1
|
Chartrel N, Alvear-Perez R, Leprince J, Iturrioz X, Reaux-Le Goazigo A, Audinot V, Chomarat P, Coge F, Nosjean O, Rodriguez M, Galizzi JP, Boutin JA, Vaudry H, Llorens-Cortes C. Comment on "Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin's effects on food intake". Science 2007; 315:766; author reply 766. [PMID: 17289961 DOI: 10.1126/science.1135047] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Zhang et al. (Research Articles, 11 November 2005, p. 996) reported that obestatin, a peptide derived from the ghrelin precursor, activated the orphan G protein-coupled receptor GPR39. However, we found that I125-obestatin does not bind GPR39 and observed no effects of obestatin on GPR39-transfected cells in various functional assays (cyclic adenosine monophosphate production, calcium mobilization, and GPR39 internalization). Our results indicate that obestatin is not the cognate ligand for GPR39.
Collapse
|
Journal Article |
18 |
150 |
2
|
Chartrel N, Tonon MC, Vaudry H, Conlon JM. Primary structure of frog pituitary adenylate cyclase-activating polypeptide (PACAP) and effects of ovine PACAP on frog pituitary. Endocrinology 1991; 129:3367-71. [PMID: 1720095 DOI: 10.1210/endo-129-6-3367] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP), a peptide of the glucagon-secretin-vasoactive intestinal polypeptide superfamily, was isolated in pure form from the brain of the European green frog, Rana ridibunda. The primary structure of the peptide indicates that evolutionary pressure to conserve the complete amino acid sequence has been very strong. Frog PACAP comprises 38 amino acid residues and contains only 1 substitution (isoleucine for valine at position 35) compared with human/ovine/rat PACAP. In the presence of the phosphodiesterase inhibitor isobutylmethylxanthine, synthetic ovine PACAP-(1-38) produced a dose-dependent increase in the concentration of cAMP in isolated frog anterior pituitary fragments (ED50 = 2.1 +/- 0.6 x 10(-7) M; mean +/- SE; n = 6). Maximum stimulation (an approximately 8-fold increase in concentration over basal values) was produced by 10(-6) M peptide. The truncated form of PACAP [PACAP-(1-27)] also produced a dose-dependent increase in cAMP in frog anterior pituitary fragments, and the potency of the peptide (ED50 = 5.9 +/- 0.6 x 10(-8) M) was comparable to that of PACAP-(1-38). The data suggest, therefore, that the function as well as the structure of PACAP have been conserved during the evolution of amphibia to mammals.
Collapse
|
|
34 |
104 |
3
|
Gouardères C, Mazarguil H, Mollereau C, Chartrel N, Leprince J, Vaudry H, Zajac JM. Functional differences between NPFF1 and NPFF2 receptor coupling: high intrinsic activities of RFamide-related peptides on stimulation of [35S]GTPgammaS binding. Neuropharmacology 2006; 52:376-86. [PMID: 17011599 DOI: 10.1016/j.neuropharm.2006.07.034] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 07/28/2006] [Accepted: 07/28/2006] [Indexed: 11/30/2022]
Abstract
By using an optimized [(35)S]GTPgammaS binding assay, the functional activities (potency and efficacy) of peptides belonging to three members of the RFamide family; Neuropeptide FF (NPFF), prolactin-releasing peptide (PrRP) and 26RFamide, were investigated on NPFF(1) and NPFF(2) receptors stably expressed in Chinese Hamster Ovary (CHO) cells. Despite their large differences in affinity and selectivity, all analogues tested behaved as agonists toward NPFF(1) and NPFF(2) receptors. High NaCl concentration in the assay strongly increased the efficacy toward NPFF(2) receptors and augmented differences among agonists. In low sodium conditions, whereas the potencies of agonists correlated with their affinities for NPFF(1) receptors, NPFF(2) receptors exhibited an extraordinary activity since all compounds tested displayed EC(50) values of GTPgammaS binding lower than their K(I) values. Comparisons of functional values between NPFF(1) and NPFF(2) receptors revealed unexpected potent selective NPFF(2) agonists especially for the PLRFamide and the VGRFamide sequences. By using blocker peptides, we also show that Galpha(i3) and Galpha(s) are the main transducers of NPFF(1) receptors while NPFF(2) are probably coupled with Galpha(i2), Galpha(i3), Galpha(o) and Galpha(s) proteins. Our data indicate that NPPF(1) and NPFF(2) receptors are differently coupled to G proteins in CHO cells.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
76 |
4
|
Navarro VM, Fernández-Fernández R, Nogueiras R, Vigo E, Tovar S, Chartrel N, Le Marec O, Leprince J, Aguilar E, Pinilla L, Dieguez C, Vaudry H, Tena-Sempere M. Novel role of 26RFa, a hypothalamic RFamide orexigenic peptide, as putative regulator of the gonadotropic axis. J Physiol 2006; 573:237-49. [PMID: 16543265 PMCID: PMC1779712 DOI: 10.1113/jphysiol.2006.106856] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The close link between reproductive function and body energy stores relies on a complex neuroendocrine network of common regulatory signals, the nature of which is yet to be fully elucidated. Recently, 26RFa was identified in amphibians and mammals as a conserved hypothalamic neuropeptide of the RFamide family, with a potent orexigenic activity. Yet, despite its proposed role as hypophysiotropic factor, the function of 26RFa in the control of pituitary gonadotropins and, hence, of the reproductive axis remains unexplored. In the present study, the effects of 26RFa on gonadotropin secretion were evaluated in the rat by a combination of in vitro and in vivo approaches. At the pituitary, 26RFa dose-dependently enhanced basal and gonadotropin-releasing hormone (GnRH)-stimulated luteinizing hormone (LH) secretion from male and cyclic female rats. This effect was mimicked by the active fragment 26RFa(20-26), as well as by the related 43RFa peptide. Moreover, expression of the genes encoding 26RFa and its putative receptor, GPR103, was demonstrated in rat pituitary throughout postnatal development. In vivo, intracerebral injection of 26RFa evoked a significant increase in serum LH levels in cyclic and ovariectomized females; this response which was also observed after central injection of 26RFa(20-26) and 43RFa peptides, as well as after systemic administration of 26RFa. Conversely, central and systemic injection of 26RFa failed to significantly modify gonadotropin secretion in adult male rats, even after repeated administration of the peptide. In summary, we present herein novel evidence for the potential role of the orexigenic peptide 26RFa in the control of the gonadotropic axis, thus suggesting its potential involvement in the joint control of energy balance and reproduction, especially in the female.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
70 |
5
|
Chartrel N, Conlon JM, Danger JM, Fournier A, Tonon MC, Vaudry H. Characterization of melanotropin-release-inhibiting factor (melanostatin) from frog brain: homology with human neuropeptide Y. Proc Natl Acad Sci U S A 1991; 88:3862-6. [PMID: 1673794 PMCID: PMC51553 DOI: 10.1073/pnas.88.9.3862] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A polypeptide was purified from frog brain extracts on the basis of its ability to inhibit alpha-melanotropin release from perifused frog neurointermediate lobes. Based on Edman degradation, amino acid analysis, and peptide mapping, the primary structure of this frog melanotropin-release-inhibiting factor (melanostatin) was determined to be H-Tyr-Pro-Ser-Lys-Pro-Asp-Asn-Pro-Gly-Glu-Asp-Ala-Pro-Ala-Glu-Asp-Met- Ala-Lys-Tyr-Tyr-Ser-Ala-Leu-Arg-His-Tyr-Ile-Asn-Leu-Ile-Thr-Arg-Gln-Arg- Tyr-NH2 . Frog melanostatin belongs to the pancreatic polypeptide/neuropeptide Y/peptide YY family, and the structure of this peptide differs from that of human neuropeptide Y by only one amino acid substitution in position 19. A synthetic replicate of frog melanostatin is coeluted with the native peptide on HPLC and is highly potent in inhibiting alpha-melanotropin secretion in vitro (IC50 = 60 nM).
Collapse
|
research-article |
34 |
69 |
6
|
Yon L, Feuilloley M, Chartrel N, Arimura A, Conlon JM, Fournier A, Vaudry H. Immunohistochemical distribution and biological activity of pituitary adenylate cyclase-activating polypeptide (PACAP) in the central nervous system of the frog Rana ridibunda. J Comp Neurol 1992; 324:485-9. [PMID: 1331206 DOI: 10.1002/cne.903240403] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The primary structure of frog pituitary adenylate cyclase-activating polypeptide (PACAP) has recently been determined and the results show that the sequence of PACAP has been highly conserved during evolution. In particular, the structure of the 1-27 fragment of PACAP is identical in frog and mammals. Using an antiserum raised against PACAP27, we have investigated the distribution of PACAP-containing neurons in the central nervous system of the frog Rana ridibunda by the immunofluorescence technique. The main populations of immunoreactive perikarya were located in the medial and ventral diencephalon, i.e., the preoptic nucleus, the ventral and dorsal infundibular nuclei, the nucleus posterocentralis thalami, and the ventral and ventrolateral areas of the thalamus. In the telencephalon, sparse cell bodies were found in the nucleus accumbens septi, the amygdala, the pallial commissure, and the bed nucleus of the pallial commissure. In the hindbrain, the torus semicircularis, the nucleus profundus and the nucleus anteroventralis tegmenti of the mesencephalon also contained populations of PACAP-immunoreactive perikarya. Beaded nerve fibers were observed throughout the brain. Occasionally they formed bundles, e.g., from the ventral infundibulum to the external vascular layer of the median eminence, from the central thalamus to the optic tectum, and rostrocaudally, from the nucleus accumbens septi to the nucleus entopeduncularis. Other areas, such as the interpeduncular nucleus, the nucleus isthmi and the roots of cranial nerves V and VIII in the medulla oblongata, were also densely innervated. The adenylate cyclase-stimulating activity of PACAP was tested by using a static incubation technique for hypothalamic slices.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
|
33 |
61 |
7
|
Galas L, Vaudry H, Braun B, Van Den Pol AN, De Lecea L, Sutcliffe JG, Chartrel N. Immunohistochemical localization and biochemical characterization of hypocretin/orexin-related peptides in the central nervous system of the frog Rana ridibunda. J Comp Neurol 2001; 429:242-52. [PMID: 11116217 DOI: 10.1002/1096-9861(20000108)429:2<242::aid-cne5>3.0.co;2-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the present study, we have investigated the distribution and biochemical characteristics of hypocretin (hcrt) -like immunoreactivity in the central nervous system (CNS) of the frog Rana ridibunda by using an antiserum directed against rat hcrt2. Immunoreactive cell bodies were only detected in four diencephalic nuclei, including the anterior preoptic area and the suprachiasmatic, magnocellular, and ventral hypothalamic nuclei. In contrast, hcrt2-immunoreactive fibers were widely distributed throughout the frog CNS. In particular, a high density of hcrt-positive fibers was detected in several areas of the telencephalon, including the olfactory bulb, the nucleus of the diagonal band of Broca, and the amygdala. A dense network of hcrt-containing fibers was observed in all thalamic and hypothalamic nuclei. A low to moderate density of immunoreactive fibers was also found in the mesencephalon, rhombencephalon, and spinal cord. Reversed-phase high performance liquid chromatography analysis of frog brain extracts revealed that hcrt2-immunoreactive material eluted as two peaks, the major one exhibiting the same retention time as synthetic rat hcrt2. The present data provide the first detailed mapping of the hcrt neuronal system in the CNS of a nonmammalian vertebrate. The occurrence of hcrt-containing cell bodies in the hypothalamus and the widespread distribution of hcrt-immunoreactive fibers throughout the brain and spinal cord suggest that, in amphibians, hcrts may exert neuroendocrine, neurotransmitter, and/or neuromodulator activities.
Collapse
|
|
24 |
53 |
8
|
Vaudry H, Chartrel N, Conlon JM. Isolation of [Pro2,Met13]Somatostatin-14 and somatostatin-14 from the frog brain reveals the existence of a somatostatin gene family in a tetrapod. Biochem Biophys Res Commun 1992; 188:477-82. [PMID: 1358069 DOI: 10.1016/0006-291x(92)92409-q] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Two somatostatin-related peptides were isolated in pure form from an extract of the brain of the European green frog, Rana ridibunda. The primary structure of the most abundant component was identical to that of mammalian somatostatin-14. The primary structure of the second component, present in approximately 5% of the abundance of somatostatin-14, was established as Ala-Pro-Cys-Lys-Asn-Phe-Phe-Trp-Lys-Thr-Phe-Thr-Met-Cys. This sequence shows two substitutions (Pro for Gly2 and Met for Ser13) compared with mammalian somatostatin-14. The data provide evidence for a somatostatin gene family in tetrapods as well as in teleost fish.
Collapse
|
|
33 |
52 |
9
|
Chartrel N, Conlon JM, Collin F, Braun B, Waugh D, Vallarino M, Lahrichi SL, Rivier JE, Vaudry H. Urotensin II in the central nervous system of the frog Rana ridibunda: immunohistochemical localization and biochemical characterization. J Comp Neurol 1996; 364:324-39. [PMID: 8788253 DOI: 10.1002/(sici)1096-9861(19960108)364:2<324::aid-cne10>3.0.co;2-p] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Urotensin II (UII) is traditionally regarded as a product of the neurosecretory cells in the caudal portion of the spinal cord of jawed fishes. A peptide related to UII has been recently isolated from the frog brain, thereby providing the first evidence that UII is also present in the central nervous system of a tetrapod. In the present study, we have investigated the distribution of UII-immunoreactive elements in the brain and spinal cord of the frog Rana ridibunda by immunofluorescence using an antiserum directed against the conserved cyclic region of the peptide. Two distinct populations of UII-immunoreactive perikarya were visualized. The first group of positive neurons was found in the nucleus hypoglossus of the medulla oblongata, which controls two striated muscles of the tongue. The second population of immunoreactive cell bodies was represented by a subset of motoneurons that were particularly abundant in the caudal region of the cord (34% of the motoneuron population). The telencephalon, diencephalon, mesencephalon, and metencephalon were totally devoid of UII-containing cell bodies but displayed dense networks of UII-immunoreactive fibers, notably in the thalamus, the tectum, the tegmentum, and the granular layer of the cerebellum. In addition, a dense bundle of long varicose processes projecting rostrocaudally was observed coursing along the ventral surface of the brain from the midtelencephalon to the medulla oblongata. Reversed-phase high-performance liquid chromatography analysis of frog brain, medulla oblongata, and spinal cord extracts revealed that, in all three regions, UII-immunoreactive material eluted as a single peak which exhibited the same retention time as synthetic frog UII. Taken together, these data indicate that UII, in addition to its neuroendocrine functions in fish, is a potential regulatory peptide in the central nervous system of amphibians.
Collapse
|
|
29 |
46 |
10
|
Collin F, Chartrel N, Fasolo A, Conlon JM, Vandesande F, Vaudry H. Distribution of two molecular forms of gonadotropin-releasing hormone (GnRH) in the central nervous system of the frog Rana ridibunda. Brain Res 1995; 703:111-28. [PMID: 8719623 DOI: 10.1016/0006-8993(95)01074-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Two molecular forms of gonadotropin-releasing hormone (GnRH) have been recently characterized in the brain of the frog Rana ridibunda i.e. mammalian GnRH (mGnRH) and chicken GnRH-II (cGnRH-II). Using highly specific antisera against each form of GnRH, we have investigated the distribution of these two neuropeptides in the frog brain by the indirect immunofluorescence and the peroxidase-antiperoxidase techniques. mGnRH-immunoreactive cell bodies were restricted to a well defined region corresponding to the septal-anterior preoptic area. mGnRH-containing fibers projected through the ventral diencephalon and ended in the median eminence. In contrast, cGnRH-II-immunoreactive structures were widely distributed in the frog brain. In the telencephalon cGnRH-II-positive elements formed a ventromedial column extending from the olfactory bulb to the septal area, a pathway which corresponds to the terminal nerve. A dense accumulation of cGnRH-II-immunoreactive cell bodies was also found in the septal-anterior preoptic area; these neurons sent processes towards the median eminence via the hypothalamus. Double immunostaining revealed that, in this area, mGnRH- and cGnRH-II-like immunoreactivity co-existed in the same neurons. In the mid-diencephalon, numerous cGnRH-II-immunoreactive perikarya were found, surrounding the third ventricle, in the posterior preoptic and infundibular areas. Many of these neurons sent processes towards the ventricular cavity. More caudally, a dense population of cGnRH-II-immunoreactive perikarya was also observed in the nucleus of the paraventricular organ and the posterior tubercle. Dorsally, the thalamus, the tegmentum, the tectum and the granular layer of the cerebellum were richly innervated by cGnRH-II-positive fibers. In the medulla oblongata, numerous cGnRH-II-immunoreactive perikarya were seen in several cranial nerve nuclei. Ventrally, a dense plexus of immunoreactive fibers projected rostrocaudally into the spinal cord. The occurrence of mGnRH- and cGnRH-II-like immunoreactivity in the septal-anterior preoptic area and the hypothalamo-pituitary pathway supports the view that both peptides act as hypophysiotropic neurohormones. The widespread distribution of cGnRH-II-immunoreactive elements in the central nervous system of the frog strongly suggests that this peptide may also exert neuromodulator and/or neurotransmitter activities.
Collapse
|
|
30 |
39 |
11
|
Conlon JM, Chartrel N, Vaudry H. Primary structure of frog PYY: implications for the molecular evolution of the pancreatic polypeptide family. Peptides 1992; 13:145-9. [PMID: 1620652 DOI: 10.1016/0196-9781(92)90154-u] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A peptide belonging to the pancreatic polypeptide (PP) family was isolated in pure form from the intestine of the European green frog (Rana ridibunda). The primary structure of the peptide was established as: Tyr-Pro-Pro-Lys-Pro-Glu-Asn-Pro-Gly-Glu10-Asp-Ala- Ser-Pro-Glu-Glu-Met-Thr-Lys-Tyr20-Leu-Thr-Ala-Leu-Arg-His-Tyr-Ile- Asn-Leu30-Val - Thr-Arg-Gln-Arg-Tyr-NH2. This amino acid sequence shows moderate structural similarity to human PYY (75% identity) but stronger similarity to the PP family peptides isolated from the pancreas of the salmon (86%) and dogfish (83%). The data suggest that the two putative duplications of an ancestral PP family gene that have given rise to PP, PYY and NPY in mammals had already taken place by the time of the appearance of the amphibia. In fish, however, only a single duplication has occurred, giving rise to NPY in nervous tissue and a PYY-related peptide in both pancreas and gut.
Collapse
|
|
33 |
33 |
12
|
Jeandel L, Okuno A, Kobayashi T, Kikuyama S, Tostivint H, Lihrmann I, Chartrel N, Conlon JM, Fournier A, Tonon MC, Vaudry H. Effects of the two somatostatin variants somatostatin-14 and [Pro2, Met13]somatostatin-14 on receptor binding, adenylyl cyclase activity and growth hormone release from the frog pituitary. J Neuroendocrinol 1998; 10:187-92. [PMID: 9576606 DOI: 10.1046/j.1365-2826.1998.00188.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Two isoforms of somatostatin from frog brain have been recently characterized, namely somatostatin-14 (SS1) and [Pro2, Met13]somatostatin-14 (SS2). The genes encoding for the precursors of these two somatostatin variants are expressed in hypothalamic nuclei involved in the control of the frog pituitary. The aim of the present study was to investigate the effect of SS1 and SS2 on adenohypophysial cells. Autoradiographic studies using [125I-Tyr, D-Trp8] SS1 as a radioligand revealed that somatostatin binding sites are evenly distributed in the frog pars distalis. The SS2 variant was significantly (P < 0.01) more potent than SS1 in competing with the radioligand (IC50= 1.2 +/- 0.2 and 5.6 +/- 0.6 nM, respectively). Both SS1 and SS2 induced a modest but significant reduction in cAMP formation in dispersed distal lobe cells but did not affect spontaneous growth hormone (GH) release. Synthetic human GRF (hGRF) induced a significant increase in cAMP accumulation and GH release in this system. Both SS1 and SS2 inhibited the stimulatory effects of hGRF on cAMP formation and GH secretion. These data show that the SS1 and SS2 variants can regulate adenohypophysial functions. The fact that GH cells are exclusively located in the dorsal area of the frog adenohypophysis, while somatostatin receptors are present throughout the pars distalis, indicates that the two somatostatin isoforms may control the secretion of pituitary hormones additional to GH in amphibians.
Collapse
|
|
27 |
32 |
13
|
Vaudry H, Chartrel N, Desrues L, Galas L, Kikuyama S, Mor A, Nicolas P, Tonon MC. The pituitary-skin connection in amphibians. Reciprocal regulation of melanotrope cells and dermal melanocytes. Ann N Y Acad Sci 1999; 885:41-56. [PMID: 10816640 DOI: 10.1111/j.1749-6632.1999.tb08664.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In amphibians, alpha-MSH secreted by the pars intermedia of the pituitary plays a pivotal role in the process of skin color adaptation. Reciprocally, the skin of amphibians contains a number of regulatory peptides, some of which have been found to regulate the activity of pituitary melanotrope cells. In particular, the skin of certain species of amphibians harbours considerable amounts of thyrotropin-releasing hormone, a highly potent stimulator of alpha-MSH release. Recently, we have isolated and sequenced from the skin of the frog Phyllomedusa bicolor--a novel peptide named skin peptide tyrosine tyrosine (SPYY), which exhibits 94% similarity with PYY from the frog Rana ridibunda. For concentrations ranging from 5 x 10(-10) to 10(-7) M, SPYY induces a dose-related inhibition of alpha-MSH secretion. At a dose of 10(-7) M, SPYY totally abolished alpha-MSH release. These data strongly suggest the existence of a regulatory loop between the pars intermedia of the pituitary and the skin in amphibians.
Collapse
|
Review |
26 |
31 |
14
|
Conlon JM, Yano K, Chartrel N, Vaudry H, Storey KB. Freeze tolerance in the wood frog Rana sylvatica is associated with unusual structural features in insulin but not in glucagon. J Mol Endocrinol 1998; 21:153-9. [PMID: 9801458 DOI: 10.1677/jme.0.0210153] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The wood frog Rana sylvatica utilises glucose, derived from hepatic glycogen, as a cryoprotectant in order to survive freezing during winter hibernation, and glycogenolysis is initiated by hormonal and/or neural stimuli. The primary structure of insulin was determined from R. sylvatica and from two species of freeze-intolerant Ranid frogs R. catesbeiana (American bullfrog) and R. ridibunda (European green frog). All three insulins contain a dipeptide (Lys-Pro) extension to the N-terminus of the A-chain. The amino acid sequences of insulins from R. catesbeiana and R. ridibunda differ by only one residue (Asp for Glu at B21) but R. sylvatica insulin differs from R. catesbeiana insulin at A12 (Thr-->Met), A23 (Asn-->Ser), B5 (Tyr-->His) and B13 (Glu-->Asp). The residue at A23 (corresponding to A21 in human insulin) has been otherwise fully conserved during evolution and the residue at B13 has been strongly conserved in tetrapods. Insulin isolated from specimens of R. sylvatica that had been frozen for 24 h and from control animals that had not been frozen had the same structure, showing that freezing did not alter the pathway of post-translational processing of proinsulin. R. sylvatica glucagon was isolated in two molecular forms. Glucagon-29 was identical to R. catesbeiana glucagon-29 and contains only one amino acid substitution (Thr-->Ser) compared with human glucagon. Glucagon-36 represents glucagon-29 extended from its C-terminus by Lys-Arg-Ser-Gly-Gly-Ile-Ser and is identical to R. catesbeiana glucagon-36. We speculate that selective changes in the structure of the insulin molecule may contribute to the anomalous regulation of glycogen phosphorylase in the wood frog.
Collapse
|
|
27 |
31 |
15
|
Mor A, Chartrel N, Vaudry H, Nicolas P. Skin peptide tyrosine-tyrosine, a member of the pancreatic polypeptide family: isolation, structure, synthesis, and endocrine activity. Proc Natl Acad Sci U S A 1994; 91:10295-9. [PMID: 7937944 PMCID: PMC45006 DOI: 10.1073/pnas.91.22.10295] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Pancreatic polypeptide, peptide tyrosine-tyrosine (PYY), and neuropeptide tyrosine (NPY), three members of a family of structurally related peptides, are mainly expressed in the endocrine pancreas, in endocrine cells of the gut, and in the brain, respectively. In the present study, we have isolated a peptide of the pancreatic polypeptide family from the skin of the South American arboreal frog Phyllomedusa bicolor. The primary structure of the peptide was established as Tyr-Pro-Pro-Lys-Pro-Glu-Ser-Pro-Gly-Glu10-Asp-Ala-Ser-Pro-Glu-Glu- Met-Asn- Lys-Tyr20-Leu-Thr-Ala-Leu-Arg-His-Tyr-Ile-Asn-Leu30-Val-Thr- Arg-Gln-Arg-Tyr-NH2 . This unusual peptide, named skin peptide tyrosine-tyrosine (SPYY), exhibits 94% similarity with PYY from the frog Rana ridibunda. A synthetic replicate of SPYY inhibits melanotropin release from perifused frog neurointermediate lobes in very much the same way as NPY. These results demonstrate the occurrence of a PYY-like peptide in frog skin. Our data also suggest the existence of a pituitary-skin regulatory loop in amphibians.
Collapse
|
research-article |
31 |
31 |
16
|
Chartrel N, Wang Y, Fournier A, Vaudry H, Conlon JM. Frog vasoactive intestinal polypeptide and galanin: primary structures and effects on pituitary adenylate cyclase. Endocrinology 1995; 136:3079-86. [PMID: 7540547 DOI: 10.1210/endo.136.7.7540547] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Vasoactive intestinal polypeptide (VIP) and galanin were isolated in pure form from the stomach of the European green frog, Rana ridibunda. Frog VIP is identical to the previously characterized VIP from chicken and alligator. The primary structure of frog galanin contains only two amino acid substitutions (asparagine for histidine at position 23 and histidine for tyrosine at position 26) compared with porcine galanin. The data indicate that evolutionary pressure to conserve the amino acid sequence of both peptides during the evolution of amphibia to mammals has been strong. Synthetic frog VIP produced a dose-dependent increase in cAMP concentration in frog anterior pituitary fragments. The potency of the peptide (ED50 = 1.2 x 10(-6) M; mean +/- SE; n = 8) was comparable to that of porcine VIP (EC50 = 1.3 x 10(-6) M), but was approximately 10-fold less than that of frog pituitary adenylate cyclase-activating polypeptide [PACAP-(1-38); ED50 = 1.1 x 10(-7) M] in the same system. The increases in cAMP concentrations produced by maximal doses of PACAP (10(-5) M) and VIP (10(-5) M) were not additive. The data suggest that the effects of both peptides are mediated through a common PACAP-preferring receptor that is pharmacologically different from the mammalian PACAP type I receptor. Synthetic frog galanin also produced a dose-dependent increase in the concentration of cAMP in isolated frog anterior pituitary fragments (ED50 = 9.3 x 10(-8) M) consistent with a possible role for the peptide as a hypophysiotropic factor in amphibians.
Collapse
|
Comparative Study |
30 |
31 |
17
|
Yon L, Feuilloley M, Chartrel N, Arimura A, Fournier A, Vaudry H. Localization, characterization and activity of pituitary adenylate cyclase-activating polypeptide in the frog adrenal gland. J Endocrinol 1993; 139:183-94. [PMID: 8308455 DOI: 10.1677/joe.0.1390183] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) has recently been isolated from the frog brain and the sequence of the peptide appears to be strikingly similar to that of mammalian PACAP. In the present study, we have investigated the localization of PACAP in the frog interrenal (adrenal) gland by immunocytochemistry using antisera directed against PACAP 38 or PACAP 27. Two types of PACAP-immunoreactive fibres were observed: thick varicose fibres coursing between adrenal cells and thin processes located in the walls of blood vessels irrigating the gland. Bilateral transection of the splanchnic nerves did not affect the intensity and distribution of PACAP immunoreactivity. The mean +/- S.E.M. concentration of PACAP, measured by radioimmunoassay in crude adrenal extracts, was 0.65 +/- 0.16 nmol/g wet tissue. Two molecular forms of PACAP in the adrenal gland were characterized by reversed phase high-performance liquid chromatography combined with radioimmunoassay quantification. The elution profiles revealed the existence of two peaks exhibiting the same retention times as synthetic frog PACAP 38 (fPACAP 38) and PACAP 27, the predominant form being PACAP 38. The possible involvement of PACAP in the regulation of adrenal steroidogenesis was investigated in vitro using a perifusion system for frog adrenal slices. Graded doses of fPACAP 38 (0.1-10 mumol/l) increased the secretion of both corticosterone and aldosterone in a dose-dependent manner. Administration of repeated pulses of fPACAP 38 (1 mumol/l), at 120-min intervals, led to a reproducible stimulation of corticosteroid secretion without any tachyphylaxis. Prolonged infusion (2 h) of the peptide induced a rapid increase in corticosterone and aldosterone output, followed by a gradual decline in the secretion rate, suggesting the occurrence of a desensitization phenomenon. Synthetic porcine vasoactive intestinal peptide, which is structurally related to PACAP, was about ten times less potent than fPACAP 38 in stimulating steroidogenesis while the [Des-His1]-fPACAP 38 analogue was 100 times less effective. These results demonstrate that a peptide closely related to fPACAP 38 is present in fibres innervating the frog adrenal gland and could participate in the regulation of corticosteroid secretion, particularly during neurogenic stress.
Collapse
|
|
32 |
30 |
18
|
Yon L, Jeandel L, Chartrel N, Feuilloley M, Conlon JM, Arimura A, Fournier A, Vaudry H. Neuroanatomical and physiological evidence for the involvement of pituitary adenylate cyclase-activating polypeptide in the regulation of the distal lobe of the frog pituitary. J Neuroendocrinol 1993; 5:289-96. [PMID: 8391365 DOI: 10.1111/j.1365-2826.1993.tb00485.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 38 amino-acid peptide which belongs to the glucagon/secretin/vasoactive intestinal peptide superfamily. The sequence of PACAP is identical in all mammalian species studied so far but frog PACAP differs by one amino-acid from mammalian PACAP. The aim of the present study was to investigate the presence of PACAP in the hypothalamo-pituitary complex of the frog Rana ribibunda and to determine the biological activity of frog PACAP on homologous pituitary cells. The distribution of PACAP-containing neurons and fibers was examined by the indirect immunofluorescence method using an antiserum raised against the N-terminal region of the peptide. In the hypothalamus, PACAP-immunoreactive perikarya were localized in the preoptic nucleus and the dorsal and ventral infundibular nuclei. Beaded nerve fibers were observed coursing from the ventral infundibular nucleus to the external vascular layer of the median eminence. A dense network of immunoreactive axons terminated in the vicinity of the capillaries of the hypophysial portal system. The neurointermediate lobe and the distal lobe of the pituitary were devoid of immunoreactive elements. The amount of PACAP-like immunoreactive material in hypothalamus extracts was measured by radioimmunoassay; the apparent concentration of PACAP was 4.5 ng/mg protein. Synthetic frog PACAP38 and PACAP27 induced a similar dose-dependent stimulation of cAMP production in isolated frog distal lobe pituitary fragments (ED50 = 2 x 10(-8) M). At the maximum dose tested (5 x 10(-6) M), both frog PACAP38 and PACAP27 produced a 4-fold increase in cAMP production.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
|
32 |
29 |
19
|
Tonon MC, Desrues L, Lamacz M, Chartrel N, Jenks B, Vaudry H. Multihormonal regulation of pituitary melanotrophs. Ann N Y Acad Sci 1993; 680:175-87. [PMID: 8512216 DOI: 10.1111/j.1749-6632.1993.tb19683.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
Review |
32 |
27 |
20
|
Vallarino M, Trabucchi M, Masini MA, Chartrel N, Vaudry H. Immunocytochemical localization of somatostatin and autoradiographic distribution of somatostatin binding sites in the brain of the African lungfish, Protopterus annectens. J Comp Neurol 1997; 388:337-53. [PMID: 9368846 DOI: 10.1002/(sici)1096-9861(19971124)388:3<337::aid-cne1>3.0.co;2-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The anatomical distribution of somatostatin-immunoreactive structures and the autoradiographic localization of somatostatin binding sites were investigated in the brain of the African lungfish, Protopterus annectens. In general, there was a good correlation between the distribution of somatostatin-immunoreactive elements and the location of somatostatin binding sites in several areas of the brain, particularly in the anterior olfactory nucleus, the rostral part of the dorsal pallium, the medial subpallium, the anterior preoptic area, the tectum, and the tegmentum of the mesencephalon. However, mismatching was found in the mid-caudal dorsal pallium, the reticular formation, and the cerebellum, which contained moderate to high concentrations of binding sites and very low densities of immunoreactive fibers. In contrast, the caudal hypothalamus and the neural lobe of the pituitary exhibited low concentrations of binding sites and a high to moderate density of somatostatin-immunoreactive fibers. The present results provide the first localization of somatostatin in the brain of a dipnoan and the first anatomical distribution of somatostatin binding sites in the brain of a fish. The location of somatostatin-immunoreactive elements in the brain of P. annectens is consistent with that reported in anuran amphibians, suggesting that the general organization of the somatostatin peptidergic systems occurred in a common ancestor of dipnoans and tetrapods. The anatomical distribution of somatostatin-immunoreactive elements and somatostatin binding sites suggests that somatostatin acts as a hypophysiotropic neurohormone as well as a neurotransmitter and/or neuromodulator in the lungfish brain.
Collapse
|
|
28 |
27 |
21
|
Lenkei Z, Beaudet A, Chartrel N, De Mota N, Irinopoulou T, Braun B, Vaudry H, Llorens-Cortes C. A highly sensitive quantitative cytosensor technique for the identification of receptor ligands in tissue extracts. J Histochem Cytochem 2000; 48:1553-64. [PMID: 11036098 DOI: 10.1177/002215540004801112] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Because G-protein-coupled receptors (GPCRs) constitute excellent putative therapeutic targets, functional characterization of orphan GPCRs through identification of their endogenous ligands has great potential for drug discovery. We propose here a novel single cell-based assay for identification of these ligands. This assay involves (a) fluorescent tagging of the GPCR, (b) expression of the tagged receptor in a heterologous expression system, (c) incubation of the transfected cells with fractions purified from tissue extracts, and (d) imaging of ligand-induced receptor internalization by confocal microscopy coupled to digital image quantification. We tested this approach in CHO cells stably expressing the NT1 neurotensin receptor fused to EGFP (enhanced green fluorescent protein), in which neurotensin promoted internalization of the NT1-EGFP receptor in a dose-dependent fashion (EC(50) = 0.98 nM). Similarly, four of 120 consecutive reversed-phase HPLC fractions of frog brain extracts promoted internalization of the NT1-EGFP receptor. The same four fractions selectively contained neurotensin, an endogenous ligand of the NT1 receptor, as detected by radioimmunoassay and inositol phosphate production. The present internalization assay provides a highly specific quantitative cytosensor technique with sensitivity in the nanomolar range that should prove useful for the identification of putative natural and synthetic ligands for GPCRs.
Collapse
|
|
25 |
23 |
22
|
Yon L, Chartrel N, Feuilloley M, De Marchis S, Fournier A, De Rijk E, Pelletier G, Roubos E, Vaudry H. Pituitary adenylate cyclase-activating polypeptide stimulates both adrenocortical cells and chromaffin cells in the frog adrenal gland. Endocrinology 1994; 135:2749-58. [PMID: 7988467 DOI: 10.1210/endo.135.6.7988467] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In a previous report, we have shown that frog pituitary adenylate cyclase-activating polypeptide (fPACAP38) is a potent stimulator of corticosteroid secretion by frog adrenal slices in vitro. The aim of the present study was to determine the mode of action of PACAP on the frog adrenal gland. Immunoelectron microscopic labeling revealed that PACAP-like immunoreactivity is present in electron-dense vesicles within nerve endings located in the vicinity of both adrenocortical and chromaffin cells. Exposure of dispersed adrenal cells to fPACAP38 caused stimulation of corticosteroid secretion. Labeling of cultured adrenal cells with [125I]PACAP27 revealed the existence of PACAP-binding sites on both adrenocortical and chromaffin cells. Saturation and competition experiments showed the occurrence of high affinity and selective receptors for fPACAP38 on cultured adrenal cells. fPACAP38 (10(-8)-10(-5) M) provoked a dose-dependent stimulation of cAMP production by frog adrenal slices. Microflurimetric studies demonstrated that fPACAP38 induced a substantial elevation of the intracellular calcium concentration in both adrenocortical and chromaffin cells. The present results indicate that in the frog adrenal gland, PACAP fibers innervate both adrenocortical and chromaffin cells. The data show the presence of PACAP receptors on the two cell types. PACAP exerts a direct stimulatory effect on corticosteroid-producing cells. This effect is probably mediated through stimulation of adenylyl cyclase activity and/or augmentation of intracellular Ca2+. PACAP also increases intracellular Ca2+ in chromaffin cells. These data suggest that PACAP, released locally in the adrenal gland, acts as a neuroendocrine factor, regulating the activity of adrenocortical and chromaffin cells.
Collapse
|
|
31 |
22 |
23
|
Chartrel N, Collin F, Huang YS, Montero M, Tonon MC, Goos HJ, Dufour S, Vaudry H. Characterization and localization of two forms of gonadotropin-releasing hormone (GnRH) in the spinal cord of the frog Rana ridibunda. Cell Tissue Res 1998; 293:235-43. [PMID: 9662646 DOI: 10.1007/s004410051115] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Two molecular variants of gonadotropin-releasing hormone (GnRH) have been previously characterized in the brain of amphibians, i.e., mammalian GnRH (mGnRH) and chicken GnRH-II (cGnRH-II). The aim of the present study was to identify the molecular forms of gonadotropin-releasing hormone and to localize gonadotropin-releasing hormone-containing elements in the spinal cord of the frog Rana ridibunda using highly specific antisera against mGnRH and cGnRH-II. High-performance liquid chromatography (HPLC) analysis combined with radioimmunoassay (RIA) detection revealed that frog spinal cord extracts contained both mGnRH and cGnRH-II. Immunohistochemical labeling revealed that the frog spinal cord was devoid of GnRH-containing cell bodies. In contrast, numerous GnRH-immunoreactive fibers were observed throughout the entire length of the cord. mGnRH immunoreactivity was only detected in the rostral region of the cord and consisted of varicose processes located in the vicinity of the central canal. cGnRH-II-positive fibers were found throughout the spinal cord, the density of immunoreactive processes decreasing gradually toward the caudal region. Two main cGnRH-II-positive fiber tracts with a rostrocaudal orientation were observed: a relatively dense fiber bundle surrounding the central canal, and a more diffuse plexus in the white matter. In addition, short, varicose cGnRH-II-positive processes with a radial orientation were present throughout the gray matter. These fibers were particularly abundant ventromedially and formed a diffuse network that ramified laterally to end in the vicinity of motoneurons. Taken together, these data indicate that the frog spinal cord, like the frog brain, contains two forms of GnRH. The presence of numerous cGnRH-II-immunoreactive fibers in the ventral horn suggests that cGnRH-II may influence the activity of a subpopulation of motoneurons.
Collapse
|
|
27 |
22 |
24
|
Wang Y, Badgery-Parker T, Lovas S, Chartrel N, Vaudry H, Burcher E, Conlon JM. Primary structure and receptor-binding properties of a neurokinin A-related peptide from frog gut. Biochem J 1992; 287 ( Pt 3):827-32. [PMID: 1332683 PMCID: PMC1133082 DOI: 10.1042/bj2870827] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A tachykinin peptide was isolated from an extract of the intestine of the European green frog, Rana ridibunda, and its primary structure was established as: His-Lys-Leu-Asp-Ser-Phe-Ile-Gly-Leu-Met.CONH2. This sequence was confirmed by chemical synthesis and shows two amino acid substitutions (leucine for threonine at position 3 and isoleucine for valine at position 7) compared with neurokinin A. Binding parameters for synthetic [Leu3,Ile7]neurokinin A and mammalian tachykinins were compared using receptor-selective radioligands and crude membranes from tissues enriched in the NK1, NK2 and NK3 receptors. [Leu3,Ile7]Neurokinin A was approx. 3-fold less potent than substance P in inhibiting the binding of 125I-labelled [Sar9,Met(O2)11]substance P (labelled with Bolton-Hunter reagent) to rat submandibular gland (NK1 receptor), 8-fold less potent than neurokinin A in inhibiting the binding of [2-[125I]iodohistidine1]neurokinin A to rat stomach fundus (NK2 receptor) and 6-fold less potent than neurokinin B in inhibiting the binding of 125I-Bolton-Hunter-labelled scyliorhinin II to rat brain (NK3 receptor). Thus the frog neurokinin A-related peptide shows moderate affinity but lack of selectivity for all three tachykinin-binding sites in rat tissues. This non-selectivity is similar to that displayed by the molluscan tachykinin, eledoisin, which also contains an isoleucine residue in the corresponding position in the molecule.
Collapse
|
research-article |
33 |
21 |
25
|
Yon L, Alexandre D, Montéro M, Chartrel N, Jeandel L, Vallarino M, Conlon JM, Kikuyama S, Fournier A, Gracia-Navarro F, Roubos E, Chow B, Arimura A, Anouar Y, Vaudry H. Pituitary adenylate cyclase-activating polypeptide and its receptors in amphibians. Microsc Res Tech 2001; 54:137-57. [PMID: 11458398 DOI: 10.1002/jemt.1129] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP), a novel peptide of the secretin/glucagon/vasoactive intestinal polypeptide superfamily, has been initially characterized in mammals in 1989 and, only 2 years later, its counterpart has been isolated in amphibians. A number of studies conducted in the frog Rana ridibunda have demonstrated that PACAP is widely distributed in the central nervous system (particularly in the hypothalamus and the median eminence) and in peripheral organs including the adrenal gland. The cDNAs encoding the PACAP precursor and 3 types of PACAP receptors have been cloned in amphibians and their distribution has been determined by in situ hybridization histochemistry. Ontogenetic studies have revealed that PACAP is expressed early in the brain of tadpoles, soon after hatching. In the frog Rana ridibunda, PACAP exerts a large array of biological effects in the brain, pituitary, adrenal gland, and ovary, suggesting that, in amphibians as in mammals, PACAP may act as neurotrophic factor, a neurotransmitter and a neurohormone.
Collapse
|
Review |
24 |
19 |