate (TPGS) and cholic acid (CA) to form multifunctional polysaccharides nanoconjugates (TPGS-HA-CA). Smart nanoconjugates were synthesized by forming a redox-responsive disulfide bond, and it is composed of double targeting ligands. Doxorubicin (DOX) encapsulated smart nanoconjugates were exhibited an average size of 200 nm with a uniform core-shell structure. It serves the pH-responsive side chain modulation of TPGS-HA-CA, which affords a high degree of swelling at acidic pH. Under the pH 5.0 it shows 57% of release due to the side chain modulation of C-H/N-H. Polysaccharides nanoconjugates exhibited the double stimuli-responsive drug delivery by rapid disassembly of disulfide linkage, which exhibited 72% drug release (pH 5.0+GSH 10 mM). In cytotoxic studies, DOX@TPGS-HA-CA exhibited a higher cytotoxic effect compared to DOX. Hyaluronic acid functionalization with CA, TPGS increases cell internalization, and dual stimuli activity promotes more cell death. Overall, multifunctional polysaccharides hydrogel nanoconjugates is a prospective material that has great potential for targeting breast cancer therapy.
Collapse