1
|
Denny JC, Bastarache L, Ritchie MD, Carroll RJ, Zink R, Mosley JD, Field JR, Pulley JM, Ramirez AH, Bowton E, Basford MA, Carrell DS, Peissig PL, Kho AN, Pacheco JA, Rasmussen LV, Crosslin DR, Crane PK, Pathak J, Bielinski SJ, Pendergrass SA, Xu H, Hindorff LA, Li R, Manolio TA, Chute CG, Chisholm RL, Larson EB, Jarvik GP, Brilliant MH, McCarty CA, Kullo IJ, Haines JL, Crawford DC, Masys DR, Roden DM. Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data. Nat Biotechnol 2014; 31:1102-10. [PMID: 24270849 DOI: 10.1038/nbt.2749] [Citation(s) in RCA: 721] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/21/2013] [Indexed: 02/06/2023]
Abstract
Candidate gene and genome-wide association studies (GWAS) have identified genetic variants that modulate risk for human disease; many of these associations require further study to replicate the results. Here we report the first large-scale application of the phenome-wide association study (PheWAS) paradigm within electronic medical records (EMRs), an unbiased approach to replication and discovery that interrogates relationships between targeted genotypes and multiple phenotypes. We scanned for associations between 3,144 single-nucleotide polymorphisms (previously implicated by GWAS as mediators of human traits) and 1,358 EMR-derived phenotypes in 13,835 individuals of European ancestry. This PheWAS replicated 66% (51/77) of sufficiently powered prior GWAS associations and revealed 63 potentially pleiotropic associations with P < 4.6 × 10⁻⁶ (false discovery rate < 0.1); the strongest of these novel associations were replicated in an independent cohort (n = 7,406). These findings validate PheWAS as a tool to allow unbiased interrogation across multiple phenotypes in EMR-based cohorts and to enhance analysis of the genomic basis of human disease.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
721 |
2
|
Gottesman O, Kuivaniemi H, Tromp G, Faucett WA, Li R, Manolio TA, Sanderson SC, Kannry J, Zinberg R, Basford MA, Brilliant M, Carey DJ, Chisholm RL, Chute CG, Connolly JJ, Crosslin D, Denny JC, Gallego CJ, Haines JL, Hakonarson H, Harley J, Jarvik GP, Kohane I, Kullo IJ, Larson EB, McCarty C, Ritchie MD, Roden DM, Smith ME, Böttinger EP, Williams MS. The Electronic Medical Records and Genomics (eMERGE) Network: past, present, and future. Genet Med 2013; 15:761-71. [PMID: 23743551 PMCID: PMC3795928 DOI: 10.1038/gim.2013.72] [Citation(s) in RCA: 534] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/18/2013] [Indexed: 12/13/2022] Open
Abstract
The Electronic Medical Records and Genomics Network is a National Human Genome Research Institute–funded consortium engaged in the development of methods and best practices for using the electronic medical record as a tool for genomic research. Now in its sixth year and second funding cycle, and comprising nine research groups and a coordinating center, the network has played a major role in validating the concept that clinical data derived from electronic medical records can be used successfully for genomic research. Current work is advancing knowledge in multiple disciplines at the intersection of genomics and health-care informatics, particularly for electronic phenotyping, genome-wide association studies, genomic medicine implementation, and the ethical and regulatory issues associated with genomics research and returning results to study participants. Here, we describe the evolution, accomplishments, opportunities, and challenges of the network from its inception as a five-group consortium focused on genotype–phenotype associations for genomic discovery to its current form as a nine-group consortium pivoting toward the implementation of genomic medicine. Genet Med15 10, 761–771.
Collapse
|
Review |
12 |
534 |
3
|
Marouli E, Graff M, Medina-Gomez C, Lo KS, Wood AR, Kjaer TR, Fine RS, Lu Y, Schurmann C, Highland HM, Rüeger S, Thorleifsson G, Justice AE, Lamparter D, Stirrups KE, Turcot V, Young KL, Winkler TW, Esko T, Karaderi T, Locke AE, Masca NGD, Ng MCY, Mudgal P, Rivas MA, Vedantam S, Mahajan A, Guo X, Abecasis G, Aben KK, Adair LS, Alam DS, Albrecht E, Allin KH, Allison M, Amouyel P, Appel EV, Arveiler D, Asselbergs FW, Auer PL, Balkau B, Banas B, Bang LE, Benn M, Bergmann S, Bielak LF, Blüher M, Boeing H, Boerwinkle E, Böger CA, Bonnycastle LL, Bork-Jensen J, Bots ML, Bottinger EP, Bowden DW, Brandslund I, Breen G, Brilliant MH, Broer L, Burt AA, Butterworth AS, Carey DJ, Caulfield MJ, Chambers JC, Chasman DI, Chen YDI, Chowdhury R, Christensen C, Chu AY, Cocca M, Collins FS, Cook JP, Corley J, Galbany JC, Cox AJ, Cuellar-Partida G, Danesh J, Davies G, de Bakker PIW, de Borst GJ, de Denus S, de Groot MCH, de Mutsert R, Deary IJ, Dedoussis G, Demerath EW, den Hollander AI, Dennis JG, Di Angelantonio E, Drenos F, Du M, Dunning AM, Easton DF, Ebeling T, Edwards TL, Ellinor PT, Elliott P, Evangelou E, Farmaki AE, Faul JD, et alMarouli E, Graff M, Medina-Gomez C, Lo KS, Wood AR, Kjaer TR, Fine RS, Lu Y, Schurmann C, Highland HM, Rüeger S, Thorleifsson G, Justice AE, Lamparter D, Stirrups KE, Turcot V, Young KL, Winkler TW, Esko T, Karaderi T, Locke AE, Masca NGD, Ng MCY, Mudgal P, Rivas MA, Vedantam S, Mahajan A, Guo X, Abecasis G, Aben KK, Adair LS, Alam DS, Albrecht E, Allin KH, Allison M, Amouyel P, Appel EV, Arveiler D, Asselbergs FW, Auer PL, Balkau B, Banas B, Bang LE, Benn M, Bergmann S, Bielak LF, Blüher M, Boeing H, Boerwinkle E, Böger CA, Bonnycastle LL, Bork-Jensen J, Bots ML, Bottinger EP, Bowden DW, Brandslund I, Breen G, Brilliant MH, Broer L, Burt AA, Butterworth AS, Carey DJ, Caulfield MJ, Chambers JC, Chasman DI, Chen YDI, Chowdhury R, Christensen C, Chu AY, Cocca M, Collins FS, Cook JP, Corley J, Galbany JC, Cox AJ, Cuellar-Partida G, Danesh J, Davies G, de Bakker PIW, de Borst GJ, de Denus S, de Groot MCH, de Mutsert R, Deary IJ, Dedoussis G, Demerath EW, den Hollander AI, Dennis JG, Di Angelantonio E, Drenos F, Du M, Dunning AM, Easton DF, Ebeling T, Edwards TL, Ellinor PT, Elliott P, Evangelou E, Farmaki AE, Faul JD, Feitosa MF, Feng S, Ferrannini E, Ferrario MM, Ferrieres J, Florez JC, Ford I, Fornage M, Franks PW, Frikke-Schmidt R, Galesloot TE, Gan W, Gandin I, Gasparini P, Giedraitis V, Giri A, Girotto G, Gordon SD, Gordon-Larsen P, Gorski M, Grarup N, Grove ML, Gudnason V, Gustafsson S, Hansen T, Harris KM, Harris TB, Hattersley AT, Hayward C, He L, Heid IM, Heikkilä K, Helgeland Ø, Hernesniemi J, Hewitt AW, Hocking LJ, Hollensted M, Holmen OL, Hovingh GK, Howson JMM, Hoyng CB, Huang PL, Hveem K, Ikram MA, Ingelsson E, Jackson AU, Jansson JH, Jarvik GP, Jensen GB, Jhun MA, Jia Y, Jiang X, Johansson S, Jørgensen ME, Jørgensen T, Jousilahti P, Jukema JW, Kahali B, Kahn RS, Kähönen M, Kamstrup PR, Kanoni S, Kaprio J, Karaleftheri M, Kardia SLR, Karpe F, Kee F, Keeman R, Kiemeney LA, Kitajima H, Kluivers KB, Kocher T, Komulainen P, Kontto J, Kooner JS, Kooperberg C, Kovacs P, Kriebel J, Kuivaniemi H, Küry S, Kuusisto J, La Bianca M, Laakso M, Lakka TA, Lange EM, Lange LA, Langefeld CD, Langenberg C, Larson EB, Lee IT, Lehtimäki T, Lewis CE, Li H, Li J, Li-Gao R, Lin H, Lin LA, Lin X, Lind L, Lindström J, Linneberg A, Liu Y, Liu Y, Lophatananon A, Luan J, Lubitz SA, Lyytikäinen LP, Mackey DA, Madden PAF, Manning AK, Männistö S, Marenne G, Marten J, Martin NG, Mazul AL, Meidtner K, Metspalu A, Mitchell P, Mohlke KL, Mook-Kanamori DO, Morgan A, Morris AD, Morris AP, Müller-Nurasyid M, Munroe PB, Nalls MA, Nauck M, Nelson CP, Neville M, Nielsen SF, Nikus K, Njølstad PR, Nordestgaard BG, Ntalla I, O'Connel JR, Oksa H, Loohuis LMO, Ophoff RA, Owen KR, Packard CJ, Padmanabhan S, Palmer CNA, Pasterkamp G, Patel AP, Pattie A, Pedersen O, Peissig PL, Peloso GM, Pennell CE, Perola M, Perry JA, Perry JRB, Person TN, Pirie A, Polasek O, Posthuma D, Raitakari OT, Rasheed A, Rauramaa R, Reilly DF, Reiner AP, Renström F, Ridker PM, Rioux JD, Robertson N, Robino A, Rolandsson O, Rudan I, Ruth KS, Saleheen D, Salomaa V, Samani NJ, Sandow K, Sapkota Y, Sattar N, Schmidt MK, Schreiner PJ, Schulze MB, Scott RA, Segura-Lepe MP, Shah S, Sim X, Sivapalaratnam S, Small KS, Smith AV, Smith JA, Southam L, Spector TD, Speliotes EK, Starr JM, Steinthorsdottir V, Stringham HM, Stumvoll M, Surendran P, 't Hart LM, Tansey KE, Tardif JC, Taylor KD, Teumer A, Thompson DJ, Thorsteinsdottir U, Thuesen BH, Tönjes A, Tromp G, Trompet S, Tsafantakis E, Tuomilehto J, Tybjaerg-Hansen A, Tyrer JP, Uher R, Uitterlinden AG, Ulivi S, van der Laan SW, Van Der Leij AR, van Duijn CM, van Schoor NM, van Setten J, Varbo A, Varga TV, Varma R, Edwards DRV, Vermeulen SH, Vestergaard H, Vitart V, Vogt TF, Vozzi D, Walker M, Wang F, Wang CA, Wang S, Wang Y, Wareham NJ, Warren HR, Wessel J, Willems SM, Wilson JG, Witte DR, Woods MO, Wu Y, Yaghootkar H, Yao J, Yao P, Yerges-Armstrong LM, Young R, Zeggini E, Zhan X, Zhang W, Zhao JH, Zhao W, Zhao W, Zheng H, Zhou W, Rotter JI, Boehnke M, Kathiresan S, McCarthy MI, Willer CJ, Stefansson K, Borecki IB, Liu DJ, North KE, Heard-Costa NL, Pers TH, Lindgren CM, Oxvig C, Kutalik Z, Rivadeneira F, Loos RJF, Frayling TM, Hirschhorn JN, Deloukas P, Lettre G. Rare and low-frequency coding variants alter human adult height. Nature 2017; 542:186-190. [PMID: 28146470 PMCID: PMC5302847 DOI: 10.1038/nature21039] [Show More Authors] [Citation(s) in RCA: 414] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/04/2016] [Indexed: 02/07/2023]
Abstract
Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height-increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
414 |
4
|
Homanics GE, DeLorey TM, Firestone LL, Quinlan JJ, Handforth A, Harrison NL, Krasowski MD, Rick CE, Korpi ER, Mäkelä R, Brilliant MH, Hagiwara N, Ferguson C, Snyder K, Olsen RW. Mice devoid of gamma-aminobutyrate type A receptor beta3 subunit have epilepsy, cleft palate, and hypersensitive behavior. Proc Natl Acad Sci U S A 1997; 94:4143-8. [PMID: 9108119 PMCID: PMC20582 DOI: 10.1073/pnas.94.8.4143] [Citation(s) in RCA: 382] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
gamma-Aminobutyric acid type A receptors (GABA(A)-Rs) mediate the bulk of rapid inhibitory synaptic transmission in the central nervous system. The beta3 subunit is an essential component of the GABA(A)-R in many brain regions, especially during development, and is implicated in several pathophysiologic processes. We examined mice harboring a beta3 gene inactivated by gene targeting. GABA(A)-R density is approximately halved in brain of beta3-deficient mice, and GABA(A)-R function is severely impaired. Most beta3-deficient mice die as neonates; some neonatal mortality, but not all, is accompanied by cleft palate. beta3-deficient mice that survive are runted until weaning but achieve normal body size by adulthood, although with reduced life span. These mice are fertile but mothers fail to nurture offspring. Brain morphology is grossly normal, but a number of behaviors are abnormal, consistent with the widespread location of the beta3 subunit. The mice are very hyperactive and hyperresponsive to human contact and other sensory stimuli, and often run continuously in tight circles. When held by the tail, they hold all paws in like a ball, which is frequently a sign of neurological impairment. They have difficulty swimming, walking on grids, and fall off platforms and rotarods, although they do not have a jerky gait. beta3-deficient mice display frequent myoclonus and occasional epileptic seizures, documented by electroencephalographic recording. Hyperactivity, lack of coordination, and seizures are consistent with reduced presynaptic inhibition in spinal cord and impaired inhibition in higher cortical centers and/or pleiotropic developmental defects.
Collapse
|
research-article |
28 |
382 |
5
|
Manolio TA, Chisholm RL, Ozenberger B, Roden DM, Williams MS, Wilson R, Bick D, Bottinger EP, Brilliant MH, Eng C, Frazer KA, Korf B, Ledbetter DH, Lupski JR, Marsh C, Mrazek D, Murray MF, O'Donnell PH, Rader DJ, Relling MV, Shuldiner AR, Valle D, Weinshilboum R, Green ED, Ginsburg GS. Implementing genomic medicine in the clinic: the future is here. Genet Med 2013; 15:258-67. [PMID: 23306799 PMCID: PMC3835144 DOI: 10.1038/gim.2012.157] [Citation(s) in RCA: 381] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although the potential for genomics to contribute to clinical care has long been anticipated, the pace of defining the risks and benefits of incorporating genomic findings into medical practice has been relatively slow. Several institutions have recently begun genomic medicine programs, encountering many of the same obstacles and developing the same solutions, often independently. Recognizing that successful early experiences can inform subsequent efforts, the National Human Genome Research Institute brought together a number of these groups to describe their ongoing projects and challenges, identify common infrastructure and research needs, and outline an implementation framework for investigating and introducing similar programs elsewhere. Chief among the challenges were limited evidence and consensus on which genomic variants were medically relevant; lack of reimbursement for genomically driven interventions; and burden to patients and clinicians of assaying, reporting, intervening, and following up genomic findings. Key infrastructure needs included an openly accessible knowledge base capturing sequence variants and their phenotypic associations and a framework for defining and cataloging clinically actionable variants. Multiple institutions are actively engaged in using genomic information in clinical care. Much of this work is being done in isolation and would benefit from more structured collaboration and sharing of best practices. Genet Med 2013:15(4):258–267
Collapse
|
Review |
12 |
381 |
6
|
Schmidt AF, Swerdlow DI, Holmes MV, Patel RS, Fairhurst-Hunter Z, Lyall DM, Hartwig FP, Horta BL, Hyppönen E, Power C, Moldovan M, van Iperen E, Hovingh GK, Demuth I, Norman K, Steinhagen-Thiessen E, Demuth J, Bertram L, Liu T, Coassin S, Willeit J, Kiechl S, Willeit K, Mason D, Wright J, Morris R, Wanamethee G, Whincup P, Ben-Shlomo Y, McLachlan S, Price JF, Kivimaki M, Welch C, Sanchez-Galvez A, Marques-Vidal P, Nicolaides A, Panayiotou AG, Onland-Moret NC, van der Schouw YT, Matullo G, Fiorito G, Guarrera S, Sacerdote C, Wareham NJ, Langenberg C, Scott R, Luan J, Bobak M, Malyutina S, Pająk A, Kubinova R, Tamosiunas A, Pikhart H, Husemoen LLN, Grarup N, Pedersen O, Hansen T, Linneberg A, Simonsen KS, Cooper J, Humphries SE, Brilliant M, Kitchner T, Hakonarson H, Carrell DS, McCarty CA, Kirchner HL, Larson EB, Crosslin DR, de Andrade M, Roden DM, Denny JC, Carty C, Hancock S, Attia J, Holliday E, O'Donnell M, Yusuf S, Chong M, Pare G, van der Harst P, Said MA, Eppinga RN, Verweij N, Snieder H, Christen T, Mook-Kanamori DO, Gustafsson S, Lind L, Ingelsson E, Pazoki R, Franco O, Hofman A, Uitterlinden A, Dehghan A, Teumer A, Baumeister S, Dörr M, Lerch MM, Völker U, et alSchmidt AF, Swerdlow DI, Holmes MV, Patel RS, Fairhurst-Hunter Z, Lyall DM, Hartwig FP, Horta BL, Hyppönen E, Power C, Moldovan M, van Iperen E, Hovingh GK, Demuth I, Norman K, Steinhagen-Thiessen E, Demuth J, Bertram L, Liu T, Coassin S, Willeit J, Kiechl S, Willeit K, Mason D, Wright J, Morris R, Wanamethee G, Whincup P, Ben-Shlomo Y, McLachlan S, Price JF, Kivimaki M, Welch C, Sanchez-Galvez A, Marques-Vidal P, Nicolaides A, Panayiotou AG, Onland-Moret NC, van der Schouw YT, Matullo G, Fiorito G, Guarrera S, Sacerdote C, Wareham NJ, Langenberg C, Scott R, Luan J, Bobak M, Malyutina S, Pająk A, Kubinova R, Tamosiunas A, Pikhart H, Husemoen LLN, Grarup N, Pedersen O, Hansen T, Linneberg A, Simonsen KS, Cooper J, Humphries SE, Brilliant M, Kitchner T, Hakonarson H, Carrell DS, McCarty CA, Kirchner HL, Larson EB, Crosslin DR, de Andrade M, Roden DM, Denny JC, Carty C, Hancock S, Attia J, Holliday E, O'Donnell M, Yusuf S, Chong M, Pare G, van der Harst P, Said MA, Eppinga RN, Verweij N, Snieder H, Christen T, Mook-Kanamori DO, Gustafsson S, Lind L, Ingelsson E, Pazoki R, Franco O, Hofman A, Uitterlinden A, Dehghan A, Teumer A, Baumeister S, Dörr M, Lerch MM, Völker U, Völzke H, Ward J, Pell JP, Smith DJ, Meade T, Maitland-van der Zee AH, Baranova EV, Young R, Ford I, Campbell A, Padmanabhan S, Bots ML, Grobbee DE, Froguel P, Thuillier D, Balkau B, Bonnefond A, Cariou B, Smart M, Bao Y, Kumari M, Mahajan A, Ridker PM, Chasman DI, Reiner AP, Lange LA, Ritchie MD, Asselbergs FW, Casas JP, Keating BJ, Preiss D, Hingorani AD, Sattar N. PCSK9 genetic variants and risk of type 2 diabetes: a mendelian randomisation study. Lancet Diabetes Endocrinol 2017; 5:97-105. [PMID: 27908689 PMCID: PMC5266795 DOI: 10.1016/s2213-8587(16)30396-5] [Show More Authors] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Statin treatment and variants in the gene encoding HMG-CoA reductase are associated with reductions in both the concentration of LDL cholesterol and the risk of coronary heart disease, but also with modest hyperglycaemia, increased bodyweight, and modestly increased risk of type 2 diabetes, which in no way offsets their substantial benefits. We sought to investigate the associations of LDL cholesterol-lowering PCSK9 variants with type 2 diabetes and related biomarkers to gauge the likely effects of PCSK9 inhibitors on diabetes risk. METHODS In this mendelian randomisation study, we used data from cohort studies, randomised controlled trials, case control studies, and genetic consortia to estimate associations of PCSK9 genetic variants with LDL cholesterol, fasting blood glucose, HbA1c, fasting insulin, bodyweight, waist-to-hip ratio, BMI, and risk of type 2 diabetes, using a standardised analysis plan, meta-analyses, and weighted gene-centric scores. FINDINGS Data were available for more than 550 000 individuals and 51 623 cases of type 2 diabetes. Combined analyses of four independent PCSK9 variants (rs11583680, rs11591147, rs2479409, and rs11206510) scaled to 1 mmol/L lower LDL cholesterol showed associations with increased fasting glucose (0·09 mmol/L, 95% CI 0·02 to 0·15), bodyweight (1·03 kg, 0·24 to 1·82), waist-to-hip ratio (0·006, 0·003 to 0·010), and an odds ratio for type diabetes of 1·29 (1·11 to 1·50). Based on the collected data, we did not identify associations with HbA1c (0·03%, -0·01 to 0·08), fasting insulin (0·00%, -0·06 to 0·07), and BMI (0·11 kg/m2, -0·09 to 0·30). INTERPRETATION PCSK9 variants associated with lower LDL cholesterol were also associated with circulating higher fasting glucose concentration, bodyweight, and waist-to-hip ratio, and an increased risk of type 2 diabetes. In trials of PCSK9 inhibitor drugs, investigators should carefully assess these safety outcomes and quantify the risks and benefits of PCSK9 inhibitor treatment, as was previously done for statins. FUNDING British Heart Foundation, and University College London Hospitals NHS Foundation Trust (UCLH) National Institute for Health Research (NIHR) Biomedical Research Centre.
Collapse
|
research-article |
8 |
281 |
7
|
Turcot V, Lu Y, Highland HM, Schurmann C, Justice AE, Fine RS, Bradfield JP, Esko T, Giri A, Graff M, Guo X, Hendricks AE, Karaderi T, Lempradl A, Locke AE, Mahajan A, Marouli E, Sivapalaratnam S, Young KL, Alfred T, Feitosa MF, Masca NGD, Manning AK, Medina-Gomez C, Mudgal P, Ng MCY, Reiner AP, Vedantam S, Willems SM, Winkler TW, Abecasis G, Aben KK, Alam DS, Alharthi SE, Allison M, Amouyel P, Asselbergs FW, Auer PL, Balkau B, Bang LE, Barroso I, Bastarache L, Benn M, Bergmann S, Bielak LF, Blüher M, Boehnke M, Boeing H, Boerwinkle E, Böger CA, Bork-Jensen J, Bots ML, Bottinger EP, Bowden DW, Brandslund I, Breen G, Brilliant MH, Broer L, Brumat M, Burt AA, Butterworth AS, Campbell PT, Cappellani S, Carey DJ, Catamo E, Caulfield MJ, Chambers JC, Chasman DI, Chen YDI, Chowdhury R, Christensen C, Chu AY, Cocca M, Collins FS, Cook JP, Corley J, Corominas Galbany J, Cox AJ, Crosslin DS, Cuellar-Partida G, D'Eustacchio A, Danesh J, Davies G, Bakker PIW, Groot MCH, Mutsert R, Deary IJ, Dedoussis G, Demerath EW, Heijer M, Hollander AI, Ruijter HM, Dennis JG, Denny JC, Di Angelantonio E, Drenos F, Du M, Dubé MP, Dunning AM, Easton DF, et alTurcot V, Lu Y, Highland HM, Schurmann C, Justice AE, Fine RS, Bradfield JP, Esko T, Giri A, Graff M, Guo X, Hendricks AE, Karaderi T, Lempradl A, Locke AE, Mahajan A, Marouli E, Sivapalaratnam S, Young KL, Alfred T, Feitosa MF, Masca NGD, Manning AK, Medina-Gomez C, Mudgal P, Ng MCY, Reiner AP, Vedantam S, Willems SM, Winkler TW, Abecasis G, Aben KK, Alam DS, Alharthi SE, Allison M, Amouyel P, Asselbergs FW, Auer PL, Balkau B, Bang LE, Barroso I, Bastarache L, Benn M, Bergmann S, Bielak LF, Blüher M, Boehnke M, Boeing H, Boerwinkle E, Böger CA, Bork-Jensen J, Bots ML, Bottinger EP, Bowden DW, Brandslund I, Breen G, Brilliant MH, Broer L, Brumat M, Burt AA, Butterworth AS, Campbell PT, Cappellani S, Carey DJ, Catamo E, Caulfield MJ, Chambers JC, Chasman DI, Chen YDI, Chowdhury R, Christensen C, Chu AY, Cocca M, Collins FS, Cook JP, Corley J, Corominas Galbany J, Cox AJ, Crosslin DS, Cuellar-Partida G, D'Eustacchio A, Danesh J, Davies G, Bakker PIW, Groot MCH, Mutsert R, Deary IJ, Dedoussis G, Demerath EW, Heijer M, Hollander AI, Ruijter HM, Dennis JG, Denny JC, Di Angelantonio E, Drenos F, Du M, Dubé MP, Dunning AM, Easton DF, Edwards TL, Ellinghaus D, Ellinor PT, Elliott P, Evangelou E, Farmaki AE, Farooqi IS, Faul JD, Fauser S, Feng S, Ferrannini E, Ferrieres J, Florez JC, Ford I, Fornage M, Franco OH, Franke A, Franks PW, Friedrich N, Frikke-Schmidt R, Galesloot TE, Gan W, Gandin I, Gasparini P, Gibson J, Giedraitis V, Gjesing AP, Gordon-Larsen P, Gorski M, Grabe HJ, Grant SFA, Grarup N, Griffiths HL, Grove ML, Gudnason V, Gustafsson S, Haessler J, Hakonarson H, Hammerschlag AR, Hansen T, Harris KM, Harris TB, Hattersley AT, Have CT, Hayward C, He L, Heard-Costa NL, Heath AC, Heid IM, Helgeland Ø, Hernesniemi J, Hewitt AW, Holmen OL, Hovingh GK, Howson JMM, Hu Y, Huang PL, Huffman JE, Ikram MA, Ingelsson E, Jackson AU, Jansson JH, Jarvik GP, Jensen GB, Jia Y, Johansson S, Jørgensen ME, Jørgensen T, Jukema JW, Kahali B, Kahn RS, Kähönen M, Kamstrup PR, Kanoni S, Kaprio J, Karaleftheri M, Kardia SLR, Karpe F, Kathiresan S, Kee F, Kiemeney LA, Kim E, Kitajima H, Komulainen P, Kooner JS, Kooperberg C, Korhonen T, Kovacs P, Kuivaniemi H, Kutalik Z, Kuulasmaa K, Kuusisto J, Laakso M, Lakka TA, Lamparter D, Lange EM, Lange LA, Langenberg C, Larson EB, Lee NR, Lehtimäki T, Lewis CE, Li H, Li J, Li-Gao R, Lin H, Lin KH, Lin LA, Lin X, Lind L, Lindström J, Linneberg A, Liu CT, Liu DJ, Liu Y, Lo KS, Lophatananon A, Lotery AJ, Loukola A, Luan J, Lubitz SA, Lyytikäinen LP, Männistö S, Marenne G, Mazul AL, McCarthy MI, McKean-Cowdin R, Medland SE, Meidtner K, Milani L, Mistry V, Mitchell P, Mohlke KL, Moilanen L, Moitry M, Montgomery GW, Mook-Kanamori DO, Moore C, Mori TA, Morris AD, Morris AP, Müller-Nurasyid M, Munroe PB, Nalls MA, Narisu N, Nelson CP, Neville M, Nielsen SF, Nikus K, Njølstad PR, Nordestgaard BG, Nyholt DR, O'Connel JR, O'Donoghue ML, Olde Loohuis LM, Ophoff RA, Owen KR, Packard CJ, Padmanabhan S, Palmer CNA, Palmer ND, Pasterkamp G, Patel AP, Pattie A, Pedersen O, Peissig PL, Peloso GM, Pennell CE, Perola M, Perry JA, Perry JRB, Pers TH, Person TN, Peters A, Petersen ERB, Peyser PA, Pirie A, Polasek O, Polderman TJ, Puolijoki H, Raitakari OT, Rasheed A, Rauramaa R, Reilly DF, Renström F, Rheinberger M, Ridker PM, Rioux JD, Rivas MA, Roberts DJ, Robertson NR, Robino A, Rolandsson O, Rudan I, Ruth KS, Saleheen D, Salomaa V, Samani NJ, Sapkota Y, Sattar N, Schoen RE, Schreiner PJ, Schulze MB, Scott RA, Segura-Lepe MP, Shah SH, Sheu WHH, Sim X, Slater AJ, Small KS, Smith AV, Southam L, Spector TD, Speliotes EK, Starr JM, Stefansson K, Steinthorsdottir V, Stirrups KE, Strauch K, Stringham HM, Stumvoll M, Sun L, Surendran P, Swift AJ, Tada H, Tansey KE, Tardif JC, Taylor KD, Teumer A, Thompson DJ, Thorleifsson G, Thorsteinsdottir U, Thuesen BH, Tönjes A, Tromp G, Trompet S, Tsafantakis E, Tuomilehto J, Tybjaerg-Hansen A, Tyrer JP, Uher R, Uitterlinden AG, Uusitupa M, Laan SW, Duijn CM, Leeuwen N, van Setten J, Vanhala M, Varbo A, Varga TV, Varma R, Velez Edwards DR, Vermeulen SH, Veronesi G, Vestergaard H, Vitart V, Vogt TF, Völker U, Vuckovic D, Wagenknecht LE, Walker M, Wallentin L, Wang F, Wang CA, Wang S, Wang Y, Ware EB, Wareham NJ, Warren HR, Waterworth DM, Wessel J, White HD, Willer CJ, Wilson JG, Witte DR, Wood AR, Wu Y, Yaghootkar H, Yao J, Yao P, Yerges-Armstrong LM, Young R, Zeggini E, Zhan X, Zhang W, Zhao JH, Zhao W, Zhao W, Zhou W, Zondervan KT, Rotter JI, Pospisilik JA, Rivadeneira F, Borecki IB, Deloukas P, Frayling TM, Lettre G, North KE, Lindgren CM, Hirschhorn JN, Loos RJF. Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nat Genet 2018; 50:26-41. [PMID: 29273807 PMCID: PMC5945951 DOI: 10.1038/s41588-017-0011-x] [Show More Authors] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/15/2017] [Indexed: 02/02/2023]
Abstract
Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are ~10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed ~7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
274 |
8
|
Zhang W, Yu Y, Hertwig F, Thierry-Mieg J, Zhang W, Thierry-Mieg D, Wang J, Furlanello C, Devanarayan V, Cheng J, Deng Y, Hero B, Hong H, Jia M, Li L, Lin SM, Nikolsky Y, Oberthuer A, Qing T, Su Z, Volland R, Wang C, Wang MD, Ai J, Albanese D, Asgharzadeh S, Avigad S, Bao W, Bessarabova M, Brilliant MH, Brors B, Chierici M, Chu TM, Zhang J, Grundy RG, He MM, Hebbring S, Kaufman HL, Lababidi S, Lancashire LJ, Li Y, Lu XX, Luo H, Ma X, Ning B, Noguera R, Peifer M, Phan JH, Roels F, Rosswog C, Shao S, Shen J, Theissen J, Tonini GP, Vandesompele J, Wu PY, Xiao W, Xu J, Xu W, Xuan J, Yang Y, Ye Z, Dong Z, Zhang KK, Yin Y, Zhao C, Zheng Y, Wolfinger RD, Shi T, Malkas LH, Berthold F, Wang J, Tong W, Shi L, Peng Z, Fischer M. Comparison of RNA-seq and microarray-based models for clinical endpoint prediction. Genome Biol 2015; 16:133. [PMID: 26109056 PMCID: PMC4506430 DOI: 10.1186/s13059-015-0694-1] [Citation(s) in RCA: 261] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/12/2015] [Indexed: 12/22/2022] Open
Abstract
Background Gene expression profiling is being widely applied in cancer research to identify biomarkers for clinical endpoint prediction. Since RNA-seq provides a powerful tool for transcriptome-based applications beyond the limitations of microarrays, we sought to systematically evaluate the performance of RNA-seq-based and microarray-based classifiers in this MAQC-III/SEQC study for clinical endpoint prediction using neuroblastoma as a model. Results We generate gene expression profiles from 498 primary neuroblastomas using both RNA-seq and 44 k microarrays. Characterization of the neuroblastoma transcriptome by RNA-seq reveals that more than 48,000 genes and 200,000 transcripts are being expressed in this malignancy. We also find that RNA-seq provides much more detailed information on specific transcript expression patterns in clinico-genetic neuroblastoma subgroups than microarrays. To systematically compare the power of RNA-seq and microarray-based models in predicting clinical endpoints, we divide the cohort randomly into training and validation sets and develop 360 predictive models on six clinical endpoints of varying predictability. Evaluation of factors potentially affecting model performances reveals that prediction accuracies are most strongly influenced by the nature of the clinical endpoint, whereas technological platforms (RNA-seq vs. microarrays), RNA-seq data analysis pipelines, and feature levels (gene vs. transcript vs. exon-junction level) do not significantly affect performances of the models. Conclusions We demonstrate that RNA-seq outperforms microarrays in determining the transcriptomic characteristics of cancer, while RNA-seq and microarray-based models perform similarly in clinical endpoint prediction. Our findings may be valuable to guide future studies on the development of gene expression-based predictive models and their implementation in clinical practice. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0694-1) contains supplementary material, which is available to authorized users.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
261 |
9
|
Newton JM, Cohen-Barak O, Hagiwara N, Gardner JM, Davisson MT, King RA, Brilliant MH. Mutations in the human orthologue of the mouse underwhite gene (uw) underlie a new form of oculocutaneous albinism, OCA4. Am J Hum Genet 2001; 69:981-8. [PMID: 11574907 PMCID: PMC1274374 DOI: 10.1086/324340] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2001] [Accepted: 08/24/2001] [Indexed: 11/04/2022] Open
Abstract
Oculocutaneous albinism (OCA) affects approximately 1/20,000 people worldwide. All forms of OCA exhibit generalized hypopigmentation. Reduced pigmentation during eye development results in misrouting of the optic nerves, nystagmus, alternating strabismus, and reduced visual acuity. Loss of pigmentation in the skin leads to an increased risk for skin cancer. Two common forms and one infrequent form of OCA have been described. OCA1 (MIM 203100) is associated with mutations of the TYR gene encoding tyrosinase (the rate-limiting enzyme in the production of melanin pigment) and accounts for approximately 40% of OCA worldwide. OCA2 (MIM 203200), the most common form of OCA, is associated with mutations of the P gene and accounts for approximately 50% of OCA worldwide. OCA3 (MIM 203290), a rare form of OCA and also known as "rufous/red albinism," is associated with mutations in TYRP1 (encoding tyrosinase-related protein 1). Analysis of the TYR and P genes in patients with OCA suggests that other genes may be associated with OCA. We have identified the mouse underwhite gene (uw) and its human orthologue, which underlies a new form of human OCA, termed "OCA4." The encoded protein, MATP (for "membrane-associated transporter protein") is predicted to span the membrane 12 times and likely functions as a transporter.
Collapse
MESH Headings
- Adult
- Albinism, Oculocutaneous/classification
- Albinism, Oculocutaneous/genetics
- Albinism, Oculocutaneous/physiopathology
- Alleles
- Amino Acid Sequence
- Animals
- Antigens, Neoplasm
- Child, Preschool
- Chromosomes, Human, Pair 5/genetics
- Cloning, Molecular
- Conserved Sequence
- DNA Mutational Analysis
- Exons/genetics
- Eye/metabolism
- Eye/pathology
- Homozygote
- Humans
- Male
- Membrane Proteins
- Membrane Transport Proteins
- Mice
- Molecular Sequence Data
- Mutation/genetics
- Physical Chromosome Mapping
- Pigmentation/genetics
- Protein Conformation
- Proteins/chemistry
- Proteins/genetics
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Sequence Alignment
- Symporters
Collapse
|
research-article |
24 |
240 |
10
|
Rasmussen-Torvik LJ, Stallings SC, Gordon AS, Almoguera B, Basford MA, Bielinski SJ, Brautbar A, Brilliant MH, Carrell DS, Connolly JJ, Crosslin DR, Doheny KF, Gallego CJ, Gottesman O, Kim DS, Leppig KA, Li R, Lin S, Manzi S, Mejia AR, Pacheco JA, Pan V, Pathak J, Perry CL, Peterson JF, Prows CA, Ralston J, Rasmussen LV, Ritchie MD, Sadhasivam S, Scott SA, Smith M, Vega A, Vinks AA, Volpi S, Wolf WA, Bottinger E, Chisholm RL, Chute CG, Haines JL, Harley JB, Keating B, Holm IA, Kullo IJ, Jarvik GP, Larson EB, Manolio T, McCarty CA, Nickerson DA, Scherer SE, Williams MS, Roden DM, Denny JC. Design and anticipated outcomes of the eMERGE-PGx project: a multicenter pilot for preemptive pharmacogenomics in electronic health record systems. Clin Pharmacol Ther 2014; 96:482-9. [PMID: 24960519 PMCID: PMC4169732 DOI: 10.1038/clpt.2014.137] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/13/2014] [Indexed: 11/09/2022]
Abstract
We describe here the design and initial implementation of the eMERGE-PGx project. eMERGE-PGx, a partnership of the eMERGE and PGRN consortia, has three objectives : 1) Deploy PGRNseq, a next-generation sequencing platform assessing sequence variation in 84 proposed pharmacogenes, in nearly 9,000 patients likely to be prescribed drugs of interest in a 1–3 year timeframe across several clinical sites; 2) Integrate well-established clinically-validated pharmacogenetic genotypes into the electronic health record with associated clinical decision support and assess process and clinical outcomes of implementation; and 3) Develop a repository of pharmacogenetic variants of unknown significance linked to a repository of EHR-based clinical phenotype data for ongoing pharmacogenomics discovery. We describe site-specific project implementation and anticipated products, including genetic variant and phenotype data repositories, novel variant association studies, clinical decision support modules, clinical and process outcomes, approaches to manage incidental findings, and patient and clinician education methods.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
186 |
11
|
Bailey JNC, Loomis SJ, Kang JH, Allingham RR, Gharahkhani P, Khor CC, Burdon KP, Aschard H, Chasman DI, Igo RP, Hysi PG, Glastonbury CA, Ashley-Koch A, Brilliant M, Brown AA, Budenz DL, Buil A, Cheng CY, Choi H, Christen WG, Curhan G, De Vivo I, Fingert JH, Foster PJ, Fuchs C, Gaasterland D, Gaasterland T, Hewitt AW, Hu F, Hunter DJ, Khawaja AP, Lee RK, Li Z, Lichter PR, Mackey DA, McGuffin P, Mitchell P, Moroi SE, Perera SA, Pepper KW, Qi Q, Realini T, Richards JE, Ridker PM, Rimm E, Ritch R, Ritchie M, Schuman JS, Scott WK, Singh K, Sit AJ, Song YE, Tamimi RM, Topouzis F, Viswanathan AC, Verma SS, Vollrath D, Wang JJ, Weisschuh N, Wissinger B, Wollstein G, Wong TY, Yaspan BL, Zack DJ, Zhang K, Study ENE, Weinreb RN, Pericak-Vance MA, Small K, Hammond CJ, Aung T, Liu Y, Vithana EN, MacGregor S, Craig JE, Kraft P, Howell G, Hauser MA, Pasquale LR, Haines JL, Wiggs JL. Genome-wide association analysis identifies TXNRD2, ATXN2 and FOXC1 as susceptibility loci for primary open-angle glaucoma. Nat Genet 2016; 48:189-94. [PMID: 26752265 PMCID: PMC4731307 DOI: 10.1038/ng.3482] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 12/09/2015] [Indexed: 12/13/2022]
Abstract
Primary open angle glaucoma (POAG) is a leading cause of blindness world-wide. To identify new susceptibility loci, we meta-analyzed GWAS results from 8 independent studies from the United States (3,853 cases and 33,480 controls) and investigated the most significant SNPs in two Australian studies (1,252 cases and 2,592 controls), 3 European studies (875 cases and 4,107 controls) and a Singaporean Chinese study (1,037 cases and 2,543 controls). A meta-analysis of top SNPs identified three novel loci: rs35934224[T] within TXNRD2 (odds ratio (OR) = 0.78, P = 4.05×10−11 encoding a mitochondrial protein required for redox homeostasis; rs7137828[T] within ATXN2 (OR = 1.17, P = 8.73×10−10), and rs2745572[A] upstream of FOXC1 (OR = 1.17, P = 1.76×10−10). Using RT-PCR and immunohistochemistry, we show TXNRD2 and ATXN2 expression in retinal ganglion cells and the optic nerve head. These results identify new pathways underlying POAG susceptibility and suggest novel targets for preventative therapies.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
179 |
12
|
Ito S, Nakanishi Y, Valenzuela RK, Brilliant MH, Kolbe L, Wakamatsu K. Usefulness of alkaline hydrogen peroxide oxidation to analyze eumelanin and pheomelanin in various tissue samples: application to chemical analysis of human hair melanins. Pigment Cell Melanoma Res 2011; 24:605-13. [PMID: 21535429 DOI: 10.1111/j.1755-148x.2011.00864.x] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Eumelanin and pheomelanin in tissue samples can be specifically measured as the markers pyrrole-2,3,5-tricarboxylic acid (PTCA) and 4-amino-3-hydroxyphenylalanine after acidic permanganate oxidation and hydroiodic acid hydrolysis, respectively. Those degradation methods, although widely applied, are not easily performed in most laboratories. To overcome this difficulty, we developed alkaline H(2)O(2) oxidation in 1 M K(2)CO(3) that produces, in addition to the eumelanin marker PTCA, thiazole-2,4,5-tricarboxylic acid (TTCA) and thiazole-4,5-dicarboxylic acid (TDCA) as markers for pheomelanin and pyrrole-2,3-dicarboxylic acid (PDCA) as a marker for 5,6-dihydroxyindole-derived eumelanin. Those four degradation products can be easily separated by HPLC and analyzed with ultraviolet detection. The alkaline H(2)O(2) oxidation method is simple, reproducible and applicable to all pigmented tissues. Its application to characterize eumelanin and pheomelanin in human hair shows that PTCA and TTCA serve as specific markers for eumelanin and pheomelanin, respectively, although some caution is needed regarding the artificial production of TTCA from eumelanic tissue proteins.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
178 |
13
|
Gardner JM, Nakatsu Y, Gondo Y, Lee S, Lyon MF, King RA, Brilliant MH. The mouse pink-eyed dilution gene: association with human Prader-Willi and Angelman syndromes. Science 1992; 257:1121-4. [PMID: 1509264 DOI: 10.1126/science.257.5073.1121] [Citation(s) in RCA: 174] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Complementary DNA clones from the pink-eyed dilution (p) locus of mouse chromosome 7 were isolated from murine melanoma and melanocyte libraries. The transcript from this gene is missing or altered in six independent mutant alleles of the p locus, suggesting that disruption of this gene results in the hypopigmentation phenotype that defines mutant p alleles. Characterization of the human homolog revealed that it is localized to human chromosome 15 at q11.2-q12, a region associated with Prader-Willi and Angelman syndromes, suggesting that altered expression of this gene may be responsible for the hypopigmentation phenotype exhibited by certain individuals with these disorders.
Collapse
|
|
33 |
174 |
14
|
Sanderson SC, Brothers KB, Mercaldo ND, Clayton EW, Antommaria AHM, Aufox SA, Brilliant MH, Campos D, Carrell DS, Connolly J, Conway P, Fullerton SM, Garrison NA, Horowitz CR, Jarvik GP, Kaufman D, Kitchner TE, Li R, Ludman EJ, McCarty CA, McCormick JB, McManus VD, Myers MF, Scrol A, Williams JL, Shrubsole MJ, Schildcrout JS, Smith ME, Holm IA. Public Attitudes toward Consent and Data Sharing in Biobank Research: A Large Multi-site Experimental Survey in the US. Am J Hum Genet 2017; 100:414-427. [PMID: 28190457 DOI: 10.1016/j.ajhg.2017.01.021] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/11/2017] [Indexed: 12/16/2022] Open
Abstract
Individuals participating in biobanks and other large research projects are increasingly asked to provide broad consent for open-ended research use and widespread sharing of their biosamples and data. We assessed willingness to participate in a biobank using different consent and data sharing models, hypothesizing that willingness would be higher under more restrictive scenarios. Perceived benefits, concerns, and information needs were also assessed. In this experimental survey, individuals from 11 US healthcare systems in the Electronic Medical Records and Genomics (eMERGE) Network were randomly allocated to one of three hypothetical scenarios: tiered consent and controlled data sharing; broad consent and controlled data sharing; or broad consent and open data sharing. Of 82,328 eligible individuals, exactly 13,000 (15.8%) completed the survey. Overall, 66% (95% CI: 63%-69%) of population-weighted respondents stated they would be willing to participate in a biobank; willingness and attitudes did not differ between respondents in the three scenarios. Willingness to participate was associated with self-identified white race, higher educational attainment, lower religiosity, perceiving more research benefits, fewer concerns, and fewer information needs. Most (86%, CI: 84%-87%) participants would want to know what would happen if a researcher misused their health information; fewer (51%, CI: 47%-55%) would worry about their privacy. The concern that the use of broad consent and open data sharing could adversely affect participant recruitment is not supported by these findings. Addressing potential participants' concerns and information needs and building trust and relationships with communities may increase acceptance of broad consent and wide data sharing in biobank research.
Collapse
|
Multicenter Study |
8 |
157 |
15
|
Bush WS, Crosslin DR, Owusu‐Obeng A, Wallace J, Almoguera B, Basford MA, Bielinski SJ, Carrell DS, Connolly JJ, Crawford D, Doheny KF, Gallego CJ, Gordon AS, Keating B, Kirby J, Kitchner T, Manzi S, Mejia AR, Pan V, Perry CL, Peterson JF, Prows CA, Ralston J, Scott SA, Scrol A, Smith M, Stallings SC, Veldhuizen T, Wolf W, Volpi S, Wiley K, Li R, Manolio T, Bottinger E, Brilliant MH, Carey D, Chisholm RL, Chute CG, Haines JL, Hakonarson H, Harley JB, Holm IA, Kullo IJ, Jarvik GP, Larson EB, McCarty CA, Williams MS, Denny JC, Rasmussen‐Torvik LJ, Roden DM, Ritchie MD. Genetic variation among 82 pharmacogenes: The PGRNseq data from the eMERGE network. Clin Pharmacol Ther 2016; 100:160-9. [PMID: 26857349 PMCID: PMC5010878 DOI: 10.1002/cpt.350] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/12/2016] [Accepted: 02/04/2016] [Indexed: 12/20/2022]
Abstract
Genetic variation can affect drug response in multiple ways, although it remains unclear how rare genetic variants affect drug response. The electronic Medical Records and Genomics (eMERGE) Network, collaborating with the Pharmacogenomics Research Network, began eMERGE‐PGx, a targeted sequencing study to assess genetic variation in 82 pharmacogenes critical for implementation of “precision medicine.” The February 2015 eMERGE‐PGx data release includes sequence‐derived data from ∼5,000 clinical subjects. We present the variant frequency spectrum categorized by variant type, ancestry, and predicted function. We found 95.12% of genes have variants with a scaled Combined Annotation‐Dependent Depletion score above 20, and 96.19% of all samples had one or more Clinical Pharmacogenetics Implementation Consortium Level A actionable variants. These data highlight the distribution and scope of genetic variation in relevant pharmacogenes, identifying challenges associated with implementing clinical sequencing for drug treatment at a broader level, underscoring the importance for multifaceted research in the execution of precision medicine.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
143 |
16
|
Puri N, Gardner JM, Brilliant MH. Aberrant pH of melanosomes in pink-eyed dilution (p) mutant melanocytes. J Invest Dermatol 2000; 115:607-13. [PMID: 10998131 DOI: 10.1046/j.1523-1747.2000.00108.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In past studies, we cloned the mouse p gene and its human homolog P, which is associated with oculocutaneous albinism type 2. Both mouse and human genes are expressed in melanocytes and encode proteins predicted to have 12 membrane-spanning domains with structural homology to known ion transporters. We have also demonstrated that the p protein is localized to the melanosomal membrane and does not function as a tyrosine transporter. In this study, immunohistochemistry and confocal microscopy were used to show that the p protein plays an important role in the generation or maintenance of melanosomal pH. Melanosomes (and their precursor compartments) were defined by antiserum directed against the melanosomal marker tyrosinase related protein 1. Acidic vesicles were identified by 3-(2, 4-dinitroanilino)-3'-amino-N-methyldipropylamine incorporation, visualized with anti-dinitrophenol. In C57BL/6+/+ (wild-type) melanocytes, 94.2% of vesicles demonstrated colocalization of tyrosinase related protein 1 and 3-(2, 4-dinitroanilino)-3'-amino-N-methyldipropylamine, indicating that almost all melanosomes or their precursors were acidic. By contrast, only 7%-8% of the staining vesicles in p mutant cell lines (pJ/pJ and pcp/p6H) showed colocalization of tyrosinase related protein 1 and 3-(2,4-dinitroanilino)-3'-amino-N-methyldipropylamine. Thus, without a functional p protein, most melanosomes and their precursors are not acidic. As mammalian tyrosinase activity in situ is apparently dependent on low pH, we postulate that in the absence of a low pH environment brought about by ionic transport mediated by the p protein, tyrosinase activity is severely impaired, leading to the minimal production of melanin that is characteristic of p mutants. Additionally (or alternatively), an abnormal pH may also impair the assembly of the normal melanogenic complex.
Collapse
|
|
25 |
134 |
17
|
Bastarache L, Hughey JJ, Hebbring S, Marlo J, Zhao W, Ho WT, Van Driest SL, McGregor TL, Mosley JD, Wells QS, Temple M, Ramirez AH, Carroll R, Osterman T, Edwards T, Ruderfer D, Velez Edwards DR, Hamid R, Cogan J, Glazer A, Wei WQ, Feng Q, Brilliant M, Zhao ZJ, Cox NJ, Roden DM, Denny JC. Phenotype risk scores identify patients with unrecognized Mendelian disease patterns. Science 2018; 359:1233-1239. [PMID: 29590070 PMCID: PMC5959723 DOI: 10.1126/science.aal4043] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 08/25/2017] [Accepted: 01/22/2018] [Indexed: 12/11/2022]
Abstract
Genetic association studies often examine features independently, potentially missing subpopulations with multiple phenotypes that share a single cause. We describe an approach that aggregates phenotypes on the basis of patterns described by Mendelian diseases. We mapped the clinical features of 1204 Mendelian diseases into phenotypes captured from the electronic health record (EHR) and summarized this evidence as phenotype risk scores (PheRSs). In an initial validation, PheRS distinguished cases and controls of five Mendelian diseases. Applying PheRS to 21,701 genotyped individuals uncovered 18 associations between rare variants and phenotypes consistent with Mendelian diseases. In 16 patients, the rare genetic variants were associated with severe outcomes such as organ transplants. PheRS can augment rare-variant interpretation and may identify subsets of patients with distinct genetic causes for common diseases.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
133 |
18
|
Jiang YH, Pan Y, Zhu L, Landa L, Yoo J, Spencer C, Lorenzo I, Brilliant M, Noebels J, Beaudet AL. Altered ultrasonic vocalization and impaired learning and memory in Angelman syndrome mouse model with a large maternal deletion from Ube3a to Gabrb3. PLoS One 2010; 5:e12278. [PMID: 20808828 PMCID: PMC2924885 DOI: 10.1371/journal.pone.0012278] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 07/19/2010] [Indexed: 11/21/2022] Open
Abstract
Angelman syndrome (AS) is a neurobehavioral disorder associated with mental retardation, absence of language development, characteristic electroencephalography (EEG) abnormalities and epilepsy, happy disposition, movement or balance disorders, and autistic behaviors. The molecular defects underlying AS are heterogeneous, including large maternal deletions of chromosome 15q11–q13 (70%), paternal uniparental disomy (UPD) of chromosome 15 (5%), imprinting mutations (rare), and mutations in the E6-AP ubiquitin ligase gene UBE3A (15%). Although patients with UBE3A mutations have a wide spectrum of neurological phenotypes, their features are usually milder than AS patients with deletions of 15q11–q13. Using a chromosomal engineering strategy, we generated mutant mice with a 1.6-Mb chromosomal deletion from Ube3a to Gabrb3, which inactivated the Ube3a and Gabrb3 genes and deleted the Atp10a gene. Homozygous deletion mutant mice died in the perinatal period due to a cleft palate resulting from the null mutation in Gabrb3 gene. Mice with a maternal deletion (m−/p+) were viable and did not have any obvious developmental defects. Expression analysis of the maternal and paternal deletion mice confirmed that the Ube3a gene is maternally expressed in brain, and showed that the Atp10a and Gabrb3 genes are biallelically expressed in all brain sub-regions studied. Maternal (m−/p+), but not paternal (m+/p−), deletion mice had increased spontaneous seizure activity and abnormal EEG. Extensive behavioral analyses revealed significant impairment in motor function, learning and memory tasks, and anxiety-related measures assayed in the light-dark box in maternal deletion but not paternal deletion mice. Ultrasonic vocalization (USV) recording in newborns revealed that maternal deletion pups emitted significantly more USVs than wild-type littermates. The increased USV in maternal deletion mice suggests abnormal signaling behavior between mothers and pups that may reflect abnormal communication behaviors in human AS patients. Thus, mutant mice with a maternal deletion from Ube3a to Gabrb3 provide an AS mouse model that is molecularly more similar to the contiguous gene deletion form of AS in humans than mice with Ube3a mutation alone. These mice will be valuable for future comparative studies to mice with maternal deficiency of Ube3a alone.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
130 |
19
|
Van Driest SL, Wells QS, Stallings S, Bush WS, Gordon A, Nickerson DA, Kim JH, Crosslin DR, Jarvik GP, Carrell DS, Ralston JD, Larson EB, Bielinski SJ, Olson JE, Ye Z, Kullo IJ, Abul-Husn NS, Scott SA, Bottinger E, Almoguera B, Connolly J, Chiavacci R, Hakonarson H, Rasmussen-Torvik LJ, Pan V, Persell SD, Smith M, Chisholm RL, Kitchner TE, He MM, Brilliant MH, Wallace JR, Doheny KF, Shoemaker MB, Li R, Manolio TA, Callis TE, Macaya D, Williams MS, Carey D, Kapplinger JD, Ackerman MJ, Ritchie MD, Denny JC, Roden DM. Association of Arrhythmia-Related Genetic Variants With Phenotypes Documented in Electronic Medical Records. JAMA 2016; 315:47-57. [PMID: 26746457 PMCID: PMC4758131 DOI: 10.1001/jama.2015.17701] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IMPORTANCE Large-scale DNA sequencing identifies incidental rare variants in established Mendelian disease genes, but the frequency of related clinical phenotypes in unselected patient populations is not well established. Phenotype data from electronic medical records (EMRs) may provide a resource to assess the clinical relevance of rare variants. OBJECTIVE To determine the clinical phenotypes from EMRs for individuals with variants designated as pathogenic by expert review in arrhythmia susceptibility genes. DESIGN, SETTING, AND PARTICIPANTS This prospective cohort study included 2022 individuals recruited for nonantiarrhythmic drug exposure phenotypes from October 5, 2012, to September 30, 2013, for the Electronic Medical Records and Genomics Network Pharmacogenomics project from 7 US academic medical centers. Variants in SCN5A and KCNH2, disease genes for long QT and Brugada syndromes, were assessed for potential pathogenicity by 3 laboratories with ion channel expertise and by comparison with the ClinVar database. Relevant phenotypes were determined from EMRs, with data available from 2002 (or earlier for some sites) through September 10, 2014. EXPOSURES One or more variants designated as pathogenic in SCN5A or KCNH2. MAIN OUTCOMES AND MEASURES Arrhythmia or electrocardiographic (ECG) phenotypes defined by International Classification of Diseases, Ninth Revision (ICD-9) codes, ECG data, and manual EMR review. RESULTS Among 2022 study participants (median age, 61 years [interquartile range, 56-65 years]; 1118 [55%] female; 1491 [74%] white), a total of 122 rare (minor allele frequency <0.5%) nonsynonymous and splice-site variants in 2 arrhythmia susceptibility genes were identified in 223 individuals (11% of the study cohort). Forty-two variants in 63 participants were designated potentially pathogenic by at least 1 laboratory or ClinVar, with low concordance across laboratories (Cohen κ = 0.26). An ICD-9 code for arrhythmia was found in 11 of 63 (17%) variant carriers vs 264 of 1959 (13%) of those without variants (difference, +4%; 95% CI, -5% to +13%; P = .35). In the 1270 (63%) with ECGs, corrected QT intervals were not different in variant carriers vs those without (median, 429 vs 439 milliseconds; difference, -10 milliseconds; 95% CI, -16 to +3 milliseconds; P = .17). After manual review, 22 of 63 participants (35%) with designated variants had any ECG or arrhythmia phenotype, and only 2 had corrected QT interval longer than 500 milliseconds. CONCLUSIONS AND RELEVANCE Among laboratories experienced in genetic testing for cardiac arrhythmia disorders, there was low concordance in designating SCN5A and KCNH2 variants as pathogenic. In an unselected population, the putatively pathogenic genetic variants were not associated with an abnormal phenotype. These findings raise questions about the implications of notifying patients of incidental genetic findings.
Collapse
|
Clinical Study |
9 |
128 |
20
|
Brilliant MH. The mouse p (pink-eyed dilution) and human P genes, oculocutaneous albinism type 2 (OCA2), and melanosomal pH. PIGMENT CELL RESEARCH 2001; 14:86-93. [PMID: 11310796 DOI: 10.1034/j.1600-0749.2001.140203.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recessive mutations of the mouse p (pink-eyed dilution) gene lead to hypopigmentation of the eyes, skin, and fur. Mice lacking a functional p protein have pink eyes and light gray fur (if non-agouti) or cream-colored fur (if agouti). The human orthologue is the P protein. Humans lacking a functional P protein have oculocutaneous albinism type 2 (OCA2). Melanocytes from p-deficient mice or OCA2 individuals contain small, minimally pigmented melanosomes. The mouse and human proteins are predicted to have 12 membrane spanning domains and possess significant sequence homology to a number of membrane transport proteins, some of which are involved in the transport of anions. The p protein has been localized to the melanosome membrane. Recently, it has been shown that melanosomes from p protein-deficient melanocytes have an abnormal pH. Melanosomes in cultured melanocytes derived from wild-type mice are typically acidic, whereas melanosomes from p protein-deficient mice are non-acidic. Melanosomes and related endosome-derived organelles (i.e., lysosomes) are thought to have an adenosine triphosphate (ATP)-driven proton pump that helps to generate an acidic lumen. To compensate for the charge of these protons, anions must also be transported to the lumen of the melanosome. In light of these observations, a model of p protein function is presented in which the p protein, together with the ATP-driven proton pump, regulates the pH of the melanosome.
Collapse
|
Review |
24 |
128 |
21
|
Ramirez AH, Sulieman L, Schlueter DJ, Halvorson A, Qian J, Ratsimbazafy F, Loperena R, Mayo K, Basford M, Deflaux N, Muthuraman KN, Natarajan K, Kho A, Xu H, Wilkins C, Anton-Culver H, Boerwinkle E, Cicek M, Clark CR, Cohn E, Ohno-Machado L, Schully SD, Ahmedani BK, Argos M, Cronin RM, O’Donnell C, Fouad M, Goldstein DB, Greenland P, Hebbring SJ, Karlson EW, Khatri P, Korf B, Smoller JW, Sodeke S, Wilbanks J, Hentges J, Mockrin S, Lunt C, Devaney SA, Gebo K, Denny JC, Carroll RJ, Glazer D, Harris PA, Hripcsak G, Philippakis A, Roden DM, Ahmedani B, Cole Johnson CD, Ahsan H, Antoine-LaVigne D, Singleton G, Anton-Culver H, Topol E, Baca-Motes K, Steinhubl S, Wade J, Begale M, Jain P, Sutherland S, Lewis B, Korf B, Behringer M, Gharavi AG, Goldstein DB, Hripcsak G, Bier L, Boerwinkle E, Brilliant MH, Murali N, Hebbring SJ, Farrar-Edwards D, Burnside E, Drezner MK, Taylor A, Channamsetty V, Montalvo W, Sharma Y, Chinea C, Jenks N, Cicek M, Thibodeau S, Holmes BW, Schlueter E, Collier E, Winkler J, Corcoran J, D’Addezio N, Daviglus M, Winn R, Wilkins C, Roden D, Denny J, Doheny K, Nickerson D, Eichler E, Jarvik G, Funk G, Philippakis A, et alRamirez AH, Sulieman L, Schlueter DJ, Halvorson A, Qian J, Ratsimbazafy F, Loperena R, Mayo K, Basford M, Deflaux N, Muthuraman KN, Natarajan K, Kho A, Xu H, Wilkins C, Anton-Culver H, Boerwinkle E, Cicek M, Clark CR, Cohn E, Ohno-Machado L, Schully SD, Ahmedani BK, Argos M, Cronin RM, O’Donnell C, Fouad M, Goldstein DB, Greenland P, Hebbring SJ, Karlson EW, Khatri P, Korf B, Smoller JW, Sodeke S, Wilbanks J, Hentges J, Mockrin S, Lunt C, Devaney SA, Gebo K, Denny JC, Carroll RJ, Glazer D, Harris PA, Hripcsak G, Philippakis A, Roden DM, Ahmedani B, Cole Johnson CD, Ahsan H, Antoine-LaVigne D, Singleton G, Anton-Culver H, Topol E, Baca-Motes K, Steinhubl S, Wade J, Begale M, Jain P, Sutherland S, Lewis B, Korf B, Behringer M, Gharavi AG, Goldstein DB, Hripcsak G, Bier L, Boerwinkle E, Brilliant MH, Murali N, Hebbring SJ, Farrar-Edwards D, Burnside E, Drezner MK, Taylor A, Channamsetty V, Montalvo W, Sharma Y, Chinea C, Jenks N, Cicek M, Thibodeau S, Holmes BW, Schlueter E, Collier E, Winkler J, Corcoran J, D’Addezio N, Daviglus M, Winn R, Wilkins C, Roden D, Denny J, Doheny K, Nickerson D, Eichler E, Jarvik G, Funk G, Philippakis A, Rehm H, Lennon N, Kathiresan S, Gabriel S, Gibbs R, Gil Rico EM, Glazer D, Grand J, Greenland P, Harris P, Shenkman E, Hogan WR, Igho-Pemu P, Pollan C, Jorge M, Okun S, Karlson EW, Smoller J, Murphy SN, Ross ME, Kaushal R, Winford E, Wallace F, Khatri P, Kheterpal V, Ojo A, Moreno FA, Kron I, Peterson R, Menon U, Lattimore PW, Leviner N, Obedin-Maliver J, Lunn M, Malik-Gagnon L, Mangravite L, Marallo A, Marroquin O, Visweswaran S, Reis S, Marshall G, McGovern P, Mignucci D, Moore J, Munoz F, Talavera G, O'Connor GT, O'Donnell C, Ohno-Machado L, Orr G, Randal F, Theodorou AA, Reiman E, Roxas-Murray M, Stark L, Tepp R, Zhou A, Topper S, Trousdale R, Tsao P, Weidman L, Weiss ST, Wellis D, Whittle J, Wilson A, Zuchner S, Zwick ME. The All of Us Research Program: Data quality, utility, and diversity. PATTERNS (NEW YORK, N.Y.) 2022; 3:100570. [PMID: 36033590 PMCID: PMC9403360 DOI: 10.1016/j.patter.2022.100570] [Show More Authors] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 03/30/2022] [Accepted: 07/14/2022] [Indexed: 11/05/2022]
Abstract
The All of Us Research Program seeks to engage at least one million diverse participants to advance precision medicine and improve human health. We describe here the cloud-based Researcher Workbench that uses a data passport model to democratize access to analytical tools and participant information including survey, physical measurement, and electronic health record (EHR) data. We also present validation study findings for several common complex diseases to demonstrate use of this novel platform in 315,000 participants, 78% of whom are from groups historically underrepresented in biomedical research, including 49% self-reporting non-White races. Replication findings include medication usage pattern differences by race in depression and type 2 diabetes, validation of known cancer associations with smoking, and calculation of cardiovascular risk scores by reported race effects. The cloud-based Researcher Workbench represents an important advance in enabling secure access for a broad range of researchers to this large resource and analytical tools.
Collapse
|
research-article |
3 |
127 |
22
|
Gardner JM, Wildenberg SC, Keiper NM, Novak EK, Rusiniak ME, Swank RT, Puri N, Finger JN, Hagiwara N, Lehman AL, Gales TL, Bayer ME, King RA, Brilliant MH. The mouse pale ear (ep) mutation is the homologue of human Hermansky-Pudlak syndrome. Proc Natl Acad Sci U S A 1997; 94:9238-43. [PMID: 9256466 PMCID: PMC23134 DOI: 10.1073/pnas.94.17.9238] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The recessive mutation at the pale ear (ep) locus on mouse chromosome 19 was found to be the homologue of human Hermansky-Pudlak syndrome (HPS). A positional cloning strategy using yeast artificial chromosomes spanning the HPS locus was used to identify the HPS gene and its murine counterpart. These genes and their predicted proteins are highly conserved at the nucleotide and amino acid levels. Sequence analysis of the mutant ep gene revealed the insertion of an intracisternal A particle element in a protein-coding 3' exon. Here we demonstrate that mice with the ep mutation exhibit abnormalities similar to human HPS patients in melanosomes and platelet-dense granules. These results establish an animal model of HPS and will facilitate biochemical and molecular analyses of the functions of this protein in the membranes of specialized intracellular organelles.
Collapse
|
research-article |
28 |
115 |
23
|
Wilk MA, McAllister JT, Cooper RF, Dubis AM, Patitucci TN, Summerfelt P, Anderson JL, Stepien KE, Costakos DM, Connor TB, Wirostko WJ, Chiang PW, Dubra A, Curcio CA, Brilliant MH, Summers CG, Carroll J. Relationship between foveal cone specialization and pit morphology in albinism. Invest Ophthalmol Vis Sci 2014; 55:4186-98. [PMID: 24845642 DOI: 10.1167/iovs.13-13217] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Albinism is associated with disrupted foveal development, though intersubject variability is becoming appreciated. We sought to quantify this variability, and examine the relationship between foveal cone specialization and pit morphology in patients with a clinical diagnosis of albinism. METHODS We recruited 32 subjects with a clinical diagnosis of albinism. DNA was obtained from 25 subjects, and known albinism genes were analyzed for mutations. Relative inner and outer segment (IS and OS) lengthening (fovea-to-perifovea ratio) was determined from manually segmented spectral domain-optical coherence tomography (SD-OCT) B-scans. Foveal pit morphology was quantified for eight subjects from macular SD-OCT volumes. Ten subjects underwent imaging with adaptive optics scanning light ophthalmoscopy (AOSLO), and cone density was measured. RESULTS We found mutations in 22 of 25 subjects, including five novel mutations. All subjects lacked complete excavation of inner retinal layers at the fovea, though four subjects had foveal pits with normal diameter and/or volume. Peak cone density and OS lengthening were variable and overlapped with that observed in normal controls. A fifth hyper-reflective band was observed in the outer retina on SD-OCT in the majority of the subjects with albinism. CONCLUSIONS Foveal cone specialization and pit morphology vary greatly in albinism. Normal cone packing was observed in the absence of a foveal pit, suggesting a pit is not required for packing to occur. The degree to which retinal anatomy correlates with genotype or visual function remains unclear, and future examination of larger patient groups will provide important insight on this issue.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
111 |
24
|
Rosemblat S, Durham-Pierre D, Gardner JM, Nakatsu Y, Brilliant MH, Orlow SJ. Identification of a melanosomal membrane protein encoded by the pink-eyed dilution (type II oculocutaneous albinism) gene. Proc Natl Acad Sci U S A 1994; 91:12071-75. [PMID: 7991586 PMCID: PMC45378 DOI: 10.1073/pnas.91.25.12071] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The pink-eyed dilution (p) locus in the mouse is critical to melanogenesis; mutations in the homologous locus in humans, P, are a cause of type II oculocutaneous albinism. Although a cDNA encoded by the p gene has recently been identified, nothing is known about the protein product of this gene. To characterize the protein encoded by the p gene, we performed immunoblot analysis of extracts of melanocytes cultured from wild-type mice with an antiserum from rabbits immunized with a peptide corresponding to amino acids 285-298 of the predicted protein product of the murine p gene. This antiserum recognized a 110-kDa protein. The protein was absent from extracts of melanocytes cultured from mice with two mutations (pcp and p) in which transcripts of the p gene are absent or greatly reduced. Introduction of the cDNA for the p gene into pcp melanocytes by electroporation resulted in expression of the 3.3-kb mRNA and the 110-kDa protein. Upon subcellular fractionation of cultured melanocytes, the 110-kDa protein was found to be present in melanosomes but absent from the vesicular fraction; phase separation performed with the nonionic detergent Triton X-114 confirmed the predicted hydrophobic nature of the protein. These results demonstrate that the p gene encodes a 110-kDa integral melanosomal membrane protein and establish a framework by which mutations at this locus, which diminish pigmentation, can be analyzed at the cellular and biochemical levels.
Collapse
|
research-article |
31 |
105 |
25
|
Yi Z, Cohen-Barak O, Hagiwara N, Kingsley PD, Fuchs DA, Erickson DT, Epner EM, Palis J, Brilliant MH. Sox6 directly silences epsilon globin expression in definitive erythropoiesis. PLoS Genet 2006; 2:e14. [PMID: 16462943 PMCID: PMC1359074 DOI: 10.1371/journal.pgen.0020014] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 12/20/2005] [Indexed: 11/19/2022] Open
Abstract
Sox6 is a member of the Sox transcription factor family that is defined by the conserved high mobility group (HMG) DNA binding domain, first described in the testis determining gene, Sry. Previous studies have suggested that Sox6 plays a role in the development of the central nervous system, cartilage, and muscle. In the Sox6-deficient mouse, p100H, epsilony globin is persistently expressed, and increased numbers of nucleated red cells are present in the fetal circulation. Transfection assays in GM979 (erythroleukemic) cells define a 36-base pair region of the epsilony proximal promoter that is critical for Sox6 mediated repression. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assays demonstrate that Sox6 acts as a repressor by directly binding to the epsilony promoter. The normal expression of Sox6 in wild-type fetal liver and the ectopic expression of epsilony in p100H homozygous fetal liver demonstrate that Sox6 functions in definitive erythropoiesis. The present study shows that Sox6 is required for silencing of epsilony globin in definitive erythropoiesis and suggests a role for Sox6 in erythroid cell maturation. Thus, Sox6 regulation of epsilony globin might provide a novel therapeutical target in the treatment of hemoglobinopathies such as sickle cell anemia and thalassemia.
Collapse
|
Journal Article |
19 |
88 |