1
|
Zhao J, Zhang J, Yu M, Xie Y, Huang Y, Wolff DW, Abel PW, Tu Y. Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene 2012; 32:4814-24. [PMID: 23128392 PMCID: PMC3911914 DOI: 10.1038/onc.2012.494] [Citation(s) in RCA: 581] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 08/15/2012] [Accepted: 09/13/2012] [Indexed: 01/08/2023]
Abstract
Mitochondria are highly dynamic and undergo constant fusion and fission that are essential for maintaining physiological functions of cells. Although dysfunction of mitochondria has been implicated in tumorigenesis, little is known about the roles of mitochondrial dynamics in metastasis, the major cause of cancer death. In the present study, we found a marked upregulation of mitochondrial fission protein dynamin-related protein 1 (Drp1) expression in human invasive breast carcinoma and metastases to lymph nodes. Compared to non-metastatic breast cancer cells, mitochondria also were more fragmented in metastatic breast cancer cells that express higher levels of total and active Drp1 and less mitochondrial fusion protein 1 (Mfn1). Silencing Drp1 or overexpression of Mfn1 resulted in mitochondria elongation or clusters, respectively, and significantly suppressed metastatic abilities of breast cancer cells. In contrast, silencing Mfn proteins led to mitochondrial fragmentation and enhanced metastatic abilities of breast cancer cells. Interestingly, these manipulations of mitochondrial dynamics altered the subcellular distribution of mitochondria in breast cancer cells. For example, silencing Drp1 or overexpression of Mfn1 inhibited lamellipodia formation, a key step for cancer metastasis, and suppressed chemoattractant-induced recruitment of mitochondria to lamellipodial regions. Conversely, silencing Mfn proteins resulted in more cell spreading and lamellipodia formation, causing accumulation of more mitochondria in lamollipodia regions. More importantly, treatment with a mitochondrial uncoupling agent or ATP synthesis inhibitor reduced lamellipodia formation and decreased breast cancer cell migration and invasion, suggesting a functional importance of mitochondria in breast cancer metastasis. Together, our findings show a new role and mechanism for regulation of cancer cell migration and invasion by mitochondrial dynamics. Thus targeting dysregulated Drp1-dependent mitochondrial fission may provide a novel strategy for suppressing breast cancer metastasis.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
581 |
2
|
Zhang J, Wang X, Jia X, Li J, Hu K, Chen G, Wei J, Gong Z, Zhou C, Yu H, Yu M, Lei H, Cheng F, Zhang B, Xu Y, Wang G, Dong W. Risk factors for disease severity, unimprovement, and mortality in COVID-19 patients in Wuhan, China. Clin Microbiol Infect 2020; 26:767-772. [PMID: 32304745 PMCID: PMC7159868 DOI: 10.1016/j.cmi.2020.04.012] [Citation(s) in RCA: 404] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/07/2020] [Accepted: 04/12/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVE In December 2019, coronavirus disease (COVID-19) emerged in Wuhan. However, the characteristics and risk factors associated with disease severity, unimprovement and mortality are unclear and our objective is to throw some light on these. METHODS All consecutive patients diagnosed with COVID-19 admitted to the Renmin Hospital of Wuhan University from January 11 to February 6, 2020, were enrolled in this retrospective cohort study. RESULTS A total of 663 COVID-19 patients were included in this study. Among these, 247 (37.3%) had at least one kind of chronic disease; 0.5% of the patients (n = 3) were diagnosed with mild COVID-19, while 37.8% (251/663), 47.5% (315/663), and 14.2% (94/663) were in moderate, severe, and critical conditions, respectively. In our hospital, during follow-up 251 of 663 patients (37.9%) improved and 25 patients died, a mortality rate of 3.77%. Older patients (>60 years old) and those with chronic diseases were prone to have a severe to critical COVID-19 condition, to show unimprovement, and to die (p <0.001, <0.001). Multivariate logistic regression analysis identified being male (OR = 0.486, 95%CI 0.311-0.758; p 0.001), having a severe COVID-19 condition (OR = 0.129, 95%CI 0.082-0.201; p <0.001), expectoration (OR = 1.796, 95%CI 1.062-3.036; p 0.029), muscle ache (OR = 0.309, 95%CI 0.153-0.626; p 0.001), and decreased albumin (OR = 1.929, 95%CI 1.199-3.104; p 0.007) as being associated with unimprovement in COVID-19 patients. CONCLUSION Male sex, a severe COVID-19 condition, expectoration, muscle ache, and decreased albumin were independent risk factors which influence the improvement of COVID-19 patients.
Collapse
|
research-article |
5 |
404 |
3
|
Lau HT, Yu M, Fontana A, Stoeckert CJ. Prevention of islet allograft rejection with engineered myoblasts expressing FasL in mice. Science 1996; 273:109-12. [PMID: 8658177 DOI: 10.1126/science.273.5271.109] [Citation(s) in RCA: 330] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Allogeneic transplantation of islets of Langerhans was facilitated by the cotransplantation of syngeneic myoblasts genetically engineered to express the Fas ligand (FasL). Composite grafting of allogeneic islets with syngeneic myoblasts expressing FasL protected the islet graft from immune rejection and maintained normoglycemia for more than 80 days in mice with streptozotocin-induced diabetes. Graft survival was not prolonged with composite grafts of unmodified myoblasts or Fas-expressing myoblasts. Islet allografts transplanted separately from FasL-expressing myoblasts into the contralateral kidney were rejected, as were similarly transplanted third-party thyroid allografts. Thus, the FasL signal provided site- and immune-specific protection of islet allografts.
Collapse
|
|
29 |
330 |
4
|
Yu M, Ives D, Ramesha CS. Synthesis of prostaglandin E2 ethanolamide from anandamide by cyclooxygenase-2. J Biol Chem 1997; 272:21181-6. [PMID: 9261124 DOI: 10.1074/jbc.272.34.21181] [Citation(s) in RCA: 315] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Because of its structural similarity to polyunsaturated fatty acids, anandamide could serve as substrate for enzymes such as lipoxygenases and cyclooxygenases, which metabolize polyunsaturated fatty acids to potent bioactive metabolites. Here the ability of recombinant human cyclooxygenase-1 (hCOX-1) and cyclooxygenase-2 (hCOX-2) to metabolize anandamide was studied. Baculovirus-expressed and -purified hCOX-2, but not hCOX-1, effectively oxygenated anandamide. Reverse phase high pressure liquid chromatography analysis of the products derived from 1-14C-labeled anandamide showed that the products formed are similar to those formed with arachidonic acid as substrate. The major prostanoid product derived from anandamide was determined by mass spectrometry to be prostaglandin E2 ethanolamide. Incubation of anandamide with lysates and the intact cell line expressing COX-2 but not that of COX-1 produced prostaglandin E2 ethanolamide. These results demonstrate the existence of a COX-2-mediated pathway for anandamide metabolism, and the metabolites formed represent a novel class of prostaglandins.
Collapse
|
|
28 |
315 |
5
|
Ma D, Zerangue N, Lin YF, Collins A, Yu M, Jan YN, Jan LY. Role of ER export signals in controlling surface potassium channel numbers. Science 2001; 291:316-9. [PMID: 11209084 DOI: 10.1126/science.291.5502.316] [Citation(s) in RCA: 308] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Little is known about the identity of endoplasmic reticulum (ER) export signals and how they are used to regulate the number of proteins on the cell surface. Here, we describe two ER export signals that profoundly altered the steady-state distribution of potassium channels and were required for channel localization to the plasma membrane. When transferred to other potassium channels or a G protein-coupled receptor, these ER export signals increased the number of functional proteins on the cell surface. Thus, ER export of membrane proteins is not necessarily limited by folding or assembly, but may be under the control of specific export signals.
Collapse
|
|
24 |
308 |
6
|
Yu M, Levy MM, Smith P, Takiguchi SA, Miyasaki A, Myers SA. Effect of maximizing oxygen delivery on morbidity and mortality rates in critically ill patients: a prospective, randomized, controlled study. Crit Care Med 1993; 21:830-8. [PMID: 8504649 DOI: 10.1097/00003246-199306000-00009] [Citation(s) in RCA: 286] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE To determine the effects of optimizing oxygen delivery (DO2) to "supranormal" levels on morbidity and mortality in patients with sepsis, septic shock, and adult respiratory distress syndrome. DESIGN A prospective, randomized, controlled trial. SETTING A 16-bed surgical intensive care unit (ICU) and 14-bed mixed medical/surgical ICU in two separate hospitals in the University of Hawaii Surgical and Internal Medicine Residency programs. PATIENTS During a 1-yr period, 67 patients who had pulmonary artery catheters and who met the criteria for sepsis or septic shock, adult respiratory distress syndrome, or hypovolemic shock were enrolled in the study. Patients admitted to the ICU who were < 18 yrs old, or with a do-not-resuscitate order, or those patients who faced imminent death (< 24 hrs), such as those patients with uncontrollable hemorrhage or brain death, were excluded from the study. INTERVENTIONS Patients were randomized into treatment and control groups. The treatment group was assigned a therapeutic DO2 indexed (DO2I) goal of > 600 mL/min/m2. Interventions to attain this goal included fluid boluses, administration of blood products, and the use of inotropes. The control group was not assigned to a specific therapeutic goal other than "normal" values of DO2I of 450 to 550 mL/min/m2. Every attempt was made to reach the therapeutic goals within the first 24 hrs after entry into the study. Hemodynamic measurements were obtained on study patients every 4 hrs until the end of the study. The severity of illness was evaluated using the Therapeutic Intervention Scoring System, and the Acute Physiology and Chronic Health Evaluation II scoring system. MEASUREMENTS AND MAIN RESULTS There were 32 patients in the control group and 35 patients in the treatment group. The groups were similar in age, sex, number of organ dysfunctions, Acute Physiology and Chronic Health Evaluation II and Therapeutic Intervention scores. There were no statistical differences between the two groups in mortality, development of organ failure, ICU days, and hospital days. Upon analysis, it became apparent that the patients comprised clinically distinct subgroups, including: a) a treatment group who achieved supranormal DO2I; b) a control group with normal DO2I; c) a treatment group who failed to reach target DO2I; d) a control group who self-generated to high DO2I values; and e) a small number of patients who could not even reach a normal DO2I of 450 mL/min/m2. These subgroups were found to be similar and matched. The mortality rate was significantly lower for patients in groups who reached supranormal values of DO2I whether treated or self-generated as compared with patients who reached normal DO2I values (14% vs. 56%, p = .01). CONCLUSIONS Although there was no statistically significant difference in the control vs. treatment groups, subgroup analysis demonstrated a strong, significant difference between patients with supranormal values of oxygen transport vs. patients with normal levels of DO2. Supranormal values of DO2I, whether self-generated or as a result of treatment, resulted in a statistically significant decrease in mortality rate. This study adds to the weight of evidence that current standard of care of treating critically ill patients to normal DO2I should be reconsidered, and that maximizing to high DO2I might be a more appropriate therapeutic end-point.
Collapse
|
Clinical Trial |
32 |
286 |
7
|
Ryder JW, Portocarrero CP, Song XM, Cui L, Yu M, Combatsiaris T, Galuska D, Bauman DE, Barbano DM, Charron MJ, Zierath JR, Houseknecht KL. Isomer-specific antidiabetic properties of conjugated linoleic acid. Improved glucose tolerance, skeletal muscle insulin action, and UCP-2 gene expression. Diabetes 2001; 50:1149-57. [PMID: 11334420 DOI: 10.2337/diabetes.50.5.1149] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Conjugated linoleic acid (CLA) isomers have a number of beneficial health effects, as shown in biomedical studies with animal models. Previously, we reported that a mixture of CLA isomers improved glucose tolerance in ZDF rats and activated peroxisome proliferator-activated receptor (PPAR)-gamma response elements in vitro. Here, our aim was to elucidate the effect(s) of specific CLA isomers on whole-body glucose tolerance, insulin action in skeletal muscle, and expression of genes important in glucose and lipid metabolism. ZDF rats were fed either a control diet (CON), one of two CLA supplemented diets (1.5% CLA) containing differing isoforms of CLA (47% c9,t11; 47.9% c10,t12, 50:50; or 91% c9,t11, c9,t11 isomers), or were pair-fed CON diet to match the intake of 50:50. The 50:50 diet reduced adiposity and improved glucose tolerance compared with all other ZDF treatments. Insulin-stimulated glucose transport and glycogen synthase activity in skeletal muscle were improved with 50:50 compared with all other treatments. Neither phosphatidlyinositol 3-kinase activity nor Akt activity in muscle was affected by treatment. Uncoupling protein 2 in muscle and adipose tissue was upregulated by c9,t11 and 50:50 compared with ZDF controls. PPAR-gamma mRNA was downregulated in liver of c9,t11 and pair-fed ZDF rats. Thus, the improved glucose tolerance in 50:50 rats is attributable to, at least in part, improved insulin action in muscle, and CLA effects cannot be explained simply by reduced food intake.
Collapse
|
|
24 |
240 |
8
|
Varnum-Finney B, Wu L, Yu M, Brashem-Stein C, Staats S, Flowers D, Griffin JD, Bernstein ID. Immobilization of Notch ligand, Delta-1, is required for induction of notch signaling. J Cell Sci 2000; 113 Pt 23:4313-8. [PMID: 11069775 DOI: 10.1242/jcs.113.23.4313] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell-cell interactions mediated by Notch and its ligands are known to effect many cell fate decisions in both invertebrates and vertebrates. However, the mechanisms involved in ligand induced Notch activation are unknown. Recently it was shown that, in at least some cases, endocytosis of the extracellular domain of Notch and ligand by the signaling cell is required for signal induction in the receptive cell. These results imply that soluble ligands (ligand extracellular domains) although capable of binding Notch would be unlikely to activate it. To test the potential activity of soluble Notch ligands, we generated monomeric and dimeric forms of the Notch ligand Delta-1 by fusing the extracellular domain to either a series of myc epitopes (Delta-1(ext-myc)) or to the Fc portion of human IgG-1 (Delta-1(ext-IgG)), respectively. Notch activation, assayed by inhibition of differentiation in C2 myoblasts and by HES1 transactivation in U20S cells, occurred when either Delta-1(ext-myc) or Delta-1(ext-IgG) were first immobilized on the plastic surface. However, Notch was not activated by either monomeric or dimeric ligand in solution (non-immobilized). Furthermore, both non-immobilized Delta-1(ext-myc) and Delta-1(ext-IgG) blocked the effect of immobilized Delta. These results indicate that Delta-1 extracellular domain must be immobilized to induce Notch activation in C2 or U20S cells and that non-immobilized Delta-1 extracellular domain is inhibitory to Notch function. These results imply that ligand stabilization may be essential for Notch activation.
Collapse
|
|
25 |
218 |
9
|
Yu M, Johnson JM, Tuohy VK. A predictable sequential determinant spreading cascade invariably accompanies progression of experimental autoimmune encephalomyelitis: a basis for peptide-specific therapy after onset of clinical disease. J Exp Med 1996; 183:1777-88. [PMID: 8666934 PMCID: PMC2192533 DOI: 10.1084/jem.183.4.1777] [Citation(s) in RCA: 215] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The development of autoimmune disease is accompanied by the acquired recognition of new self-determinants, a process commonly referred to as determinant spreading. In this study, we addressed the question of whether determinant spreading is pathogenic for progression of chronic-relapsing experimental autoimmune encephalomyelitis (EAE), a disease with many similarities to multiple sclerosis (MS). Our approach involved a systematic epitope mapping of responses to myelin proteolipid protein (PLP) as well as assaying responses to known encephalitogenic determinants of myelin basic protein (MBP 87-89) and myelin oligodendrocyte glycoprotein (MOG 92-106) at various times after induction of EAE in (SWR X SJL)F1 mice immunized with PLP 139-151. We found that the order in which new determinants are recognized during the course of disease follows a predictable sequential pattern. At monthly intervals after immunization with p139-151, responses to PLP 249-273, MBP 87-99, and PLP 137-198 were sequentially accumulated in al mice examined. Three lines of evidence showed that determinant spreading is pathogenic for disease progression: (a) spreading determinants mediate passive transfer of acute EAE in naive (SWR X SJL)F1 recipients; (b) an invariant relationship exists between the development of relapse/progression and the spreading of recognition to new immunodominant encephalitogenic determinants; and (c) after EAE onset, the induction of peptide-specific tolerance to spreading but not to nonspreading encephalitogenic determinants prevents subsequent progression of EAE. Thus, the predictability of acquired self-determinant recognition provides a basis for sequential determinant-specific therapeutic intervention after onset of the autoimmune disease process.
Collapse
|
research-article |
29 |
215 |
10
|
Wang L, Harcourt BH, Yu M, Tamin A, Rota PA, Bellini WJ, Eaton BT. Molecular biology of Hendra and Nipah viruses. Microbes Infect 2001; 3:279-87. [PMID: 11334745 DOI: 10.1016/s1286-4579(01)01381-8] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The structure and genetic organization of Hendra and Nipah viruses places them in the subfamily Paramyxovirinae. However, low homology with other subfamily members and several novel biological and molecular features such as genome length and F(0 )cleavage site suggest classification in a new genus within the Paramyxovirinae.
Collapse
|
Review |
24 |
209 |
11
|
Wang LF, Yu M, Hansson E, Pritchard LI, Shiell B, Michalski WP, Eaton BT. The exceptionally large genome of Hendra virus: support for creation of a new genus within the family Paramyxoviridae. J Virol 2000; 74:9972-9. [PMID: 11024125 PMCID: PMC102035 DOI: 10.1128/jvi.74.21.9972-9979.2000] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An outbreak of acute respiratory disease in Hendra, a suburb of Brisbane, Australia, in September 1994 resulted in the deaths of 14 racing horses and a horse trainer. The causative agent was a new member of the family Paramyxoviridae. The virus was originally called Equine morbillivirus but was renamed Hendra virus (HeV) when molecular characterization highlighted differences between it and members of the genus Morbillivirus. Less than 5 years later, the closely related Nipah virus (NiV) emerged in Malaysia, spread rapidly through the pig population, and caused the deaths of over 100 people. We report the characterization of the HeV L gene and protein, the genome termini, and gene boundary sequences, thus completing the HeV genome sequence. In the highly conserved region of the L protein, the HeV sequence GDNE differs from the GDNQ found in almost all other nonsegmented negative-strand (NNS) RNA viruses. HeV has an absolutely conserved intergenic trinucleotide sequence, 3'-GAA-5', and highly conserved transcription initiation and termination sequences similar to those of respiroviruses and morbilliviruses. The large genome size (18,234 nucleotides), the unique complementary genome terminal sequences of HeV, and the limited homology with other members of the Paramyxoviridae suggest that HeV, together with NiV, should be classified in a new genus in this family. The large genome of HeV also fills a gap in the spectrum of genome sizes observed with NNS RNA virus genomes. As such, it provides a further piece in the puzzle of NNS RNA virus evolution.
Collapse
|
research-article |
25 |
185 |
12
|
Jiang J, Yu M, Zhu C. Effect of long-term mild hypothermia therapy in patients with severe traumatic brain injury: 1-year follow-up review of 87 cases. J Neurosurg 2000; 93:546-9. [PMID: 11014530 DOI: 10.3171/jns.2000.93.4.0546] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECT The goal of this study was to investigate the protective effects of long-term (3-14 days) mild hypothermia therapy (33-35 degrees C) on outcome in 87 patients with severe traumatic brain injury (TBI) (Glasgow Coma Scale score < or = 8). METHODS In 43 patients assigned to a mild hypothermia group, body temperatures were cooled to 33 to 35 degrees C a mean of 15 hours after injury and kept at 33 to 35 degrees C for 3 to 14 days. Rewarming commenced when the individual patient's intracranial pressure (ICP) returned to the normal level. Body temperatures in 44 patients assigned to a normothermia group were maintained at 37 to 38 degrees C. Each patient's outcome was evaluated 1 year later by using the Glasgow Outcome Scale. One year after TBI, the mortality rate was 25.58% (11 of 43 patients) and the rate of favorable outcome (good recovery or moderate disability) was 46.51% (20 of 43 patients) in the mild hypothermia group. In the normothermia group, the mortality rate was 45.45% (20 of 44 patients) and the rate of favorable outcome was 27.27% (12 of 44 patients) (p < 0.05). Induced mild hypothermia also markedly reduced ICP (p < 0.01) and inhibited hyperglycemia (p < 0.05). The rates of complication were not significantly different between the two groups. CONCLUSIONS The data produced by this study demonstrate that long-term mild hypothermia therapy significantly improves outcomes in patients with severe TBI.
Collapse
|
|
25 |
182 |
13
|
Rudick RA, Ransohoff RM, Lee JC, Peppler R, Yu M, Mathisen PM, Tuohy VK. In vivo effects of interferon beta-1a on immunosuppressive cytokines in multiple sclerosis. Neurology 1998; 50:1294-300. [PMID: 9595977 DOI: 10.1212/wnl.50.5.1294] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Recombinant interferon beta (IFNbeta) benefits patients with relapsing remitting multiple sclerosis (MS), but the mechanisms of action are unknown. We studied in vivo immunologic effects of IFNbeta treatment and their relationship to clinical efficacy. Cytokines were measured in blood and CSF from MS patients participating in a placebo-controlled phase III clinical trial and an open-label phase IV [corrected] tolerability study of IFNbeta-1a. Additionally, immunologic studies were conducted in animals with proteolipid protein (PLP)-induced chronic relapsing experimental autoimmune encephalomyelitis. Single intramuscular (IM) injections of IFNbeta-1a (6 MIU, 30 microg) were associated with significant in vivo upregulation of interleukin-10 (IL-10) and IL-4 but not IFNgamma mRNA in peripheral blood mononuclear cells. Forty-eight hours after each IFNbeta-1a injection, serum IL-10 levels increased and remained elevated for 1 week. IFNbeta-1a recipients in the placebo-controlled phase III clinical trial showed significantly increased concentrations of CSF IL-10 after 2 years of treatment. This response correlated with a favorable therapeutic response. Exposure of PLP-reactive murine T-cell lines to IFNbeta resulted in increased antigen-driven expression of IL-4 and IL-10 and reduced encephalitogenicity. IFNbeta-1a injections induce systemic and intrathecal immunosuppressive cytokines. Myelin-specific T cells treated with IFNbeta-1a demonstrate increased immunosuppressive cytokine expression and reduced encephalitogenicity. The relationship between increased CSF IL-10 and response to therapy suggests that induction of IL-10 is a mechanism underlying IFNbeta-1a effects in MS patients.
Collapse
|
Clinical Trial |
27 |
174 |
14
|
Guo L, Chen C, Shi M, Wang F, Chen X, Diao D, Hu M, Yu M, Qian L, Guo N. Stat3-coordinated Lin-28-let-7-HMGA2 and miR-200-ZEB1 circuits initiate and maintain oncostatin M-driven epithelial-mesenchymal transition. Oncogene 2013; 32:5272-82. [PMID: 23318420 DOI: 10.1038/onc.2012.573] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 09/27/2012] [Accepted: 10/16/2012] [Indexed: 01/02/2023]
Abstract
Inflammation can act as a crucial mediator of epithelial-to-mesenchymal transition (EMT). In this study, we show that oncostatin M (OSM) is expressed in an autocrine/paracrine fashion in invasive breast carcinoma. OSM stimulation promotes spontaneous lung metastasis of MCF-7 xenografts in nude mice. A conspicuous epigenetic transition was induced by OSM stimulation not only in breast cancer cell lines but also in MCF-7 xenografts in nude mice. The expression of miR-200 and let-7 family members in response to OSM stimulation was downregulated in a signal transducer and activator of transcription factor 3 (Stat3)-dependent manner, resulting in comprehensive alterations of the transcription factors and oncoproteins targeted by these microRNAs. Inhibition of Stat3 activation or the ectopic expression of let-7 and miR-200 effectively reversed the mesenchymal phenotype of breast cancer cells. Stat3 promotes the transcription of Lin-28 by directly binding to the Lin-28 promoter, resulting in the repression of let-7 expression and concomitant upregulation of the let-7 target, high-mobility group A protein 2 (HMGA2). Knock down of HMGA2 significantly impairs OSM-driven EMT. Our data indicate that downregulation of let-7 and miR-200 levels initiates and maintains OSM-induced EMT phenotypes, and HMGA2 acts as a master switch of OSM-induced EMT. These findings highlight the importance of Stat3-coordinated Lin-28B-let-7-HMGA2 and miR-200-ZEB1 circuits in the cytokine-mediated phenotypic reprogramming of breast cancer cells.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
172 |
15
|
Yu M, Ojwang J, Yamada O, Hampel A, Rapapport J, Looney D, Wong-Staal F. A hairpin ribozyme inhibits expression of diverse strains of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A 1993; 90:6340-4. [PMID: 8327516 PMCID: PMC46924 DOI: 10.1073/pnas.90.13.6340] [Citation(s) in RCA: 172] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Ribozymes have enormous potential as antiviral agents. We have previously reported that a hairpin ribozyme expressed under the control of the beta-actin promoter that cleaves human immunodeficiency virus type 1 (HIV-1) RNA in the leader sequence can inhibit HIV-1 (pHXB2gpt) expression. For such a ribozyme in a retroviral vector delivery system to be useful in gene therapy for the treatment of HIV-1 infection, it must be able to inhibit the expression of multiple HIV-1 strains. We have now cloned this ribozyme into various regular expression vectors (including retroviral vectors) by using various gene expression control strategies. Here we show by transient transfection that inhibition of expression of diverse strains of HIV-1 can be achieved by this ribozyme expressed in the proper vectors. These data further support the potential of this hairpin ribozyme as a therapeutic agent for HIV-1.
Collapse
|
research-article |
32 |
172 |
16
|
Wang X, Lang M, Zhao T, Feng X, Zheng C, Huang C, Hao J, Dong J, Luo L, Li X, Lan C, Yu W, Yu M, Yang S, Ren H. Cancer-FOXP3 directly activated CCL5 to recruit FOXP3 +Treg cells in pancreatic ductal adenocarcinoma. Oncogene 2017; 36:3048-3058. [PMID: 27991933 PMCID: PMC5454319 DOI: 10.1038/onc.2016.458] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/18/2016] [Accepted: 10/31/2016] [Indexed: 12/15/2022]
Abstract
Forkheadbox protein 3 (FOXP3), initially identified as a key transcription factor for regulatory T cells (Treg cells), was also expressed in many tumors including pancreatic ductal adenocarcinoma (PDAC). However, its role in PDAC progression remains elusive. In this study, we utilized 120 PDAC tissues after radical resection to detect cancer-FOXP3 and Treg cells by immunohistochemistry and evaluated clinical and pathological features of these patients. Cancer-FOXP3 was positively correlated with Treg cells accumulation in tumor tissues derived from PDAC patients. In addition, high cancer-FOXP3 expression was associated with increased tumor volumes and poor prognosis in PDAC especially combined with high levels of Treg cells. Overexpression of cancer-FOXP3 promoted the tumor growth in immunocompetent syngeneic mice but not in immunocompromised or Treg cell-depleted mice. Furthermore, CCL5 was directly trans-activated by cancer-FOXP3 and promoted the recruitment of Treg cells from peripheral blood to the tumor site in vitro and in vivo. This finding has been further reinforced by the evidence that Treg cells recruitment by cancer-FOXP3 was impaired by neutralization of CCL5, thereby inhibiting the growth of PDAC. In conclusion, cancer-FOXP3 serves as a prognostic biomarker and a crucial determinant of immunosuppressive microenvironment via recruiting Treg cells by directly trans-activating CCL5. Therefore, cancer-FOXP3 could be used to select patients with better response to CCL5/CCR5 blockade immunotherapy.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Cells, Cultured
- Chemokine CCL5/metabolism
- Chemokine CCL5/pharmacology
- Chemotaxis, Leukocyte/drug effects
- Chemotaxis, Leukocyte/genetics
- Female
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/physiology
- Humans
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/genetics
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Nude
- Mice, SCID
- Middle Aged
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Tumor Microenvironment/genetics
Collapse
|
research-article |
8 |
168 |
17
|
Prasad K, Laxdal VA, Yu M, Raney BL. Antioxidant activity of allicin, an active principle in garlic. Mol Cell Biochem 1995; 148:183-9. [PMID: 8594422 DOI: 10.1007/bf00928155] [Citation(s) in RCA: 148] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Garlic has been claimed to be effective against diseases, in the pathophysiology of which oxygen free radicals (OFRs) have been implicated. Effectiveness of garlic could be due to its ability to scavenge OFRs. However, its antioxidant activity is not known. We investigated the ability of allicin (active ingredient of garlic) contained in the commercial preparation Garlicin to scavenge hydroxyl radicals (.OH) using high pressure liquid chromatographic (HPLC) method. .OH was generated by photolysis of H2O2 (1.25-10 mumoles/ml) with ultraviolet light and was trapped with salicylic acid which is hydroxylated to produce .OH adduct products 2,3- and 2,5-dihydroxybenzoic acid (DHBA). H2O2 produced a concentration-dependent .OH as estimated by .OH adduct products 2,3-DHBA and 2,5-DHBA. Allicin equivalent in Garlicin (1.8, 3.6, 7.2, 14.4, 21.6, 28.8 and 36 micrograms) produced concentration-dependent decreases in the formation of 2,3-DHBA and 2,5-DHBA. The inhibition of formation of 2,3-DHBA and 2,5-DHBA with 1.8 micrograms/ml was 32.36% and 43.2% respectively while with 36.0 micrograms/ml the inhibition was approximately 94.0% and 90.0% respectively. The decrease in .OH adduct products was due to scavenging of .OH and not by scavenging of formed .OH adduct products. Allicin prevented the lipid peroxidation of liver homogenate in a concentration-dependent manner. These results suggest that allicin scavenges .OH and Garlicin has antioxidant activity.
Collapse
|
|
30 |
148 |
18
|
Chibalin AV, Yu M, Ryder JW, Song XM, Galuska D, Krook A, Wallberg-Henriksson H, Zierath JR. Exercise-induced changes in expression and activity of proteins involved in insulin signal transduction in skeletal muscle: differential effects on insulin-receptor substrates 1 and 2. Proc Natl Acad Sci U S A 2000; 97:38-43. [PMID: 10618367 PMCID: PMC26612 DOI: 10.1073/pnas.97.1.38] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Level of physical activity is linked to improved glucose homeostasis. We determined whether exercise alters the expression and/or activity of proteins involved in insulin-signal transduction in skeletal muscle. Wistar rats swam 6 h per day for 1 or 5 days. Epitrochlearis muscles were excised 16 h after the last exercise bout, and were incubated with or without insulin (120 nM). Insulin-stimulated glucose transport increased 30% and 50% after 1 and 5 days of exercise, respectively. Glycogen content increased 2- and 4-fold after 1 and 5 days of exercise, with no change in glycogen synthase expression. Protein expression of the glucose transporter GLUT4 and the insulin receptor increased 2-fold after 1 day, with no further change after 5 days of exercise. Insulin-stimulated receptor tyrosine phosphorylation increased 2-fold after 5 days of exercise. Insulin-stimulated tyrosine phosphorylation of insulin-receptor substrate (IRS) 1 and associated phosphatidylinositol (PI) 3-kinase activity increased 2.5- and 3. 5-fold after 1 and 5 days of exercise, despite reduced (50%) IRS-1 protein content after 5 days of exercise. After 1 day of exercise, IRS-2 protein expression increased 2.6-fold and basal and insulin-stimulated IRS-2 associated PI 3-kinase activity increased 2. 8-fold and 9-fold, respectively. In contrast to IRS-1, IRS-2 expression and associated PI 3-kinase activity normalized to sedentary levels after 5 days of exercise. Insulin-stimulated Akt phosphorylation increased 5-fold after 5 days of exercise. In conclusion, increased insulin-stimulated glucose transport after exercise is not limited to increased GLUT4 expression. Exercise leads to increased expression and function of several proteins involved in insulin-signal transduction. Furthermore, the differential response of IRS-1 and IRS-2 to exercise suggests that these molecules have specialized, rather than redundant, roles in insulin signaling in skeletal muscle.
Collapse
|
research-article |
25 |
145 |
19
|
Abstract
We have previously used antibodies to the NG2 proteoglycan and the alpha receptor for platelet-derived growth factor (PDGF alpha receptor) to identify oligodendroglial progenitor cells in vivo and in vitro. It has recently become evident that the GD3 antigen, which has been widely used as a marker for oligodendrocyte progenitor cells, is also expressed by microglial cells. In this study we have examined the relationship between the NG2+/PDGF alpha receptor+ glial progenitor cells and microglial cells in normal developing and mature rat brain and in inflammatory lesions in mice with experimental autoimmune encephalomyelitis (EAE). Double-labeling of sections from normal rat brain using anti-NG2 antibodies and lectin from Griffonia simplicifolia (GSA I-B4) or monoclonal antibody 4H1 indicated that there is no overlap between NG2+ glial progenitor cells and microglia in the parenchyma of the central nervous system. In EAE lesions, both NG2+ cells and microglia, identified by antibodies to F4/80 and CD45, displayed reactive changes characterized by increased cell number and staining intensity and shortening and thickening of cell processes. Both cell types were found surrounding perivascular infiltrates of lymphocytes. Double-labeling EAE sections for NG2 and F4/80 or CD45 failed to reveal cells that co-expressed both antigens, suggesting that reactive NG2+ cells are distinct from activated microglia. However, a close spatial relationship between NG2+ cells and microglia was observed in the normal brain and to a greater extent in EAE, where processes of an activated microglial cell were sometimes seen to encircle an NG2+ cell. These observations are indicative of a functional interaction between microglia and the NG2+ glial cells.
Collapse
|
|
28 |
144 |
20
|
Mathisen PM, Yu M, Johnson JM, Drazba JA, Tuohy VK. Treatment of experimental autoimmune encephalomyelitis with genetically modified memory T cells. J Exp Med 1997; 186:159-64. [PMID: 9207010 PMCID: PMC2198970 DOI: 10.1084/jem.186.1.159] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/1997] [Revised: 05/06/1997] [Indexed: 02/04/2023] Open
Abstract
The migratory properties of memory T cells provide a model vector system for site-specific delivery of therapeutic transgene factors to autoimmune inflammatory lesions. Lymph node cells from (SWRxSJL)F1 mice immunized with the p139-151 determinant of myelin proteolipid protein (PLP) were transfected with a DNA construct that placed the anti-inflammatory cytokine interleukin-10 (IL-10) cDNA under control of an antigen-inducible IL-2 promoter region. Isolated T cell clones demonstrated antigen-inducible expression of transgene IL-10 and expressed cell surface markers consistent with the phenotype of normal memory T cells. Upon adoptive transfer, transfected T cell clones were able to inhibit onset of experimental autoimmune encephalomyelitis (EAE) and to treat EAE animals therapeutically after onset of neurologic signs. Semiquantitative immunocytochemistry showed a significant correlation between decreased demyelination and treatment with the transfected T cells. Taken together, these data indicate the autoreactive T cells can be genetically designed to produce therapeutic factors in an antigen-inducible manner resulting in a decreased severity of clinical and histological autoimmune demyelinating disease.
Collapse
|
research-article |
28 |
142 |
21
|
Tuohy VK, Yu M, Yin L, Kawczak JA, Johnson JM, Mathisen PM, Weinstock-Guttman B, Kinkel RP. The epitope spreading cascade during progression of experimental autoimmune encephalomyelitis and multiple sclerosis. Immunol Rev 1998; 164:93-100. [PMID: 9795767 DOI: 10.1111/j.1600-065x.1998.tb01211.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have made the following observations regarding self-recognition during the development and progression of murine experimental autoimmune encephalomyelitis (EAE) and human multiple sclerosis (MS): 1) chronic progression of EAE is accompanied by a sequential, predictable cascade of neo-autoreactivity, commonly referred to as epitope spreading, presumably caused by endogenous self-priming during autoimmune-mediated tissue damage; 2) there is an invariant relationship between the progression of EAE and the emergence of epitope spreading; 3) progression of EAE can be inhibited by the induction of antigen-specific tolerance to spreading determinants after onset of initial neurologic symptoms; 4) CD4+ Th 1 cells responding to spreading determinants are autonomously encephalitogenic; 5) epitope spreading occurs during the development of MS and in some cases involves HLA-DP class II-restricted self-recognition; and 6) progression of both EAE and MS is accompanied by the decline of primary T-cell autoreactivity associated with disease onset and by the concurrent emergence of the epitope spreading cascade. Our studies directly challenge the traditional view that EAE and MS are initiated and maintained by autoreactivity directed against a single predominant myelin protein or determinant. Our results indicate that progression of EAE and MS involves a shifting of T-cell autoreactivity from primary initiating self-determinants to defined cascades of secondary determinants that sustain the inflammatory self-recognition process during disease progression.
Collapse
|
Review |
27 |
136 |
22
|
Yu M, Nishiyama A, Trapp BD, Tuohy VK. Interferon-beta inhibits progression of relapsing-remitting experimental autoimmune encephalomyelitis. J Neuroimmunol 1996; 64:91-100. [PMID: 8598395 DOI: 10.1016/0165-5728(95)00160-3] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The results of two phase III clinical trials have recently shown that interferon-beta (IFNbeta) is effective in the treatment of relapsing-remitting multiple sclerosis (RRMS). Treatment with IFNbeta results in a significant decrease in the rate of clinical relapse and a marked delay in progression to disability compared to placebo-treated control patients. In the present study, we demonstrate similar therapeutic effects after treating (SWR X SJL)F1 mice with IFNbeta at the onset of clinical signs of experimental autoimmune encephalomyelitis (EAE), a disease animal model widely used in MS studies. EAE was actively induced by immunization of (SWR X SJL)F1 mice with the immunodominant encephalitogenic peptide 139-151 of myelin proteolipid protein (PLP). In blinded testing, mice treated with IFNbeta at EAE onset showed a delay in progression to clinical disability as determined by marked improvement with time in mean clinical score, significant delay in onset of relapse, and significant decrease in exacerbation frequency compared to placebo-treated control mice. The therapeutic effect of IFNbeta was accompanied by a significant inhibition of delayed-type hypersensitivity (DTH) but not proliferation in response to the priming PLP 139-151. In addition, IFNbeta treatment resulted in an overall decrease in severity of both inflammation and demyelination in the central nervous system. These results mimic in an autoimmune animal model the effectiveness of IFNbeta treatment observed in MS. Moreover, our study suggests that anti-viral properties of IFNbeta are not essential for producing therapeutic effects in autoimmune demyelinating disease, and that the efficacy of IFNbeta in the treatment of MS may be due to inhibition of autoreactivity.
Collapse
|
|
29 |
127 |
23
|
Tuohy VK, Yu M, Weinstock-Guttman B, Kinkel RP. Diversity and plasticity of self recognition during the development of multiple sclerosis. J Clin Invest 1997; 99:1682-90. [PMID: 9120012 PMCID: PMC507988 DOI: 10.1172/jci119331] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Recent studies using murine animal model systems indicate that clinical progression of autoimmune disease may be due to the sequential accumulation of neoautoreactivity characterized by extensive plasticity of self recognition. In the present study, we addressed the question of whether a similar paradigm of self recognition is implicated in the development of multiple sclerosis (MS), a demyelinating disease with a presumed autoimmune etiology. Our approach was to determine serial changes over a 12-18-mo period in response to an epitope-mapping series of 265 12-mer peptides of myelin proteolipid protein (PLP) by patients with isolated monosymptomatic demyelinating syndromes (IMDS), a group of distinct clinical disorders with variable rates of progression to MS. Our data showed that an extensive array of proteolipid protein peptides could elicit autoreactivity. Moreover, differential autoreactive patterns were evident within IMDS patient subpopulations. Monocentric monophasic IMDS patients with no evidence of prior subclinical disease typically showed fully sustained autoreactivity characterized by extensive plasticity, epitope focusing, shifting, and spreading of responses to new self determinants. In contrast, multicentric monophasic IMDS patients with putative evidence of prior asymptomatic lesion formation typically showed partially sustained autoreactivity characterized by abrupt abrogation of responses to an extensive array of self determinants. No sustained autoreactivity was observed in normal control subjects or in patients with other neurologic diseases. Our results indicate that self recognition associated with the development of MS is a developmental process characterized by autoreactive diversity, plasticity, and instability.
Collapse
|
research-article |
28 |
126 |
24
|
Peng X, Gong F, Chen Y, Jiang Y, Liu J, Yu M, Zhang S, Wang M, Xiao G, Liao H. Autophagy promotes paclitaxel resistance of cervical cancer cells: involvement of Warburg effect activated hypoxia-induced factor 1-α-mediated signaling. Cell Death Dis 2014; 5:e1367. [PMID: 25118927 PMCID: PMC4454295 DOI: 10.1038/cddis.2014.297] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 05/06/2014] [Accepted: 05/27/2014] [Indexed: 02/05/2023]
Abstract
Paclitaxel is one of the most effective chemotherapy drugs for advanced cervical cancer. However, acquired resistance of paclitaxel represents a major barrier to successful anticancer treatment. In this study, paclitaxel-resistant HeLa sublines (HeLa-R cell lines) were established by continuous exposure and increased autophagy level was observed in HeLa-R cells. 3-Methyladenine or ATG7 siRNA, autophagy inhibitors, could restore sensitivity of HeLa-R cells to paclitaxel compared with parental HeLa cells. To determine the underlying molecular mechanism, differentially expressed proteins between HeLa and HeLa-R cells were identified by two-dimensional gel electrophoresis coupled with electrospray ionization quadrupole time-of-flight MS/MS. We found glycolysis-associated proteins were upregulated in HeLa-R cell lines. Inhibition of glycolysis by 2-deoxy-D-glucose or koningic acid could decrease autophagy and enhance sensitivity of HeLa-R cells to paclitaxel. Moreover, glycolysis could activate HIF1-α. Downregulation of HIF1-α by specific siRNA could decrease autophagy and resensitize HeLa-R cells to paclitaxel. Taken together, a possible Warburg effect activated HIF1-α-mediated signaling-induced autophagic pathway is proposed, which may provide new insight into paclitaxel chemoresistance.
Collapse
|
research-article |
11 |
123 |
25
|
Porter JA, Yu M, Doberstein SK, Pollard TD, Montell C. Dependence of calmodulin localization in the retina on the NINAC unconventional myosin. Science 1993; 262:1038-42. [PMID: 8235618 DOI: 10.1126/science.8235618] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Calmodulin is a highly conserved regulatory protein found in all eukaryotic organisms which mediates a variety of calcium ion-dependent signalling pathways. In the Drosophila retina, calmodulin was concentrated in the photoreceptor cell microvillar structure, the rhabdomere, and was found in lower amounts in the sub-rhabdomeral cytoplasm. This calmodulin localization was dependent on the NINAC (neither inactivation nor afterpotential C) unconventional myosins. Mutant flies lacking the rhabdomere-specific p174 NINAC protein did not concentrate calmodulin in the rhabdomere, whereas flies lacking the sub-rhabdomeral p132 isoform had no detectable cytoplasmic calmodulin. Furthermore, a defect in vision resulted when calmodulin was not concentrated in the rhabdomeres, suggesting a role for calmodulin in the regulation of fly phototransduction. A general function of unconventional myosins may be to control the subcellular distribution of calmodulin.
Collapse
|
|
32 |
122 |