1
|
Goodrich GS, Kabakov AY, Hameed MQ, Dhamne SC, Rosenberg PA, Rotenberg A. Ceftriaxone treatment after traumatic brain injury restores expression of the glutamate transporter, GLT-1, reduces regional gliosis, and reduces post-traumatic seizures in the rat. J Neurotrauma 2013; 30:1434-41. [PMID: 23510201 DOI: 10.1089/neu.2012.2712] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Excessive extracellular glutamate after traumatic brain injury (TBI) contributes to excitotoxic cell death and likely to post-traumatic epilepsy. Glutamate transport is the only known mechanism of extracellular glutamate clearance, and glutamate transporter 1 (GLT-1) is the major glutamate transporter of the mammalian brain. We tested, by immunoblot, in the rat lateral fluid percussion injury TBI model whether GLT-1 expression is depressed in the cortex after TBI, and whether GLT-1 expression after TBI is restored after treatment with ceftriaxone, a well-tolerated β-lactam antibiotic previously shown to enhance GLT-1 expression in noninjured animals. We then tested whether treatment with ceftriaxone mitigates the associated regional astrogliosis, as reflected by glial fibrillary acid protein (GFAP) expression, and also whether ceftriaxone treatment mitigates the severity of post-traumatic epilepsy. We found that 7 days after TBI, GLT-1 expression in the ipsilesional cortex was reduced by 29% (n=7/group; p<0.01), relative to the contralesional cortex. However, the loss of GLT-1 expression was reversed by treatment with ceftriaxone (200 mg/kg, daily, intraperitoneally). We found that ceftriaxone treatment also decreased the level of regional GFAP expression by 43% in the lesioned cortex, relative to control treatment with saline (n=7 per group; p<0.05), and, 12 weeks after injury, reduced cumulative post-traumatic seizure duration (n=6 rats in the ceftriaxone treatment group and n=5 rats in the saline control group; p<0.001). We cautiously conclude that our data suggest a potential role for ceftriaxone in treatment of epileptogenic TBI.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
12 |
123 |
2
|
Dhamne SC, Silverman JL, Super CE, Lammers SHT, Hameed MQ, Modi ME, Copping NA, Pride MC, Smith DG, Rotenberg A, Crawley JN, Sahin M. Replicable in vivo physiological and behavioral phenotypes of the Shank3B null mutant mouse model of autism. Mol Autism 2017. [PMID: 28638591 PMCID: PMC5472997 DOI: 10.1186/s13229-017-0142-z] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a clinically and biologically heterogeneous condition characterized by social, repetitive, and sensory behavioral abnormalities. No treatments are approved for the core diagnostic symptoms of ASD. To enable the earliest stages of therapeutic discovery and development for ASD, robust and reproducible behavioral phenotypes and biological markers are essential to establish in preclinical animal models. The goal of this study was to identify electroencephalographic (EEG) and behavioral phenotypes that are replicable between independent cohorts in a mouse model of ASD. The larger goal of our strategy is to empower the preclinical biomedical ASD research field by generating robust and reproducible behavioral and physiological phenotypes in animal models of ASD, for the characterization of mechanistic underpinnings of ASD-relevant phenotypes, and to ensure reliability for the discovery of novel therapeutics. Genetic disruption of the SHANK3 gene, a scaffolding protein involved in the stability of the postsynaptic density in excitatory synapses, is thought to be responsible for a relatively large number of cases of ASD. Therefore, we have thoroughly characterized the robustness of ASD-relevant behavioral phenotypes in two cohorts, and for the first time quantified translational EEG activity in Shank3B null mutant mice. METHODS In vivo physiology and behavioral assays were conducted in two independently bred and tested full cohorts of Shank3B null mutant (Shank3B KO) and wildtype littermate control (WT) mice. EEG was recorded via wireless implanted telemeters for 7 days of baseline followed by 20 min of recording following pentylenetetrazol (PTZ) challenge. Behaviors relevant to the diagnostic and associated symptoms of ASD were tested on a battery of established behavioral tests. Assays were designed to reproduce and expand on the original behavioral characterization of Shank3B KO mice. Two or more corroborative tests were conducted within each behavioral domain, including social, repetitive, cognitive, anxiety-related, sensory, and motor categories of assays. RESULTS Relative to WT mice, Shank3B KO mice displayed a dramatic resistance to PTZ seizure induction and an enhancement of gamma band oscillatory EEG activity indicative of enhanced inhibitory tone. These findings replicated in two separate cohorts. Behaviorally, Shank3B KO mice exhibited repetitive grooming, deficits in aspects of reciprocal social interactions and vocalizations, and reduced open field activity, as well as variable deficits in sensory responses, anxiety-related behaviors, learning and memory. CONCLUSIONS Robust animal models and quantitative, replicable biomarkers of neural dysfunction are needed to decrease risk and enable successful drug discovery and development for ASD and other neurodevelopmental disorders. Complementary to the replicated behavioral phenotypes of the Shank3B mutant mouse is the new identification of a robust, translational in vivo neurophysiological phenotype. Our findings provide strong evidence for robustness and replicability of key translational phenotypes in Shank3B mutant mice and support the usefulness of this mouse model of ASD for therapeutic discovery.
Collapse
|
Journal Article |
8 |
113 |
3
|
Hameed MQ, Dhamne SC, Gersner R, Kaye HL, Oberman LM, Pascual-Leone A, Rotenberg A. Transcranial Magnetic and Direct Current Stimulation in Children. Curr Neurol Neurosci Rep 2017; 17:11. [PMID: 28229395 PMCID: PMC5962296 DOI: 10.1007/s11910-017-0719-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Promising results in adult neurologic and psychiatric disorders are driving active research into transcranial brain stimulation techniques, particularly transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), in childhood and adolescent syndromes. TMS has realistic utility as an experimental tool tested in a range of pediatric neuropathologies such as perinatal stroke, depression, Tourette syndrome, and autism spectrum disorder (ASD). tDCS has also been tested as a treatment for a number of pediatric neurologic conditions, including ASD, attention-deficit/hyperactivity disorder, epilepsy, and cerebral palsy. Here, we complement recent reviews with an update of published TMS and tDCS results in children, and discuss developmental neuroscience considerations that should inform pediatric transcranial stimulation.
Collapse
|
Review |
8 |
83 |
4
|
Klein P, Friedman A, Hameed MQ, Kaminski RM, Bar-Klein G, Klitgaard H, Koepp M, Jozwiak S, Prince DA, Rotenberg A, Twyman R, Vezzani A, Wong M, Löscher W. Repurposed molecules for antiepileptogenesis: Missing an opportunity to prevent epilepsy? Epilepsia 2020; 61:359-386. [PMID: 32196665 PMCID: PMC8317585 DOI: 10.1111/epi.16450] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Abstract
Prevention of epilepsy is a great unmet need. Acute central nervous system (CNS) insults such as traumatic brain injury (TBI), cerebrovascular accidents (CVA), and CNS infections account for 15%-20% of all epilepsy. Following TBI and CVA, there is a latency of days to years before epilepsy develops. This allows treatment to prevent or modify postinjury epilepsy. No such treatment exists. In animal models of acquired epilepsy, a number of medications in clinical use for diverse indications have been shown to have antiepileptogenic or disease-modifying effects, including medications with excellent side effect profiles. These include atorvastatin, ceftriaxone, losartan, isoflurane, N-acetylcysteine, and the antiseizure medications levetiracetam, brivaracetam, topiramate, gabapentin, pregabalin, vigabatrin, and eslicarbazepine acetate. In addition, there are preclinical antiepileptogenic data for anakinra, rapamycin, fingolimod, and erythropoietin, although these medications have potential for more serious side effects. However, except for vigabatrin, there have been almost no translation studies to prevent or modify epilepsy using these potentially "repurposable" medications. We may be missing an opportunity to develop preventive treatment for epilepsy by not evaluating these medications clinically. One reason for the lack of translation studies is that the preclinical data for most of these medications are disparate in terms of types of injury, models within different injury type, dosing, injury-treatment initiation latencies, treatment duration, and epilepsy outcome evaluation mode and duration. This makes it difficult to compare the relative strength of antiepileptogenic evidence across the molecules, and difficult to determine which drug(s) would be the best to evaluate clinically. Furthermore, most preclinical antiepileptogenic studies lack information needed for translation, such as dose-blood level relationship, brain target engagement, and dose-response, and many use treatment parameters that cannot be applied clinically, for example, treatment initiation before or at the time of injury and dosing higher than tolerated human equivalent dosing. Here, we review animal and human antiepileptogenic evidence for these medications. We highlight the gaps in our knowledge for each molecule that need to be filled in order to consider clinical translation, and we suggest a platform of preclinical antiepileptogenesis evaluation of potentially repurposable molecules or their combinations going forward.
Collapse
|
Review |
5 |
62 |
5
|
Shim JW, Sandlund J, Han CH, Hameed MQ, Connors S, Klagsbrun M, Madsen JR, Irwin N. VEGF, which is elevated in the CSF of patients with hydrocephalus, causes ventriculomegaly and ependymal changes in rats. Exp Neurol 2013; 247:703-9. [PMID: 23518418 DOI: 10.1016/j.expneurol.2013.03.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 03/12/2013] [Indexed: 01/02/2023]
Abstract
Hydrocephalus is a condition characterized primarily by excessive accumulation of fluid in the ventricles of the brain for which there is currently no effective pharmacological treatment. Surgery, often accompanied by complications, is the only current treatment. Extensive research in our laboratory along with work from others has suggested a link between hydrocephalus and vascular function. We hypothesized that vascular endothelial growth factor (VEGF), the major angiogenic factor, could play a role in the pathogenesis of hydrocephalus. We tested this hypothesis by examining two predictions of such a link: first, that VEGF is present in many cases of clinical hydrocephalus; and second, that exogenous VEGF in an animal model could cause ventricular enlargement and tissue changes associated with hydrocephalus. Our results support the idea that VEGF elevation can potentiate hydrocephalus. The clinical relevance of this work is that anti-angiogenic drugs may be useful in patients with hydrocephalus, either alone or in combination with the currently available surgical treatments.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
26 |
6
|
Hameed MQ, Hsieh TH, Morales-Quezada L, Lee HHC, Damar U, MacMullin PC, Hensch TK, Rotenberg A. Ceftriaxone Treatment Preserves Cortical Inhibitory Interneuron Function via Transient Salvage of GLT-1 in a Rat Traumatic Brain Injury Model. Cereb Cortex 2019; 29:4506-4518. [PMID: 30590449 PMCID: PMC7150617 DOI: 10.1093/cercor/bhy328] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022] Open
Abstract
Traumatic brain injury (TBI) results in a decrease in glutamate transporter-1 (GLT-1) expression, the major mechanism for glutamate removal from synapses. Coupled with an increase in glutamate release from dead and dying neurons, this causes an increase in extracellular glutamate. The ensuing glutamate excitotoxicity disproportionately damages vulnerable GABAergic parvalbumin-positive inhibitory interneurons, resulting in a progressively worsening cortical excitatory:inhibitory imbalance due to a loss of GABAergic inhibitory tone, as evidenced by chronic post-traumatic symptoms such as epilepsy, and supported by neuropathologic findings. This loss of intracortical inhibition can be measured and followed noninvasively using long-interval paired-pulse transcranial magnetic stimulation with mechanomyography (LI-ppTMS-MMG). Ceftriaxone, a β-lactam antibiotic, is a potent stimulator of the expression of rodent GLT-1 and would presumably decrease excitotoxic damage to GABAergic interneurons. It may thus be a viable antiepileptogenic intervention. Using a rat fluid percussion injury TBI model, we utilized LI-ppTMS-MMG, quantitative PCR, and immunohistochemistry to test whether ceftriaxone treatment preserves intracortical inhibition and cortical parvalbumin-positive inhibitory interneuron function after TBI in rat motor cortex. We show that neocortical GLT-1 gene and protein expression are significantly reduced 1 week after TBI, and this transient loss is mitigated by ceftriaxone. Importantly, whereas intracortical inhibition declines progressively after TBI, 1 week of post-TBI ceftriaxone treatment attenuates the loss of inhibition compared to saline-treated controls. This finding is accompanied by significantly higher parvalbumin gene and protein expression in ceftriaxone-treated injured rats. Our results highlight prospects for ceftriaxone as an intervention after TBI to prevent cortical inhibitory interneuron dysfunction, partly by preserving GLT-1 expression.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
24 |
7
|
MacMullin P, Hodgson N, Damar U, Lee HHC, Hameed MQ, Dhamne SC, Hyde D, Conley GM, Morriss N, Qiu J, Mannix R, Hensch TK, Rotenberg A. Increase in Seizure Susceptibility After Repetitive Concussion Results from Oxidative Stress, Parvalbumin-Positive Interneuron Dysfunction and Biphasic Increases in Glutamate/GABA Ratio. Cereb Cortex 2020; 30:6108-6120. [PMID: 32676666 DOI: 10.1093/cercor/bhaa157] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/29/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic symptoms indicating excess cortical excitability follow mild traumatic brain injury, particularly repetitive mild traumatic brain injury (rmTBI). Yet mechanisms underlying post-traumatic excitation/inhibition (E/I) ratio abnormalities may differ between the early and late post-traumatic phases. We therefore measured seizure threshold and cortical gamma-aminobutyric acid (GABA) and glutamate (Glu) concentrations, 1 and 6 weeks after rmTBI in mice. We also analyzed the structure of parvalbumin-positive interneurons (PVIs), their perineuronal nets (PNNs), and their electroencephalography (EEG) signature (gamma frequency band power). For mechanistic insight, we measured cortical oxidative stress, reflected in the reduced/oxidized glutathione (GSH/GSSG) ratio. We found that seizure susceptibility increased both early and late after rmTBI. However, whereas increased Glu dominated the E/I 1 week after rmTBI, Glu concentration normalized and the E/I was instead characterized by depressed GABA, reduced per-PVI parvalbumin expression, and reduced gamma EEG power at the 6-week post-rmTBI time point. Oxidative stress was increased early after rmTBI, where transient PNN degradation was noted, and progressed throughout the monitoring period. We conclude that GSH depletion, perhaps triggered by early Glu-mediated excitotoxicity, leads to late post-rmTBI loss of PVI-dependent cortical inhibitory tone. We thus propose dampening of Glu signaling, maintenance of redox state, and preservation of PVI inhibitory capacity as therapeutic targets for post-rmTBI treatment.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
19 |
8
|
Shim JW, Sandlund J, Hameed MQ, Blazer-Yost B, Zhou FC, Klagsbrun M, Madsen JR. Excess HB-EGF, which promotes VEGF signaling, leads to hydrocephalus. Sci Rep 2016; 6:26794. [PMID: 27243144 PMCID: PMC4886677 DOI: 10.1038/srep26794] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/10/2016] [Indexed: 01/19/2023] Open
Abstract
Heparin binding epidermal growth factor-like growth factor (HB-EGF) is an angiogenic factor mediating radial migration of the developing forebrain, while vascular endothelial growth factor (VEGF) is known to influence rostral migratory stream in rodents. Cell migratory defects have been identified in animal models of hydrocephalus; however, the relationship between HB-EGF and hydrocephalus is unclear. We show that mice overexpressing human HB-EGF with β-galactosidase reporter exhibit an elevated VEGF, localization of β-galactosidase outside the subventricular zone (SVZ), subarachnoid hemorrhage, and ventriculomegaly. In Wistar polycystic kidney rats with hydrocephalus, alteration of migratory trajectory is detected. Furthermore, VEGF infusions into the rats result in ventriculomegaly with an increase of SVZ neuroblast in rostral migratory stream, whereas VEGF ligand inhibition prevents it. Our results support the idea that excess HB-EGF leads to a significant elevation of VEGF and ventricular dilatation. These data suggest a potential pathophysiological mechanism that elevated HB-EGF can elicit VEGF induction and hydrocephalus.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
13 |
9
|
Hameed MQ, Goodrich GS, Dhamne SC, Amandusson A, Hsieh TH, Mou D, Wang Y, Rotenberg A. A rapid lateral fluid percussion injury rodent model of traumatic brain injury and post-traumatic epilepsy. Neuroreport 2014; 25:532-6. [DOI: 10.1097/wnr.0000000000000132] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
|
11 |
12 |
10
|
Purtell H, Dhamne SC, Gurnani S, Bainbridge E, Modi ME, Lammers SHT, Super CE, Hameed MQ, Johnson EL, Sahin M, Rotenberg A. Electrographic spikes are common in wildtype mice. Epilepsy Behav 2018; 89:94-98. [PMID: 30399547 PMCID: PMC7325561 DOI: 10.1016/j.yebeh.2018.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/06/2018] [Accepted: 09/09/2018] [Indexed: 11/19/2022]
Abstract
High-voltage rhythmic electroencephalographic (EEG) spikes have been recorded in wildtype (WT) rats during periods of light slow-wave sleep and passive wakefulness. The source of this activity is unclear but has been attributed to either an inherent form of absence epilepsy or a normal feature of rodent sleep EEG. In contrast, little is known about epileptiform spikes in WT mice. We thus characterize and quantify epileptiform discharges in WT mice for the first time. Thirty-six male WT C57 mice with 24-h wireless telemetry video-EEG recordings were manually scored by blinded reviewers to mark individual spikes and spike trains. Epileptiform spikes were detected in 100% of the recorded WT mice, and spike trains of at least three spikes were recorded in 90% of mice. The spikes were more frequent during the day than at night and were inversely correlated to each animal's locomotor activity. However, the discharges were not absent during active nighttime periods. These discharges may indicate a baseline tendency toward epileptic seizures or perhaps are benign variants of normal rodent background EEG. Nevertheless, a better understanding of baseline WT EEG activity will aid in differentiating pathological and normal EEG activity in mouse epilepsy models.
Collapse
|
research-article |
7 |
11 |
11
|
Hameed MQ, Zurakowski D, Proctor MR, Stone SSD, Warf BC, Smith ER, Goumnerova LC, Swoboda M, Anor T, Madsen JR. Noninvasive Thermal Evaluation of Ventriculoperitoneal Shunt Patency and Cerebrospinal Fluid Flow Using a Flow Enhancing Device. Neurosurgery 2019; 85:240-249. [PMID: 29917093 DOI: 10.1093/neuros/nyy246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 05/29/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND While a noninvasive flow determination would be desirable in the diagnosis of cerebrospinal fluid shunt malfunction, existing studies have not yet defined a role for thermal flow detection. OBJECTIVE To evaluate a revised test protocol using a micropumper designed to transiently enhance flow during thermal testing to determine whether thermal detection of flow is associated with progression to shunt revision surgery. METHODS Eighty-two unique tests were performed in 71 shunts. The primary outcome, need for revision within 7 d of testing, was compared with results of micropumper-augmented thermal flow detection. Statistical analysis was based on blind interpretation of test results and raw temperature data recorded during testing. RESULTS The test was sensitive (73%) and specific (68%) in predicting need for revision, with 5.6-fold higher probability of revision when flow was not detected. Negative predictive value in our sample was 94.2%. The probability of not requiring revision increased with increasing total temperature drop. Analysis of various possible thresholds showed that the optimal temperature cutoff may be lower than suggested by the manufacturer (0.125°C vs 0.2°C). CONCLUSION This is the first study to report a strong association between thermal flow evaluation and a clinical impression that a shunt is not malfunctioning. The current recommended threshold may increase the false positive rate unnecessarily, and as clinicians gain experience with the method, they may find value in examining the temperature curves themselves. Multicenter studies are suggested to further define a role for this diagnostic test.
Collapse
|
|
6 |
7 |
12
|
Madsen JR, Boyle TP, Neuman MI, Park EH, Tamber MS, Hickey RW, Heuer GG, Zorc JJ, Leonard JR, Leonard JC, Keating R, Chamberlain JM, Frim DM, Zakrzewski P, Klinge P, Merck LH, Piatt J, Bennett JE, Sandberg DI, Boop FA, Hameed MQ. Diagnostic Accuracy of Non-Invasive Thermal Evaluation of Ventriculoperitoneal Shunt Flow in Shunt Malfunction: A Prospective, Multi-Site, Operator-Blinded Study. Neurosurgery 2020; 87:939-948. [PMID: 32459841 PMCID: PMC7566379 DOI: 10.1093/neuros/nyaa128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/27/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Thermal flow evaluation (TFE) is a non-invasive method to assess ventriculoperitoneal shunt function. Flow detected by TFE is a negative predictor of the need for revision surgery. Further optimization of testing protocols, evaluation in multiple centers, and integration with clinical and imaging impressions prompted the current study. OBJECTIVE To compare the diagnostic accuracy of 2 TFE protocols, with micropumper (TFE+MP) or without (TFE-only), to neuro-imaging in patients emergently presenting with symptoms concerning for shunt malfunction. METHODS We performed a prospective multicenter operator-blinded trial of a consecutive series of patients who underwent evaluation for shunt malfunction. TFE was performed, and preimaging clinician impressions and imaging results were recorded. The primary outcome was shunt obstruction requiring neurosurgical revision within 7 d. Non-inferiority of the sensitivity of TFE vs neuro-imaging for detecting shunt obstruction was tested using a prospectively determined a priori margin of −2.5%. RESULTS We enrolled 406 patients at 10 centers. Of these, 68/348 (20%) evaluated with TFE+MP and 30/215 (14%) with TFE-only had shunt obstruction. The sensitivity for detecting obstruction was 100% (95% CI: 88%-100%) for TFE-only, 90% (95% CI: 80%-96%) for TFE+MP, 76% (95% CI: 65%-86%) for imaging in TFE+MP cohort, and 77% (95% CI: 58%-90%) for imaging in the TFE-only cohort. Difference in sensitivities between TFE methods and imaging did not exceed the non-inferiority margin. CONCLUSION TFE is non-inferior to imaging in ruling out shunt malfunction and may help avoid imaging and other steps. For this purpose, TFE only is favored over TFE+MP.
Collapse
|
|
5 |
3 |
13
|
Gersner R, Paredes C, Hameed MQ, Dhamne SC, Pascual‐Leone A, Rotenberg A. Transcranial magnetic stimulation tracks subminute changes in cortical excitability during propofol anesthesia. Ann Clin Transl Neurol 2020; 7:384-389. [PMID: 32061019 PMCID: PMC7085996 DOI: 10.1002/acn3.50981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/16/2019] [Accepted: 12/28/2019] [Indexed: 11/25/2022] Open
Abstract
Automated anesthesia systems that continuously monitor cortical excitability (CE) changes to govern drug infusion rates, are desirable. Paired‐pulse transcranial magnetic stimulation (ppTMS), with electromyography (EMG), provides noninvasive CE measures. We tested whether, and with what temporal resolution, ppTMS‐EMG detects dose‐dependent CE in rats anesthetized with continuous intravenous propofol. Motor‐evoked potentials (MEPs) were recorded every 20 seconds as either propofol bolus or change in infusion rate was applied. ppTMS‐derived measures varied in direct proportion to propofol dose with subminute temporal resolution. We conclude that ppTMS‐EMG enables real‐time markers of target engagement by anesthetics that may be incorporated into an automated device.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
2 |
14
|
Hameed MQ, D'Ambrosio R, Eastman C, Hui B, Lin R, Vermudez SAD, Liebhardt A, Choe Y, Klein P, Rundfeldt C, Löscher W, Rotenberg A. A comparison of the antiepileptogenic efficacy of two rationally chosen multitargeted drug combinations in a rat model of posttraumatic epilepsy. Exp Neurol 2024; 382:114962. [PMID: 39288831 DOI: 10.1016/j.expneurol.2024.114962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/08/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Post-traumatic epilepsy (PTE) is a recurrent and often drug-refractory seizure disorder caused by traumatic brain injury (TBI). No single drug treatment prevents PTE, but preventive drug combinations that may prophylax against PTE have not been studied. Based on a systematic evaluation of rationally chosen drug combinations in the intrahippocampal kainate (IHK) mouse model of acquired epilepsy, we identified two multi-targeted drug cocktails that exert strong antiepileptogenic effects. The first, a combination of levetiracetam (LEV) and topiramate, only partially prevented spontaneous recurrent seizures in the model. We therefore added atorvastatin (ATV) to the therapeutic cocktail (TC) to increase efficacy, forming "TC-001". The second cocktail - a combination of LEV, ATV, and ceftriaxone, termed "TC-002" - completely prevented epilepsy in the mouse IHK model. In the present proof-of-concept study, we tested whether the two drug cocktails prevent epilepsy in a rat PTE model in which recurrent electrographic seizures develop after severe rostral parasagittal fluid percussion injury (FPI). Following FPI, rats were either treated over 3-4 weeks with vehicle or drug cocktails, starting either 1 or 4-6 h after the injury. Using mouse doses of TC-001 and TC-002, no significant antiepileptogenic effect was obtained in the rat PTE model. However, when using allometric scaling of drug doses to consider the differences in body surface area between mice and rats, PTE was prevented by TC-002. Furthermore, the latter drug cocktail partially prevented the loss of perilesional cortical parvalbumin-positive GABAergic interneurons. Plasma and brain drug analysis showed that these effects of TC-002 occurred at clinically relevant levels of the individual TC-002 drug components. In silico analysis of drug-drug brain protein interactions by the STITCH database indicated that TC-002 impacts a larger functional network of epilepsy-relevant brain proteins than each drug alone, providing a potential network pharmacology explanation for the observed antiepileptogenic and neuroprotective effects observed with this combination.
Collapse
|
Comparative Study |
1 |
|
15
|
Dhamne SC, Modi ME, Gray A, Bonazzi S, Craig L, Bainbridge E, Lalani L, Super CE, Schaeffer S, Capre K, Lubicka D, Liang G, Burdette D, McTighe SM, Gurnani S, Vermudez SAD, Curtis D, Wilson CJ, Hameed MQ, D'Amore A, Rotenberg A, Sahin M. Seizure reduction in TSC2-mutant mouse model by an mTOR catalytic inhibitor. Ann Clin Transl Neurol 2023; 10:1790-1801. [PMID: 37545094 PMCID: PMC10578885 DOI: 10.1002/acn3.51868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/14/2023] [Accepted: 07/23/2023] [Indexed: 08/08/2023] Open
Abstract
OBJECTIVE Tuberous sclerosis complex (TSC) is a neurodevelopmental disorder caused by autosomal-dominant pathogenic variants in either the TSC1 or TSC2 gene, and it is characterized by hamartomas in multiple organs, such as skin, kidney, lung, and brain. These changes can result in epilepsy, learning disabilities, and behavioral complications, among others. The mechanistic link between TSC and the mechanistic target of the rapamycin (mTOR) pathway is well established, thus mTOR inhibitors can potentially be used to treat the clinical manifestations of the disorder, including epilepsy. METHODS In this study, we tested the efficacy of a novel mTOR catalytic inhibitor (here named Tool Compound 1 or TC1) previously reported to be more brain-penetrant compared with other mTOR inhibitors. Using a well-characterized hypomorphic Tsc2 mouse model, which displays a translationally relevant seizure phenotype, we tested the efficacy of TC1. RESULTS Our results show that chronic treatment with this novel mTOR catalytic inhibitor (TC1), which affects both the mTORC1 and mTORC2 signaling complexes, reduces seizure burden, and extends the survival of Tsc2 hypomorphic mice, restoring species typical weight gain over development. INTERPRETATION Novel mTOR catalytic inhibitor TC1 exhibits a promising therapeutic option in the treatment of TSC.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
|
16
|
Kamiński K, Socała K, Abram M, Jakubiec M, Reeb KL, Temmermand R, Zagaja M, Maj M, Kolasa M, Faron‐Górecka A, Andres‐Mach M, Szewczyk A, Hameed MQ, Fontana ACK, Rotenberg A, Kamiński RM. Enhancement of Glutamate Uptake as Novel Antiseizure Approach: Preclinical Proof of Concept. Ann Neurol 2025; 97:344-357. [PMID: 39512205 PMCID: PMC11740271 DOI: 10.1002/ana.27124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/14/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
OBJECTIVE Excitotoxicity is a common hallmark of epilepsy and other neurological diseases associated with elevated extracellular glutamate levels. Thus, here, we studied the protective effects of (R)-AS-1, a positive allosteric modulator (PAM) of glutamate uptake in epilepsy models. METHODS (R)-AS-1 was evaluated in a range of acute and chronic seizure models, while its adverse effect profile was assessed in a panel of standard tests in rodents. The effect of (R)-AS-1 on glutamate uptake was assessed in COS-7 cells expressing the transporter. WAY 213613, a selective competitive EAAT2 inhibitor, was used to probe the reversal of the enhanced glutamate uptake in the same transporter expression system. Confocal microscopy and Western blotting analyses were used to study a potential influence of (R)-AS-1 on GLT-1 expression in mice. RESULTS (R)-AS-1 showed robust protection in a panel of animal models of seizures and epilepsy, including the maximal electroshock- and 6 Hz-induced seizures, corneal kindling, mesial temporal lobe epilepsy, lamotrigine-resistant amygdala kindling, as well as seizures induced by pilocarpine or Theiler's murine encephalomyelitis virus. Importantly, (R)-AS-1 displayed a favorable adverse effect profile in the rotarod, the minimal motor impairment, and the Irwin tests. (R)-AS-1 enhanced glutamate uptake in vitro and this effect was abolished by WAY 213613, while no influence on GLT-1 expression in vivo was observed after repeated treatment. INTERPRETATION Collectively, our results show that (R)-AS-1 has favorable tolerability and provides robust preclinical efficacy against seizures. Thus, allosteric enhancement of EAAT2 function could offer a novel therapeutic strategy for treatment of epilepsy and potentially other neurological disorders associated with glutamate excitotoxicity. ANN NEUROL 2025;97:344-357.
Collapse
|
research-article |
1 |
|
17
|
D'Amore A, Marchese M, Afshar-Saber W, Hameed MQ. Editorial: In vitro and in vivo models for neurodevelopmental disorders. Front Neurosci 2023; 17:1239577. [PMID: 37502680 PMCID: PMC10368529 DOI: 10.3389/fnins.2023.1239577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
|
Editorial |
2 |
|
18
|
Hameed MQ, Hui B, Lin R, MacMullin PC, Pascual‐Leone A, Vermudez SAD, Rotenberg A. Depressed glutamate transporter 1 expression in a mouse model of Dravet syndrome. Ann Clin Transl Neurol 2023; 10:1695-1699. [PMID: 37452008 PMCID: PMC10502630 DOI: 10.1002/acn3.51851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Dravet syndrome (DS) is a monogenic, often refractory, epilepsy resultant from SCN1A haploinsufficiency in humans. A novel therapeutic target in DS that can be engaged in isolation or as adjunctive therapy is highly desirable. Here, we demonstrate reduced expression of the rodent glutamate transporter type 1 (GLT-1) in a DS mouse model, and in wild type mouse strains where Scn1a haploinsufficiency is most likely to cause epilepsy, indicating that GLT-1 depression may play a role in DS seizures. As GLT-1 can be upregulated by common and safe FDA-approved medications, this strategy may be an attractive, viable, and novel avenue for DS treatment.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
|
19
|
Hameed MQ, Hodgson N, Lee HHC, Pascual-Leone A, MacMullin PC, Jannati A, Dhamne SC, Hensch TK, Rotenberg A. N-acetylcysteine treatment mitigates loss of cortical parvalbumin-positive interneuron and perineuronal net integrity resulting from persistent oxidative stress in a rat TBI model. Cereb Cortex 2023; 33:4070-4084. [PMID: 36130098 PMCID: PMC10068300 DOI: 10.1093/cercor/bhac327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) increases cerebral reactive oxygen species production, which leads to continuing secondary neuronal injury after the initial insult. Cortical parvalbumin-positive interneurons (PVIs; neurons responsible for maintaining cortical inhibitory tone) are particularly vulnerable to oxidative stress and are thus disproportionately affected by TBI. Systemic N-acetylcysteine (NAC) treatment may restore cerebral glutathione equilibrium, thus preventing post-traumatic cortical PVI loss. We therefore tested whether weeks-long post-traumatic NAC treatment mitigates cortical oxidative stress, and whether such treatment preserves PVI counts and related markers of PVI integrity and prevents pathologic electroencephalographic (EEG) changes, 3 and 6 weeks after fluid percussion injury in rats. We find that moderate TBI results in persistent oxidative stress for at least 6 weeks after injury and leads to the loss of PVIs and the perineuronal net (PNN) that surrounds them as well as of per-cell parvalbumin expression. Prolonged post-TBI NAC treatment normalizes the cortical redox state, mitigates PVI and PNN loss, and - in surviving PVIs - increases per-cell parvalbumin expression. NAC treatment also preserves normal spectral EEG measures after TBI. We cautiously conclude that weeks-long NAC treatment after TBI may be a practical and well-tolerated treatment strategy to preserve cortical inhibitory tone post-TBI.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
|
20
|
Vermudez SAD, Lin R, McGinty GE, Choe Y, Liebhardt A, Hui B, Lubbers E, Dhamne SC, Hameed MQ, Rotenberg A. Sex differences in seizure presentation in a Dravet syndrome mouse model. Neuroreport 2025:00001756-990000000-00346. [PMID: 40203292 DOI: 10.1097/wnr.0000000000002159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
OBJECTIVES Dravet syndrome is an epileptic encephalopathy mostly because of haploinsufficiency of the SCN1A voltage-gated sodium channel subunit. Disease presentation (i.e. severe seizures and early life mortality) is faithfully modeled in mice haploinsufficient in Scn1a (Scn1a+/-). However, the characterization of sex differences in mortality and seizure morbidity is limited. Given the reliance of mouse models for studying disease pathophysiology and for the development of novel treatments, we tested whether disease presentation differed in juvenile and adult female and male Scn1a+/- mice. METHODS Mortality and seizure morbidity were quantified in juvenile and adult female and male Scn1a+/- animals on an F1 hybrid C57 × 129S6 background. RESULTS Mortality was significantly higher in female Scn1a+/- mice compared with males regardless of age, and juvenile female Scn1a+/- mice had a significantly lower febrile seizure threshold than age-matched Scn1a+/- males. Conversely, long-term video EEG recordings revealed that adult male Scn1a+/- mice had significantly more frequent and longer spontaneous seizures than adult females. Adult female Scn1a+/- mice, however, were significantly more hyperactive, which may indicate sleep impairment. CONCLUSION The phenotypic presentation of Scn1a+/- mice is sex-dependent which may have translational implications for understanding basic pathophysiological mechanisms as well as therapeutic drug discovery in Dravet syndrome.
Collapse
|
|
1 |
|