1
|
Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Ménard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM. MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005; 65:7065-70. [PMID: 16103053 DOI: 10.1158/0008-5472.can-05-1783] [Citation(s) in RCA: 3049] [Impact Index Per Article: 152.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs that control gene expression by targeting mRNAs and triggering either translation repression or RNA degradation. Their aberrant expression may be involved in human diseases, including cancer. Indeed, miRNA aberrant expression has been previously found in human chronic lymphocytic leukemias, where miRNA signatures were associated with specific clinicobiological features. Here, we show that, compared with normal breast tissue, miRNAs are also aberrantly expressed in human breast cancer. The overall miRNA expression could clearly separate normal versus cancer tissues, with the most significantly deregulated miRNAs being mir-125b, mir-145, mir-21, and mir-155. Results were confirmed by microarray and Northern blot analyses. We could identify miRNAs whose expression was correlated with specific breast cancer biopathologic features, such as estrogen and progesterone receptor expression, tumor stage, vascular invasion, or proliferation index.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
3049 |
2
|
Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 2005; 102:13944-9. [PMID: 16166262 PMCID: PMC1236577 DOI: 10.1073/pnas.0506654102] [Citation(s) in RCA: 2704] [Impact Index Per Article: 135.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common human leukemia and is characterized by predominantly nondividing malignant B cells overexpressing the antiapoptotic B cell lymphoma 2 (Bcl2) protein. miR-15a and miR-16-1 are deleted or down-regulated in the majority of CLLs. Here, we demonstrate that miR-15a and miR-16-1 expression is inversely correlated to Bcl2 expression in CLL and that both microRNAs negatively regulate Bcl2 at a posttranscriptional level. BCL2 repression by these microRNAs induces apoptopsis in a leukemic cell line model. Therefore, miR-15 and miR-16 are natural antisense Bcl2 interactors that could be used for therapy of Bcl2-overexpressing tumors.
Collapse
|
Research Support, N.I.H., Extramural |
20 |
2704 |
3
|
Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, Iorio MV, Visone R, Sever NI, Fabbri M, Iuliano R, Palumbo T, Pichiorri F, Roldo C, Garzon R, Sevignani C, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 2005; 353:1793-801. [PMID: 16251535 DOI: 10.1056/nejmoa050995] [Citation(s) in RCA: 1794] [Impact Index Per Article: 89.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND MicroRNA expression profiles can be used to distinguish normal B cells from malignant B cells in patients with chronic lymphocytic leukemia (CLL). We investigated whether microRNA profiles are associated with known prognostic factors in CLL. METHODS We evaluated the microRNA expression profiles of 94 samples of CLL cells for which the level of expression of 70-kD zeta-associated protein (ZAP-70), the mutational status of the rearranged immunoglobulin heavy-chain variable-region (IgV(H) ) gene, and the time from diagnosis to initial treatment were known. We also investigated the genomic sequence of 42 microRNA genes to identify abnormalities. RESULTS A unique microRNA expression signature composed of 13 genes (of 190 analyzed) differentiated cases of CLL with low levels of ZAP-70 expression from those with high levels and cases with unmutated IgV(H) from those with mutated IgV(H) . The same microRNA signature was also associated with the presence or absence of disease progression. We also identified a germ-line mutation in the miR-16-1-miR-15a primary precursor, which caused low levels of microRNA expression in vitro and in vivo and was associated with deletion of the normal allele. Germ-line or somatic mutations were found in 5 of 42 sequenced microRNAs in 11 of 75 patients with CLL, but no such mutations were found in 160 subjects without cancer (P<0.001). CONCLUSIONS A unique microRNA signature is associated with prognostic factors and disease progression in CLL. Mutations in microRNA transcripts are common and may have functional importance.
Collapse
|
Research Support, N.I.H., Extramural |
20 |
1794 |
4
|
Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, Liu S, Alder H, Costinean S, Fernandez-Cymering C, Volinia S, Guler G, Morrison CD, Chan KK, Marcucci G, Calin GA, Huebner K, Croce CM. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A 2007; 104:15805-10. [PMID: 17890317 PMCID: PMC2000384 DOI: 10.1073/pnas.0707628104] [Citation(s) in RCA: 1274] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs that regulate expression of many genes. Recent studies suggest roles of miRNAs in carcinogenesis. We and others have shown that expression profiles of miRNAs are different in lung cancer vs. normal lung, although the significance of this aberrant expression is poorly understood. Among the reported down-regulated miRNAs in lung cancer, the miRNA (miR)-29 family (29a, 29b, and 29c) has intriguing complementarities to the 3'-UTRs of DNA methyltransferase (DNMT)3A and -3B (de novo methyltransferases), two key enzymes involved in DNA methylation, that are frequently up-regulated in lung cancer and associated with poor prognosis. We investigated whether miR-29s could target DNMT3A and -B and whether restoration of miR-29s could normalize aberrant patterns of methylation in non-small-cell lung cancer. Here we show that expression of miR-29s is inversely correlated to DNMT3A and -3B in lung cancer tissues, and that miR-29s directly target both DNMT3A and -3B. The enforced expression of miR-29s in lung cancer cell lines restores normal patterns of DNA methylation, induces reexpression of methylation-silenced tumor suppressor genes, such as FHIT and WWOX, and inhibits tumorigenicity in vitro and in vivo. These findings support a role of miR-29s in epigenetic normalization of NSCLC, providing a rationale for the development of miRNA-based strategies for the treatment of lung cancer.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
1274 |
5
|
Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 2014; 12:847-65. [PMID: 24172333 DOI: 10.1038/nrd4140] [Citation(s) in RCA: 1155] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The first cancer-targeted microRNA (miRNA) drug - MRX34, a liposome-based miR-34 mimic - entered Phase I clinical trials in patients with advanced hepatocellular carcinoma in April 2013, and miRNA therapeutics are attracting special attention from both academia and biotechnology companies. Although miRNAs are the most studied non-coding RNAs (ncRNAs) to date, the importance of long non-coding RNAs (lncRNAs) is increasingly being recognized. Here, we summarize the roles of miRNAs and lncRNAs in cancer, with a focus on the recently identified novel mechanisms of action, and discuss the current strategies in designing ncRNA-targeting therapeutics, as well as the associated challenges.
Collapse
|
Review |
11 |
1155 |
6
|
Tili E, Michaille JJ, Cimino A, Costinean S, Dumitru CD, Adair B, Fabbri M, Alder H, Liu CG, Calin GA, Croce CM. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. THE JOURNAL OF IMMUNOLOGY 2007; 179:5082-9. [PMID: 17911593 DOI: 10.4049/jimmunol.179.8.5082] [Citation(s) in RCA: 1040] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We report here that miR-155 and miR-125b play a role in innate immune response. LPS stimulation of mouse Raw 264.7 macrophages resulted in the up-regulation of miR-155 and down-regulation of miR-125b levels. The same changes also occurred when C57BL/6 mice were i.p. injected with LPS. Furthermore, the levels of miR-155 and miR-125b in Raw 264.7 cells displayed oscillatory changes in response to TNF-alpha. These changes were impaired by pretreating the cells with the proteasome inhibitor MG-132, suggesting that these two microRNAs (miRNAs) may be at least transiently under the direct control of NF-kappaB transcriptional activity. We show that miR-155 most probably directly targets transcript coding for several proteins involved in LPS signaling such as the Fas-associated death domain protein (FADD), IkappaB kinase epsilon (IKKepsilon), and the receptor (TNFR superfamily)-interacting serine-threonine kinase 1 (Ripk1) while enhancing TNF-alpha translation. In contrast, miR-125b targets the 3'-untranslated region of TNF-alpha transcripts; therefore, its down-regulation in response to LPS may be required for proper TNF-alpha production. Finally, Emu-miR-155 transgenic mice produced higher levels of TNF-alpha when exposed to LPS and were hypersensitive to LPS/d-galactosamine-induced septic shock. Altogether, our data suggest that the LPS/TNF-alpha-dependent regulation of miR-155 and miR-125b may be implicated in the response to endotoxin shock, thus offering new targets for drug design.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
1040 |
7
|
Winkle M, El-Daly SM, Fabbri M, Calin GA. Noncoding RNA therapeutics - challenges and potential solutions. Nat Rev Drug Discov 2021; 20:629-651. [PMID: 34145432 PMCID: PMC8212082 DOI: 10.1038/s41573-021-00219-z] [Citation(s) in RCA: 979] [Impact Index Per Article: 244.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
Therapeutic targeting of noncoding RNAs (ncRNAs), such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), represents an attractive approach for the treatment of cancers, as well as many other diseases. Over the past decade, substantial effort has been made towards the clinical application of RNA-based therapeutics, employing mostly antisense oligonucleotides and small interfering RNAs, with several gaining FDA approval. However, trial results have so far been ambivalent, with some studies reporting potent effects whereas others demonstrated limited efficacy or toxicity. Alternative entities such as antimiRNAs are undergoing clinical testing, and lncRNA-based therapeutics are gaining interest. In this Perspective, we discuss key challenges facing ncRNA therapeutics - including issues associated with specificity, delivery and tolerability - and focus on promising emerging approaches that aim to boost their success.
Collapse
|
Review |
4 |
979 |
8
|
Garzon R, Liu S, Fabbri M, Liu Z, Heaphy CEA, Callegari E, Schwind S, Pang J, Yu J, Muthusamy N, Havelange V, Volinia S, Blum W, Rush LJ, Perrotti D, Andreeff M, Bloomfield CD, Byrd JC, Chan K, Wu LC, Croce CM, Marcucci G. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 2009; 113:6411-8. [PMID: 19211935 PMCID: PMC2710934 DOI: 10.1182/blood-2008-07-170589] [Citation(s) in RCA: 612] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 02/08/2009] [Indexed: 12/31/2022] Open
Abstract
Aberrant DNA hypermethylation contributes to myeloid leukemogenesis by silencing structurally normal genes involved in hematopoiesis. MicroRNAs (miRNAs) are noncoding RNAs that regulate gene expression by targeting protein-coding mRNAs. Recently, miRNAs have been shown to play a role as both targets and effectors in gene hypermethylation and silencing in malignant cells. In the current study, we showed that enforced expression of miR-29b in acute myeloid leukemia cells resulted in marked reduction of the expression of DNA methyltransferases DNMT1, DNMT3A, and DNMT3B at both RNA and protein levels. This in turn led to decrease in global DNA methylation and reexpression of p15(INK4b) and ESR1 via promoter DNA hypomethylation. Although down-regulation of DNMT3A and DNMT3B was the result of a direct interaction of miR-29b with the 3' untranslated regions of these genes, no predicted miR-29b interaction sites were found in the DNMT1 3' untranslated regions. Further experiments revealed that miR-29b down-regulates DNMT1 indirectly by targeting Sp1, a transactivator of the DNMT1 gene. Altogether, these data provide novel functional links between miRNAs and aberrant DNA hypermethylation in acute myeloid leukemia and suggest a potentially therapeutic use of synthetic miR-29b oligonucleotides as effective hypomethylating compounds.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
612 |
9
|
Garzon R, Fabbri M, Cimmino A, Calin GA, Croce CM. MicroRNA expression and function in cancer. Trends Mol Med 2006; 12:580-7. [PMID: 17071139 DOI: 10.1016/j.molmed.2006.10.006] [Citation(s) in RCA: 582] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 09/29/2006] [Accepted: 10/17/2006] [Indexed: 12/19/2022]
Abstract
MicroRNAs are small non-coding RNAs of 19-24 nucleotides in length that downregulate gene expression during various crucial cell processes such as apoptosis, differentiation and development. Recent work supports a role for miRNAs in the initiation and progression of human malignancies. Large high-throughput studies in patients revealed that miRNA profiling have the potential to classify tumors with high accuracy and predict outcome. Functional studies, some of which involve animal models, indicate that miRNAs act as tumor suppressors and oncogenes. Here, we summarize miRNA-profiling studies in human malignancies and examine the role of miRNAs in the pathogenesis of cancer. We also discuss the implications of these findings for the diagnosis and treatment of cancer.
Collapse
|
Review |
19 |
582 |
10
|
Calin GA, Liu CG, Ferracin M, Hyslop T, Spizzo R, Sevignani C, Fabbri M, Cimmino A, Lee EJ, Wojcik SE, Shimizu M, Tili E, Rossi S, Taccioli C, Pichiorri F, Liu X, Zupo S, Herlea V, Gramantieri L, Lanza G, Alder H, Rassenti L, Volinia S, Schmittgen TD, Kipps TJ, Negrini M, Croce CM. Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell 2007; 12:215-29. [PMID: 17785203 DOI: 10.1016/j.ccr.2007.07.027] [Citation(s) in RCA: 557] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 04/01/2007] [Accepted: 07/27/2007] [Indexed: 12/13/2022]
Abstract
Noncoding RNA (ncRNA) transcripts are thought to be involved in human tumorigenesis. We report that a large fraction of genomic ultraconserved regions (UCRs) encode a particular set of ncRNAs whose expression is altered in human cancers. Genome-wide profiling revealed that UCRs have distinct signatures in human leukemias and carcinomas. UCRs are frequently located at fragile sites and genomic regions involved in cancers. We identified certain UCRs whose expression may be regulated by microRNAs abnormally expressed in human chronic lymphocytic leukemia, and we proved that the inhibition of an overexpressed UCR induces apoptosis in colon cancer cells. Our findings argue that ncRNAs and interaction between noncoding genes are involved in tumorigenesis to a greater extent than previously thought.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
557 |
11
|
Garzon R, Volinia S, Liu CG, Fernandez-Cymering C, Palumbo T, Pichiorri F, Fabbri M, Coombes K, Alder H, Nakamura T, Flomenberg N, Marcucci G, Calin GA, Kornblau SM, Kantarjian H, Bloomfield CD, Andreeff M, Croce CM. MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood 2008; 111:3183-3189. [PMID: 18187662 PMCID: PMC2265455 DOI: 10.1182/blood-2007-07-098749] [Citation(s) in RCA: 488] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 12/30/2007] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) are small RNAs of 19 to 25 nucleotides that are negative regulators of gene expression. To determine whether miRNAs are associated with cytogenetic abnormalities and clinical features in acute myeloid leukemia (AML), we evaluated the miRNA expression of CD34(+) cells and 122 untreated adult AML cases using a microarray platform. After background subtraction and normalization using a set of housekeeping genes, data were analyzed using Significance Analysis of Microarrays. An independent set of 60 untreated AML patients was used to validate the outcome signatures using real-time polymerase chain reaction. We identified several miRNAs differentially expressed between CD34(+) normal cells and the AML samples. miRNA expression was also closely associated with selected cytogenetic and molecular abnormalities, such as t(11q23), isolated trisomy 8, and FLT3-ITD mutations. Furthermore, patients with high expression of miR-191 and miR-199a had significantly worse overall and event-free survival than AML patients with low expression (overall survival: miR-191, P = .03; and miR-199a, P = .001, Cox regression). In conclusion, miRNA expression in AML is closely associated with cytogenetics and FLT3-ITD mutations. A small subset of miRNAs is correlated with survival.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Antigens, CD34/metabolism
- Blood Cell Count
- Cell Lineage
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 8/genetics
- Cytogenetics
- Down-Regulation
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Karyotyping
- Leukemia, Erythroblastic, Acute/diagnosis
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/pathology
- Leukemia, Erythroblastic, Acute/therapy
- Male
- MicroRNAs/genetics
- Middle Aged
- Mutation/genetics
- Prognosis
- Stem Cells/cytology
- Stem Cells/metabolism
- Treatment Outcome
- Trisomy/genetics
Collapse
|
Research Support, N.I.H., Extramural |
17 |
488 |
12
|
Garzon R, Heaphy CEA, Havelange V, Fabbri M, Volinia S, Tsao T, Zanesi N, Kornblau SM, Marcucci G, Calin GA, Andreeff M, Croce CM. MicroRNA 29b functions in acute myeloid leukemia. Blood 2009; 114:5331-5341. [PMID: 19850741 PMCID: PMC2796138 DOI: 10.1182/blood-2009-03-211938] [Citation(s) in RCA: 363] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 09/28/2009] [Indexed: 01/02/2023] Open
Abstract
MicroRNAs (miRNAs) are associated with cytogenetics and molecular subtypes of acute myelogeneous leukemia (AML), but their impact on AML pathogenesis is poorly understood. We have previously shown that miR-29b expression is deregulated in primary AML blasts. In this work, we investigated the functional role of miR-29b in leukemogenesis. Restoration of miR-29b in AML cell lines and primary samples induces apoptosis and dramatically reduces tumorigenicity in a xenograft leukemia model. Transcriptome analysis after ectopic transfection of synthetic miR-29b into leukemia cells indicates that miR-29b target apoptosis, cell cycle, and proliferation pathways. A significant enrichment for apoptosis genes, including MCL-1, was found among the mRNAs inversely correlated with miR-29b expression in 45 primary AML samples. Together, the data support a tumor suppressor role for miR-29 and provide a rationale for the use of synthetic miR-29b oligonucleotides as a novel strategy to improve treatment response in AML.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
363 |
13
|
Challagundla KB, Wise PM, Neviani P, Chava H, Murtadha M, Xu T, Kennedy R, Ivan C, Zhang X, Vannini I, Fanini F, Amadori D, Calin GA, Hadjidaniel M, Shimada H, Jong A, Seeger RC, Asgharzadeh S, Goldkorn A, Fabbri M. Exosome-mediated transfer of microRNAs within the tumor microenvironment and neuroblastoma resistance to chemotherapy. J Natl Cancer Inst 2015; 107:djv135. [PMID: 25972604 DOI: 10.1093/jnci/djv135] [Citation(s) in RCA: 286] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND How exosomic microRNAs (miRNAs) contribute to the development of drug resistance in the context of the tumor microenvironment has not been previously described in neuroblastoma (NBL). METHODS Coculture experiments were performed to assess exosomic transfer of miR-21 from NBL cells to human monocytes and miR-155 from human monocytes to NBL cells. Luciferase reporter assays were performed to assess miR-155 targeting of TERF1 in NBL cells. Tumor growth was measured in NBL xenografts treated with Cisplatin and peritumoral exosomic miR-155 (n = 6 mice per group) CD163, miR-155, and TERF1 levels were assessed in 20 NBL primary tissues by Human Exon Arrays and quantitative real-time polymerase chain reaction. Student's t test was used to evaluate the differences between treatment groups. All statistical tests were two-sided. RESULTS miR-21 mean fold change (f.c.) was 12.08±0.30 (P < .001) in human monocytes treated with NBL derived exosomes for 48 hours, and miR-155 mean f.c. was 4.51±0.25 (P < .001) in NBL cells cocultured with human monocytes for 48 hours. TERF1 mean luciferase activity in miR-155 transfected NBL cells normalized to scrambled was 0.36 ± 0.05 (P <.001). Mean tumor volumes in Dotap-miR-155 compared with Dotap-scrambled were 322.80±120mm(3) and 76.00±39.3mm(3), P = .002 at day 24, respectively. Patients with high CD163 infiltrating NBLs had statistically significantly higher intratumoral levels of miR-155 (P = .04) and lower levels of TERF1 mRNA (P = .02). CONCLUSIONS These data indicate a unique role of exosomic miR-21 and miR-155 in the cross-talk between NBL cells and human monocytes in the resistance to chemotherapy, through a novel exosomic miR-21/TLR8-NF-кB/exosomic miR-155/TERF1 signaling pathway.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
286 |
14
|
Volinia S, Galasso M, Costinean S, Tagliavini L, Gamberoni G, Drusco A, Marchesini J, Mascellani N, Sana ME, Abu Jarour R, Desponts C, Teitell M, Baffa R, Aqeilan R, Iorio MV, Taccioli C, Garzon R, Di Leva G, Fabbri M, Catozzi M, Previati M, Ambs S, Palumbo T, Garofalo M, Veronese A, Bottoni A, Gasparini P, Harris CC, Visone R, Pekarsky Y, de la Chapelle A, Bloomston M, Dillhoff M, Rassenti LZ, Kipps TJ, Huebner K, Pichiorri F, Lenze D, Cairo S, Buendia MA, Pineau P, Dejean A, Zanesi N, Rossi S, Calin GA, Liu CG, Palatini J, Negrini M, Vecchione A, Rosenberg A, Croce CM. Reprogramming of miRNA networks in cancer and leukemia. Genome Res 2010; 20:589-99. [PMID: 20439436 DOI: 10.1101/gr.098046.109] [Citation(s) in RCA: 278] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We studied miRNA profiles in 4419 human samples (3312 neoplastic, 1107 nonmalignant), corresponding to 50 normal tissues and 51 cancer types. The complexity of our database enabled us to perform a detailed analysis of microRNA (miRNA) activities. We inferred genetic networks from miRNA expression in normal tissues and cancer. We also built, for the first time, specialized miRNA networks for solid tumors and leukemias. Nonmalignant tissues and cancer networks displayed a change in hubs, the most connected miRNAs. hsa-miR-103/106 were downgraded in cancer, whereas hsa-miR-30 became most prominent. Cancer networks appeared as built from disjointed subnetworks, as opposed to normal tissues. A comparison of these nets allowed us to identify key miRNA cliques in cancer. We also investigated miRNA copy number alterations in 744 cancer samples, at a resolution of 150 kb. Members of miRNA families should be similarly deleted or amplified, since they repress the same cellular targets and are thus expected to have similar impacts on oncogenesis. We correctly identified hsa-miR-17/92 family as amplified and the hsa-miR-143/145 cluster as deleted. Other miRNAs, such as hsa-miR-30 and hsa-miR-204, were found to be physically altered at the DNA copy number level as well. By combining differential expression, genetic networks, and DNA copy number alterations, we confirmed, or discovered, miRNAs with comprehensive roles in cancer. Finally, we experimentally validated the miRNA network with acute lymphocytic leukemia originated in Mir155 transgenic mice. Most of miRNAs deregulated in these transgenic mice were located close to hsa-miR-155 in the cancer network.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
278 |
15
|
Valeri N, Gasparini P, Fabbri M, Braconi C, Veronese A, Lovat F, Adair B, Vannini I, Fanini F, Bottoni A, Costinean S, Sandhu SK, Nuovo GJ, Alder H, Gafa R, Calore F, Ferracin M, Lanza G, Volinia S, Negrini M, McIlhatton MA, Amadori D, Fishel R, Croce CM. Modulation of mismatch repair and genomic stability by miR-155. Proc Natl Acad Sci U S A 2010; 107:6982-6987. [PMID: 20351277 PMCID: PMC2872463 DOI: 10.1073/pnas.1002472107] [Citation(s) in RCA: 259] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Inactivation of mismatch repair (MMR) is the cause of the common cancer predisposition disorder Lynch syndrome (LS), also known as hereditary nonpolyposis colorectal cancer (HNPCC), as well as 10-40% of sporadic colorectal, endometrial, ovarian, gastric, and urothelial cancers. Elevated mutation rates (mutator phenotype), including simple repeat instability [microsatellite instability (MSI)] are a signature of MMR defects. MicroRNAs (miRs) have been implicated in the control of critical cellular pathways involved in development and cancer. Here we show that overexpression of miR-155 significantly down-regulates the core MMR proteins, hMSH2, hMSH6, and hMLH1, inducing a mutator phenotype and MSI. An inverse correlation between the expression of miR-155 and the expression of MLH1 or MSH2 proteins was found in human colorectal cancer. Finally, a number of MSI tumors with unknown cause of MMR inactivation displayed miR-155 overexpression. These data provide support for miR-155 modulation of MMR as a mechanism of cancer pathogenesis.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
259 |
16
|
Neviani P, Wise PM, Murtadha M, Liu CW, Wu CH, Jong AY, Seeger RC, Fabbri M. Natural Killer-Derived Exosomal miR-186 Inhibits Neuroblastoma Growth and Immune Escape Mechanisms. Cancer Res 2018; 79:1151-1164. [PMID: 30541743 DOI: 10.1158/0008-5472.can-18-0779] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 10/24/2018] [Accepted: 12/06/2018] [Indexed: 12/18/2022]
Abstract
In neuroblastoma, the interplay between immune cells of the tumor microenvironment and cancer cells contributes to immune escape mechanisms and drug resistance. In this study, we show that natural killer (NK) cell-derived exosomes carrying the tumor suppressor microRNA (miR)-186 exhibit cytotoxicity against MYCN-amplified neuroblastoma cell lines. The cytotoxic potential of these exosomes was partly dependent upon expression of miR-186. miR-186 was downregulated in high-risk neuroblastoma patients, and its low expression represented a poor prognostic factor that directly correlated with NK activation markers (i.e., NKG2D and DNAM-1). Expression of MYCN, AURKA, TGFBR1, and TGFBR2 was directly inhibited by miR-186. Targeted delivery of miR-186 to MYCN-amplified neuroblastoma or NK cells resulted in inhibition of neuroblastoma tumorigenic potential and prevented the TGFβ1-dependent inhibition of NK cells. Altogether, these data support the investigation of a miR-186-containing nanoparticle formulation to prevent tumor growth and TGFβ1-dependent immune escape in high-risk neuroblastoma patients as well as the inclusion of ex vivo-derived NK exosomes as a potential therapeutic option alongside NK cell-based immunotherapy.Significance: These findings highlight the therapeutic potential of NK cell-derived exosomes containing the tumor suppressor miR-186 that inhibits growth, spreading, and TGFβ-dependent immune escape mechanisms in neuroblastoma.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
247 |
17
|
Valeri N, Braconi C, Gasparini P, Murgia C, Lampis A, Paulus-Hock V, Hart JR, Ueno L, Grivennikov SI, Lovat F, Paone A, Cascione L, Sumani KM, Veronese A, Fabbri M, Carasi S, Alder H, Lanza G, Gafa' R, Moyer MP, Ridgway RA, Cordero J, Nuovo GJ, Frankel WL, Rugge M, Fassan M, Groden J, Vogt PK, Karin M, Sansom OJ, Croce CM. MicroRNA-135b promotes cancer progression by acting as a downstream effector of oncogenic pathways in colon cancer. Cancer Cell 2014; 25:469-483. [PMID: 24735923 PMCID: PMC3995091 DOI: 10.1016/j.ccr.2014.03.006] [Citation(s) in RCA: 243] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/14/2013] [Accepted: 03/06/2014] [Indexed: 02/07/2023]
Abstract
MicroRNA deregulation is frequent in human colorectal cancers (CRCs), but little is known as to whether it represents a bystander event or actually drives tumor progression in vivo. We show that miR-135b overexpression is triggered in mice and humans by APC loss, PTEN/PI3K pathway deregulation, and SRC overexpression and promotes tumor transformation and progression. We show that miR-135b upregulation is common in sporadic and inflammatory bowel disease-associated human CRCs and correlates with tumor stage and poor clinical outcome. Inhibition of miR-135b in CRC mouse models reduces tumor growth by controlling genes involved in proliferation, invasion, and apoptosis. We identify miR-135b as a key downsteam effector of oncogenic pathways and a potential target for CRC treatment.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
243 |
18
|
Cabibbo A, Pagani M, Fabbri M, Rocchi M, Farmery MR, Bulleid NJ, Sitia R. ERO1-L, a human protein that favors disulfide bond formation in the endoplasmic reticulum. J Biol Chem 2000; 275:4827-33. [PMID: 10671517 DOI: 10.1074/jbc.275.7.4827] [Citation(s) in RCA: 240] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxidizing conditions must be maintained in the endoplasmic reticulum (ER) to allow the formation of disulfide bonds in secretory proteins. Here we report the cloning and characterization of a mammalian gene (ERO1-L) that shares extensive homology with the Saccharomyces cerevisiae ERO1 gene, required in yeast for oxidative protein folding. When expressed in mammalian cells, the product of the human ERO1-L gene co-localizes with ER markers and displays Endo-H-sensitive glycans. In isolated microsomes, ERO1-L behaves as a type II integral membrane protein. ERO1-L is able to complement several phenotypic traits of the yeast thermosensitive mutant ero1-1, including temperature and dithiothreitol sensitivity, and intrachain disulfide bond formation in carboxypeptidase Y. ERO1-L is no longer functional when either one of the highly conserved Cys-394 or Cys-397 is mutated. These results strongly suggest that ERO1-L is involved in oxidative ER protein folding in mammalian cells.
Collapse
|
|
25 |
240 |
19
|
Pagani M, Fabbri M, Benedetti C, Fassio A, Pilati S, Bulleid NJ, Cabibbo A, Sitia R. Endoplasmic reticulum oxidoreductin 1-lbeta (ERO1-Lbeta), a human gene induced in the course of the unfolded protein response. J Biol Chem 2000; 275:23685-92. [PMID: 10818100 DOI: 10.1074/jbc.m003061200] [Citation(s) in RCA: 221] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Oxidative conditions must be generated in the endoplasmic reticulum (ER) to allow disulfide bond formation in secretory proteins. A family of conserved genes, termed ERO for ER oxidoreductins, plays a key role in this process. We have previously described the human gene ERO1-L, which complements several phenotypic traits of the yeast thermo-sensitive mutant ero1-1 (Cabibbo, A., Pagani, M., Fabbri, M., Rocchi, M., Farmery, M. R., Bulleid, N. J., and Sitia, R. (2000) J. Biol. Chem. 275, 4827-4833). Here, we report the cloning and characterization of a novel human member of this family, ERO1-Lbeta. Immunofluorescence, endoglycosidase sensitivity, and in vitro translation/translocation assays reveal that the products of the ERO1-Lbeta gene are primarily localized in the ER of mammalian cells. The ability to allow growth at 37 degrees C and to alleviate the "unfolded protein response" when expressed in ero1-1 cells indicates that ERO1-Lbeta is involved also in generating oxidative conditions in the ER. ERO1-L and ERO1-Lbeta display different tissue distributions. Furthermore, only ERO1-Lbeta transcripts are induced in the course of the unfolded protein response. Our results suggest a complex regulation of ER redox homeostasis in mammalian cells.
Collapse
|
Comparative Study |
25 |
221 |
20
|
Fabbri M, Bottoni A, Shimizu M, Spizzo R, Nicoloso MS, Rossi S, Barbarotto E, Cimmino A, Adair B, Wojcik SE, Valeri N, Calore F, Sampath D, Fanini F, Vannini I, Musuraca G, Dell'Aquila M, Alder H, Davuluri RV, Rassenti LZ, Negrini M, Nakamura T, Amadori D, Kay NE, Rai KR, Keating MJ, Kipps TJ, Calin GA, Croce CM. Association of a microRNA/TP53 feedback circuitry with pathogenesis and outcome of B-cell chronic lymphocytic leukemia. JAMA 2011; 305:59-67. [PMID: 21205967 PMCID: PMC3690301 DOI: 10.1001/jama.2010.1919] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CONTEXT Chromosomal abnormalities (namely 13q, 17p, and 11q deletions) have prognostic implications and are recurrent in chronic lymphocytic leukemia (CLL), suggesting that they are involved in a common pathogenetic pathway; however, the molecular mechanism through which chromosomal abnormalities affect the pathogenesis and outcome of CLL is unknown. OBJECTIVE To determine whether the microRNA miR-15a/miR-16-1 cluster (located at 13q), tumor protein p53 (TP53, located at 17p), and miR-34b/miR-34c cluster (located at 11q) are linked in a molecular pathway that explains the pathogenetic and prognostic implications (indolent vs aggressive form) of recurrent 13q, 17p, and 11q deletions in CLL. DESIGN, SETTING, AND PATIENTS CLL Research Consortium institutions provided blood samples from untreated patients (n = 206) diagnosed with B-cell CLL between January 2000 and April 2008. All samples were evaluated for the occurrence of cytogenetic abnormalities as well as the expression levels of the miR-15a/miR-16-1 cluster, miR-34b/miR-34c cluster, TP53, and zeta-chain (TCR)-associated protein kinase 70 kDa (ZAP70), a surrogate prognostic marker of CLL. The functional relationship between these genes was studied using in vitro gain- and loss-of-function experiments in cell lines and primary samples and was validated in a separate cohort of primary CLL samples. MAIN OUTCOME MEASURES Cytogenetic abnormalities; expression levels of the miR-15a/miR-16-1 cluster, miR-34 family, TP53 gene, downstream effectors cyclin-dependent kinase inhibitor 1A (p21, Cip1) (CDKN1A) and B-cell CLL/lymphoma 2 binding component 3 (BBC3), and ZAP70 gene; genetic interactions detected by chromatin immunoprecipitation. RESULTS In CLLs with 13q deletions the miR-15a/miR-16-1 cluster directly targeted TP53 (mean luciferase activity for miR-15a vs scrambled control, 0.68 relative light units (RLU) [95% confidence interval {CI}, 0.63-0.73]; P = .02; mean for miR-16 vs scrambled control, 0.62 RLU [95% CI, 0.59-0.65]; P = .02) and its downstream effectors. In leukemic cell lines and primary CLL cells, TP53 stimulated the transcription of miR-15/miR-16-1 as well as miR-34b/miR-34c clusters, and the miR-34b/miR-34c cluster directly targeted the ZAP70 kinase (mean luciferase activity for miR-34a vs scrambled control, 0.33 RLU [95% CI, 0.30-0.36]; P = .02; mean for miR-34b vs scrambled control, 0.31 RLU [95% CI, 0.30-0.32]; P = .01; and mean for miR-34c vs scrambled control, 0.35 RLU [95% CI, 0.33-0.37]; P = .02). CONCLUSIONS A microRNA/TP53 feedback circuitry is associated with CLL pathogenesis and outcome. This mechanism provides a novel pathogenetic model for the association of 13q deletions with the indolent form of CLL that involves microRNAs, TP53, and ZAP70.
Collapse
MESH Headings
- Adult
- Aged
- Chromosome Deletion
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 13/genetics
- Chromosomes, Human, Pair 17/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Genes, p53/genetics
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- MicroRNAs/genetics
- Middle Aged
- Prognosis
- Transcription, Genetic
- Tumor Suppressor Protein p53/physiology
- ZAP-70 Protein-Tyrosine Kinase/physiology
Collapse
|
Research Support, N.I.H., Extramural |
14 |
213 |
21
|
Nishida N, Mimori K, Fabbri M, Yokobori T, Sudo T, Tanaka F, Shibata K, Ishii H, Doki Y, Mori M. MicroRNA-125a-5p is an independent prognostic factor in gastric cancer and inhibits the proliferation of human gastric cancer cells in combination with trastuzumab. Clin Cancer Res 2011; 17:2725-33. [PMID: 21220473 DOI: 10.1158/1078-0432.ccr-10-2132] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE MicroRNA 125a-5p (miR-125a-5p) has been reported to be a tumor suppressor in malignancies of the breast, ovary, lung, and central nervous system. However, the clinical significance of miR-125a-5p in human gastrointestinal cancer has not been explored. We investigated a tumor inhibitory effect of miR-125a-5p in gastric cancer, focusing in particular on the miR-125a-ERBB2 (HER2, HER-2/neu) pathway. EXPERIMENTAL DESIGN Quantitative RT-PCR was used to evaluate miR-125a-5p expression in 87 gastric cancer cases to determine the clinicopathologic significance of miR-125a-5p expression. The regulation of ERBB2 by miR-125a-5p was examined with precursor miR-125a-transfected cells. Furthermore, we investigated whether miR-125a-5p suppresses proliferation of gastric cancer cells in combination with trastuzumab, a monoclonal antibody against ERBB2. RESULTS Low expression levels of miR-125a-5p were associated with enhanced malignant potential such as tumor size (P = 0.0068), tumor invasion (P = 0.031), liver metastasis (P = 0.029), and poor prognosis (P = 0.0069). Multivariate analysis indicated that low miR-125a-5p expression was an independent prognostic factor for survival. In vitro assays showed that ERBB2 is a direct target of miR-125a-5p, which potently suppressed the proliferation of gastric cancer cells, and, interestingly, the growth inhibitory effect was enhanced in combination with trastuzumab. CONCLUSIONS miR-125a-5p is a meaningful prognostic marker. Furthermore, miR-125a-5p mimic alone or in combination with trastuzumab could be a novel therapeutic approach against gastric cancer.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
203 |
22
|
Jong AY, Wu CH, Li J, Sun J, Fabbri M, Wayne AS, Seeger RC. Large-scale isolation and cytotoxicity of extracellular vesicles derived from activated human natural killer cells. J Extracell Vesicles 2017; 6:1294368. [PMID: 28326171 PMCID: PMC5345580 DOI: 10.1080/20013078.2017.1294368] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/29/2016] [Accepted: 12/06/2016] [Indexed: 01/06/2023] Open
Abstract
Extracellular vesicles (EVs) have been the focus of great interest, as they appear to be involved in numerous important cellular processes. They deliver bioactive macromolecules such as proteins, lipids, and nucleic acids, allowing intercellular communication in multicellular organisms. EVs are secreted by all cell types, including immune cells such as natural killer cells (NK), and they may play important roles in the immune system. Currently, a large-scale procedure to obtain functional NK EVs is lacking, limiting their use clinically. In this report, we present a simple, robust, and cost-effective method to isolate a large quantity of NK EVs. After propagating and activating NK cells ex vivo and then incubating them in exosome-free medium for 48 h, EVs were isolated using a polymer precipitation method. The isolated vesicles contain the tetraspanin CD63, an EV marker, and associated proteins (fibronectin), but are devoid of cytochrome C, a cytoplasmic marker. Nanoparticle tracking analysis showed a size distribution between 100 and 200 nm while transmission electron microscopy imaging displayed vesicles with an oval shape and comparable sizes, fulfilling the definition of EV. Importantly, isolated EV fractions were cytotoxic against cancer cells. Furthermore, our results demonstrate for the first time that isolated activated NK (aNK) cell EVs contain the cytotoxic proteins perforin, granulysin, and granzymes A and B, incorporated from the aNK cells. Activation of caspase -3, -7 and -9 was detected in cancer cells incubated with aNK EVs, and caspase inhibitors blocked aNK EV-induced cytotoxicity, suggesting that aNK EVs activate caspase pathways in target cells. The ability to isolate functional aNK EVs on a large scale may lead to new clinical applications. Abbreviations: NK: natural killer cells; activated NK (aNK) cells; EVs: extracellular vesicles; ALL: acute lymphoblastic leukaemia; aAPC: artificial antigen-presenting cell; TEM: transmission electron microscope; PBMC: peripheral blood mononuclear cells; FBS: foetal bovine serum.
Collapse
|
Journal Article |
8 |
181 |
23
|
Almeida MI, Nicoloso MS, Zeng L, Ivan C, Spizzo R, Gafà R, Xiao L, Zhang X, Vannini I, Fanini F, Fabbri M, Lanza G, Reis RM, Zweidler-McKay PA, Calin GA. Strand-specific miR-28-5p and miR-28-3p have distinct effects in colorectal cancer cells. Gastroenterology 2012; 142:886-896.e9. [PMID: 22240480 PMCID: PMC3321100 DOI: 10.1053/j.gastro.2011.12.047] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 12/21/2011] [Accepted: 12/27/2011] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS MicroRNAs (miRNAs) can promote or inhibit tumor growth and are therefore being developed as targets for cancer therapies. They are diverse not only in the messenger RNAs (mRNA) they target, but in their production; the same hairpin RNA structure can generate mature products from each strand, termed 5p and 3p, that can bind different mRNAs. We analyzed the expression, functions, and mechanisms of miR-28-5p and miR-28-3p in colorectal cancer (CRC) cells. METHODS We measured levels of miR-28-5p and miR-28-3p expression in 108 CRC and 49 normal colorectal samples (47 paired) by reverse transcription, quantitative real-time polymerase chain reaction. The roles of miR-28 in CRC development were studied using cultured HCT116, RKO, and SW480 cells and tumor xenograft analyses in immunodeficient mice; their mRNA targets were also investigated. RESULTS miR-28-5p and miR-28-3p were down-regulated in CRC samples compared with normal colon samples. Overexpression of miRNAs in CRC cells had different effects and the miRNAs interacted with different mRNAs: miR-28-5p altered expression of CCND1 and HOXB3, whereas miR-28-3p bound NM23-H1. Overexpression of miR-28-5p reduced CRC cell proliferation, migration, and invasion in vitro, whereas miR-28-3p increased CRC cell migration and invasion in vitro. CRC cells overexpressing miR-28 developed tumors more slowly in mice compared with control cells, but miR-28 promoted tumor metastasis in mice. CONCLUSION miR-28-5p and miR-28-3p are transcribed from the same RNA hairpin and are down-regulated in CRC cells. Overexpression of each has different effects on CRC cell proliferation and migration. Such information has a direct application for the design of miRNA gene therapy trials.
Collapse
|
research-article |
13 |
161 |
24
|
Fabbri M, Calin GA. Epigenetics and miRNAs in Human Cancer. EPIGENETICS AND CANCER, PART A 2010; 70:87-99. [DOI: 10.1016/b978-0-12-380866-0.60004-6] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
|
15 |
141 |
25
|
Wen C, Seeger RC, Fabbri M, Wang L, Wayne AS, Jong AY. Biological roles and potential applications of immune cell-derived extracellular vesicles. J Extracell Vesicles 2017; 6:1400370. [PMID: 29209467 PMCID: PMC5706476 DOI: 10.1080/20013078.2017.1400370] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/22/2017] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) deliver bioactive macromolecules (i.e. proteins, lipids and nucleic acids) for intercellular communication in multicellular organisms. EVs are secreted by all cell types including immune cells. Immune cell-derived EVs modulate diverse aspects of the immune system to either enhance or suppress immune activities. The extensive effects of immune cell-derived EVs have become the focus of great interest for various nano-biomedical applications, ranging from the medical use of nanoplatform-based diagnostic agents to the development of therapeutic interventions as well as vaccine applications, and thus may be ideal for ‘immune-theranostic’. Here, we review the latest advances concerning the biological roles of immune cell-derived EVs in innate and acquired immunity. The intercellular communication amongst immune cells through their EVs is highlighted, showing that all immune cell-derived EVs have their unique function(s) in immunity through intricate interaction(s). Natural-killer (NK) cell-derived EVs, for example, contain potent cytotoxic proteins and induce apoptosis to targeted cancer cells. On the other hand, cancer cell-derived EVs bearing NK ligands may evade immune surveillance and responses. Finally, we discuss possible medical uses for the immune cell-derived EVs as a tool for immune-theranostic: as diagnostic biomarkers, for use in therapeutic interventions and for vaccination.
Collapse
|
Review |
8 |
135 |