1
|
Morvan A, Andersen TI, Mi X, Neill C, Petukhov A, Kechedzhi K, Abanin DA, Michailidis A, Acharya R, Arute F, Arya K, Asfaw A, Atalaya J, Bardin JC, Basso J, Bengtsson A, Bortoli G, Bourassa A, Bovaird J, Brill L, Broughton M, Buckley BB, Buell DA, Burger T, Burkett B, Bushnell N, Chen Z, Chiaro B, Collins R, Conner P, Courtney W, Crook AL, Curtin B, Debroy DM, Del Toro Barba A, Demura S, Dunsworth A, Eppens D, Erickson C, Faoro L, Farhi E, Fatemi R, Flores Burgos L, Forati E, Fowler AG, Foxen B, Giang W, Gidney C, Gilboa D, Giustina M, Grajales Dau A, Gross JA, Habegger S, Hamilton MC, Harrigan MP, Harrington SD, Hoffmann M, Hong S, Huang T, Huff A, Huggins WJ, Isakov SV, Iveland J, Jeffrey E, Jiang Z, Jones C, Juhas P, Kafri D, Khattar T, Khezri M, Kieferová M, Kim S, Kitaev AY, Klimov PV, Klots AR, Korotkov AN, Kostritsa F, Kreikebaum JM, Landhuis D, Laptev P, Lau KM, Laws L, Lee J, Lee KW, Lester BJ, Lill AT, Liu W, Locharla A, Malone F, Martin O, McClean JR, McEwen M, Meurer Costa B, Miao KC, Mohseni M, Montazeri S, Mount E, Mruczkiewicz W, Naaman O, Neeley M, et alMorvan A, Andersen TI, Mi X, Neill C, Petukhov A, Kechedzhi K, Abanin DA, Michailidis A, Acharya R, Arute F, Arya K, Asfaw A, Atalaya J, Bardin JC, Basso J, Bengtsson A, Bortoli G, Bourassa A, Bovaird J, Brill L, Broughton M, Buckley BB, Buell DA, Burger T, Burkett B, Bushnell N, Chen Z, Chiaro B, Collins R, Conner P, Courtney W, Crook AL, Curtin B, Debroy DM, Del Toro Barba A, Demura S, Dunsworth A, Eppens D, Erickson C, Faoro L, Farhi E, Fatemi R, Flores Burgos L, Forati E, Fowler AG, Foxen B, Giang W, Gidney C, Gilboa D, Giustina M, Grajales Dau A, Gross JA, Habegger S, Hamilton MC, Harrigan MP, Harrington SD, Hoffmann M, Hong S, Huang T, Huff A, Huggins WJ, Isakov SV, Iveland J, Jeffrey E, Jiang Z, Jones C, Juhas P, Kafri D, Khattar T, Khezri M, Kieferová M, Kim S, Kitaev AY, Klimov PV, Klots AR, Korotkov AN, Kostritsa F, Kreikebaum JM, Landhuis D, Laptev P, Lau KM, Laws L, Lee J, Lee KW, Lester BJ, Lill AT, Liu W, Locharla A, Malone F, Martin O, McClean JR, McEwen M, Meurer Costa B, Miao KC, Mohseni M, Montazeri S, Mount E, Mruczkiewicz W, Naaman O, Neeley M, Nersisyan A, Newman M, Nguyen A, Nguyen M, Niu MY, O'Brien TE, Olenewa R, Opremcak A, Potter R, Quintana C, Rubin NC, Saei N, Sank D, Sankaragomathi K, Satzinger KJ, Schurkus HF, Schuster C, Shearn MJ, Shorter A, Shvarts V, Skruzny J, Smith WC, Strain D, Sterling G, Su Y, Szalay M, Torres A, Vidal G, Villalonga B, Vollgraff-Heidweiller C, White T, Xing C, Yao Z, Yeh P, Yoo J, Zalcman A, Zhang Y, Zhu N, Neven H, Bacon D, Hilton J, Lucero E, Babbush R, Boixo S, Megrant A, Kelly J, Chen Y, Smelyanskiy V, Aleiner I, Ioffe LB, Roushan P. Formation of robust bound states of interacting microwave photons. Nature 2022; 612:240-245. [PMID: 36477133 PMCID: PMC9729104 DOI: 10.1038/s41586-022-05348-y] [Show More Authors] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/14/2022] [Indexed: 12/12/2022]
Abstract
Systems of correlated particles appear in many fields of modern science and represent some of the most intractable computational problems in nature. The computational challenge in these systems arises when interactions become comparable to other energy scales, which makes the state of each particle depend on all other particles1. The lack of general solutions for the three-body problem and acceptable theory for strongly correlated electrons shows that our understanding of correlated systems fades when the particle number or the interaction strength increases. One of the hallmarks of interacting systems is the formation of multiparticle bound states2-9. Here we develop a high-fidelity parameterizable fSim gate and implement the periodic quantum circuit of the spin-½ XXZ model in a ring of 24 superconducting qubits. We study the propagation of these excitations and observe their bound nature for up to five photons. We devise a phase-sensitive method for constructing the few-body spectrum of the bound states and extract their pseudo-charge by introducing a synthetic flux. By introducing interactions between the ring and additional qubits, we observe an unexpected resilience of the bound states to integrability breaking. This finding goes against the idea that bound states in non-integrable systems are unstable when their energies overlap with the continuum spectrum. Our work provides experimental evidence for bound states of interacting photons and discovers their stability beyond the integrability limit.
Collapse
|
research-article |
3 |
16 |
2
|
Andersen TI, Lensky YD, Kechedzhi K, Drozdov IK, Bengtsson A, Hong S, Morvan A, Mi X, Opremcak A, Acharya R, Allen R, Ansmann M, Arute F, Arya K, Asfaw A, Atalaya J, Babbush R, Bacon D, Bardin JC, Bortoli G, Bourassa A, Bovaird J, Brill L, Broughton M, Buckley BB, Buell DA, Burger T, Burkett B, Bushnell N, Chen Z, Chiaro B, Chik D, Chou C, Cogan J, Collins R, Conner P, Courtney W, Crook AL, Curtin B, Debroy DM, Del Toro Barba A, Demura S, Dunsworth A, Eppens D, Erickson C, Faoro L, Farhi E, Fatemi R, Ferreira VS, Burgos LF, Forati E, Fowler AG, Foxen B, Giang W, Gidney C, Gilboa D, Giustina M, Gosula R, Dau AG, Gross JA, Habegger S, Hamilton MC, Hansen M, Harrigan MP, Harrington SD, Heu P, Hilton J, Hoffmann MR, Huang T, Huff A, Huggins WJ, Ioffe LB, Isakov SV, Iveland J, Jeffrey E, Jiang Z, Jones C, Juhas P, Kafri D, Khattar T, Khezri M, Kieferová M, Kim S, Kitaev A, Klimov PV, Klots AR, Korotkov AN, Kostritsa F, Kreikebaum JM, Landhuis D, Laptev P, Lau KM, Laws L, Lee J, Lee KW, Lester BJ, Lill AT, Liu W, Locharla A, Lucero E, et alAndersen TI, Lensky YD, Kechedzhi K, Drozdov IK, Bengtsson A, Hong S, Morvan A, Mi X, Opremcak A, Acharya R, Allen R, Ansmann M, Arute F, Arya K, Asfaw A, Atalaya J, Babbush R, Bacon D, Bardin JC, Bortoli G, Bourassa A, Bovaird J, Brill L, Broughton M, Buckley BB, Buell DA, Burger T, Burkett B, Bushnell N, Chen Z, Chiaro B, Chik D, Chou C, Cogan J, Collins R, Conner P, Courtney W, Crook AL, Curtin B, Debroy DM, Del Toro Barba A, Demura S, Dunsworth A, Eppens D, Erickson C, Faoro L, Farhi E, Fatemi R, Ferreira VS, Burgos LF, Forati E, Fowler AG, Foxen B, Giang W, Gidney C, Gilboa D, Giustina M, Gosula R, Dau AG, Gross JA, Habegger S, Hamilton MC, Hansen M, Harrigan MP, Harrington SD, Heu P, Hilton J, Hoffmann MR, Huang T, Huff A, Huggins WJ, Ioffe LB, Isakov SV, Iveland J, Jeffrey E, Jiang Z, Jones C, Juhas P, Kafri D, Khattar T, Khezri M, Kieferová M, Kim S, Kitaev A, Klimov PV, Klots AR, Korotkov AN, Kostritsa F, Kreikebaum JM, Landhuis D, Laptev P, Lau KM, Laws L, Lee J, Lee KW, Lester BJ, Lill AT, Liu W, Locharla A, Lucero E, Malone FD, Martin O, McClean JR, McCourt T, McEwen M, Miao KC, Mieszala A, Mohseni M, Montazeri S, Mount E, Movassagh R, Mruczkiewicz W, Naaman O, Neeley M, Neill C, Nersisyan A, Newman M, Ng JH, Nguyen A, Nguyen M, Niu MY, O’Brien TE, Omonije S, Petukhov A, Potter R, Pryadko LP, Quintana C, Rocque C, Rubin NC, Saei N, Sank D, Sankaragomathi K, Satzinger KJ, Schurkus HF, Schuster C, Shearn MJ, Shorter A, Shutty N, Shvarts V, Skruzny J, Smith WC, Somma R, Sterling G, Strain D, Szalay M, Torres A, Vidal G, Villalonga B, Heidweiller CV, White T, Woo BWK, Xing C, Yao ZJ, Yeh P, Yoo J, Young G, Zalcman A, Zhang Y, Zhu N, Zobrist N, Neven H, Boixo S, Megrant A, Kelly J, Chen Y, Smelyanskiy V, Kim EA, Aleiner I, Roushan P. Non-Abelian braiding of graph vertices in a superconducting processor. Nature 2023; 618:264-269. [PMID: 37169834 PMCID: PMC10247379 DOI: 10.1038/s41586-023-05954-4] [Show More Authors] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/14/2023] [Indexed: 06/09/2023]
Abstract
Indistinguishability of particles is a fundamental principle of quantum mechanics1. For all elementary and quasiparticles observed to date-including fermions, bosons and Abelian anyons-this principle guarantees that the braiding of identical particles leaves the system unchanged2,3. However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotations in a space of topologically degenerate wavefunctions4-8. Hence, it can change the observables of the system without violating the principle of indistinguishability. Despite the well-developed mathematical description of non-Abelian anyons and numerous theoretical proposals9-22, the experimental observation of their exchange statistics has remained elusive for decades. Controllable many-body quantum states generated on quantum processors offer another path for exploring these fundamental phenomena. Whereas efforts on conventional solid-state platforms typically involve Hamiltonian dynamics of quasiparticles, superconducting quantum processors allow for directly manipulating the many-body wavefunction by means of unitary gates. Building on predictions that stabilizer codes can host projective non-Abelian Ising anyons9,10, we implement a generalized stabilizer code and unitary protocol23 to create and braid them. This allows us to experimentally verify the fusion rules of the anyons and braid them to realize their statistics. We then study the prospect of using the anyons for quantum computation and use braiding to create an entangled state of anyons encoding three logical qubits. Our work provides new insights about non-Abelian braiding and, through the future inclusion of error correction to achieve topological protection, could open a path towards fault-tolerant quantum computing.
Collapse
|
research-article |
2 |
13 |
3
|
Hoke JC, Ippoliti M, Rosenberg E, Abanin D, Acharya R, Andersen TI, Ansmann M, Arute F, Arya K, Asfaw A, Atalaya J, Bardin JC, Bengtsson A, Bortoli G, Bourassa A, Bovaird J, Brill L, Broughton M, Buckley BB, Buell DA, Burger T, Burkett B, Bushnell N, Chen Z, Chiaro B, Chik D, Cogan J, Collins R, Conner P, Courtney W, Crook AL, Curtin B, Dau AG, Debroy DM, Del Toro Barba A, Demura S, Di Paolo A, Drozdov IK, Dunsworth A, Eppens D, Erickson C, Farhi E, Fatemi R, Ferreira VS, Burgos LF, Forati E, Fowler AG, Foxen B, Giang W, Gidney C, Gilboa D, Giustina M, Gosula R, Gross JA, Habegger S, Hamilton MC, Hansen M, Harrigan MP, Harrington SD, Heu P, Hoffmann MR, Hong S, Huang T, Huff A, Huggins WJ, Isakov SV, Iveland J, Jeffrey E, Jiang Z, Jones C, Juhas P, Kafri D, Kechedzhi K, Khattar T, Khezri M, Kieferová M, Kim S, Kitaev A, Klimov PV, Klots AR, Korotkov AN, Kostritsa F, Kreikebaum JM, Landhuis D, Laptev P, Lau KM, Laws L, Lee J, Lee KW, Lensky YD, Lester BJ, Lill AT, Liu W, Locharla A, Martin O, McClean JR, McEwen M, Miao KC, Mieszala A, Montazeri S, et alHoke JC, Ippoliti M, Rosenberg E, Abanin D, Acharya R, Andersen TI, Ansmann M, Arute F, Arya K, Asfaw A, Atalaya J, Bardin JC, Bengtsson A, Bortoli G, Bourassa A, Bovaird J, Brill L, Broughton M, Buckley BB, Buell DA, Burger T, Burkett B, Bushnell N, Chen Z, Chiaro B, Chik D, Cogan J, Collins R, Conner P, Courtney W, Crook AL, Curtin B, Dau AG, Debroy DM, Del Toro Barba A, Demura S, Di Paolo A, Drozdov IK, Dunsworth A, Eppens D, Erickson C, Farhi E, Fatemi R, Ferreira VS, Burgos LF, Forati E, Fowler AG, Foxen B, Giang W, Gidney C, Gilboa D, Giustina M, Gosula R, Gross JA, Habegger S, Hamilton MC, Hansen M, Harrigan MP, Harrington SD, Heu P, Hoffmann MR, Hong S, Huang T, Huff A, Huggins WJ, Isakov SV, Iveland J, Jeffrey E, Jiang Z, Jones C, Juhas P, Kafri D, Kechedzhi K, Khattar T, Khezri M, Kieferová M, Kim S, Kitaev A, Klimov PV, Klots AR, Korotkov AN, Kostritsa F, Kreikebaum JM, Landhuis D, Laptev P, Lau KM, Laws L, Lee J, Lee KW, Lensky YD, Lester BJ, Lill AT, Liu W, Locharla A, Martin O, McClean JR, McEwen M, Miao KC, Mieszala A, Montazeri S, Morvan A, Movassagh R, Mruczkiewicz W, Neeley M, Neill C, Nersisyan A, Newman M, Ng JH, Nguyen A, Nguyen M, Niu MY, O’Brien TE, Omonije S, Opremcak A, Petukhov A, Potter R, Pryadko LP, Quintana C, Rocque C, Rubin NC, Saei N, Sank D, Sankaragomathi K, Satzinger KJ, Schurkus HF, Schuster C, Shearn MJ, Shorter A, Shutty N, Shvarts V, Skruzny J, Smith WC, Somma R, Sterling G, Strain D, Szalay M, Torres A, Vidal G, Villalonga B, Heidweiller CV, White T, Woo BWK, Xing C, Yao ZJ, Yeh P, Yoo J, Young G, Zalcman A, Zhang Y, Zhu N, Zobrist N, Neven H, Babbush R, Bacon D, Boixo S, Hilton J, Lucero E, Megrant A, Kelly J, Chen Y, Smelyanskiy V, Mi X, Khemani V, Roushan P. Measurement-induced entanglement and teleportation on a noisy quantum processor. Nature 2023; 622:481-486. [PMID: 37853150 PMCID: PMC10584681 DOI: 10.1038/s41586-023-06505-7] [Show More Authors] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/01/2023] [Indexed: 10/20/2023]
Abstract
Measurement has a special role in quantum theory1: by collapsing the wavefunction, it can enable phenomena such as teleportation2 and thereby alter the 'arrow of time' that constrains unitary evolution. When integrated in many-body dynamics, measurements can lead to emergent patterns of quantum information in space-time3-10 that go beyond the established paradigms for characterizing phases, either in or out of equilibrium11-13. For present-day noisy intermediate-scale quantum (NISQ) processors14, the experimental realization of such physics can be problematic because of hardware limitations and the stochastic nature of quantum measurement. Here we address these experimental challenges and study measurement-induced quantum information phases on up to 70 superconducting qubits. By leveraging the interchangeability of space and time, we use a duality mapping9,15-17 to avoid mid-circuit measurement and access different manifestations of the underlying phases, from entanglement scaling3,4 to measurement-induced teleportation18. We obtain finite-sized signatures of a phase transition with a decoding protocol that correlates the experimental measurement with classical simulation data. The phases display remarkably different sensitivity to noise, and we use this disparity to turn an inherent hardware limitation into a useful diagnostic. Our work demonstrates an approach to realizing measurement-induced physics at scales that are at the limits of current NISQ processors.
Collapse
|
research-article |
2 |
13 |
4
|
Morvan A, Villalonga B, Mi X, Mandrà S, Bengtsson A, Klimov PV, Chen Z, Hong S, Erickson C, Drozdov IK, Chau J, Laun G, Movassagh R, Asfaw A, Brandão LTAN, Peralta R, Abanin D, Acharya R, Allen R, Andersen TI, Anderson K, Ansmann M, Arute F, Arya K, Atalaya J, Bardin JC, Bilmes A, Bortoli G, Bourassa A, Bovaird J, Brill L, Broughton M, Buckley BB, Buell DA, Burger T, Burkett B, Bushnell N, Campero J, Chang HS, Chiaro B, Chik D, Chou C, Cogan J, Collins R, Conner P, Courtney W, Crook AL, Curtin B, Debroy DM, Barba ADT, Demura S, Paolo AD, Dunsworth A, Faoro L, Farhi E, Fatemi R, Ferreira VS, Burgos LF, Forati E, Fowler AG, Foxen B, Garcia G, Genois É, Giang W, Gidney C, Gilboa D, Giustina M, Gosula R, Dau AG, Gross JA, Habegger S, Hamilton MC, Hansen M, Harrigan MP, Harrington SD, Heu P, Hoffmann MR, Huang T, Huff A, Huggins WJ, Ioffe LB, Isakov SV, Iveland J, Jeffrey E, Jiang Z, Jones C, Juhas P, Kafri D, Khattar T, Khezri M, Kieferová M, Kim S, Kitaev A, Klots AR, Korotkov AN, Kostritsa F, Kreikebaum JM, Landhuis D, Laptev P, Lau KM, et alMorvan A, Villalonga B, Mi X, Mandrà S, Bengtsson A, Klimov PV, Chen Z, Hong S, Erickson C, Drozdov IK, Chau J, Laun G, Movassagh R, Asfaw A, Brandão LTAN, Peralta R, Abanin D, Acharya R, Allen R, Andersen TI, Anderson K, Ansmann M, Arute F, Arya K, Atalaya J, Bardin JC, Bilmes A, Bortoli G, Bourassa A, Bovaird J, Brill L, Broughton M, Buckley BB, Buell DA, Burger T, Burkett B, Bushnell N, Campero J, Chang HS, Chiaro B, Chik D, Chou C, Cogan J, Collins R, Conner P, Courtney W, Crook AL, Curtin B, Debroy DM, Barba ADT, Demura S, Paolo AD, Dunsworth A, Faoro L, Farhi E, Fatemi R, Ferreira VS, Burgos LF, Forati E, Fowler AG, Foxen B, Garcia G, Genois É, Giang W, Gidney C, Gilboa D, Giustina M, Gosula R, Dau AG, Gross JA, Habegger S, Hamilton MC, Hansen M, Harrigan MP, Harrington SD, Heu P, Hoffmann MR, Huang T, Huff A, Huggins WJ, Ioffe LB, Isakov SV, Iveland J, Jeffrey E, Jiang Z, Jones C, Juhas P, Kafri D, Khattar T, Khezri M, Kieferová M, Kim S, Kitaev A, Klots AR, Korotkov AN, Kostritsa F, Kreikebaum JM, Landhuis D, Laptev P, Lau KM, Laws L, Lee J, Lee KW, Lensky YD, Lester BJ, Lill AT, Liu W, Livingston WP, Locharla A, Malone FD, Martin O, Martin S, McClean JR, McEwen M, Miao KC, Mieszala A, Montazeri S, Mruczkiewicz W, Naaman O, Neeley M, Neill C, Nersisyan A, Newman M, Ng JH, Nguyen A, Nguyen M, Niu MY, O'Brien TE, Omonije S, Opremcak A, Petukhov A, Potter R, Pryadko LP, Quintana C, Rhodes DM, Rocque C, Rosenberg E, Rubin NC, Saei N, Sank D, Sankaragomathi K, Satzinger KJ, Schurkus HF, Schuster C, Shearn MJ, Shorter A, Shutty N, Shvarts V, Sivak V, Skruzny J, Smith WC, Somma RD, Sterling G, Strain D, Szalay M, Thor D, Torres A, Vidal G, Heidweiller CV, White T, Woo BWK, Xing C, Yao ZJ, Yeh P, Yoo J, Young G, Zalcman A, Zhang Y, Zhu N, Zobrist N, Rieffel EG, Biswas R, Babbush R, Bacon D, Hilton J, Lucero E, Neven H, Megrant A, Kelly J, Roushan P, Aleiner I, Smelyanskiy V, Kechedzhi K, Chen Y, Boixo S. Phase transitions in random circuit sampling. Nature 2024; 634:328-333. [PMID: 39385051 PMCID: PMC11464376 DOI: 10.1038/s41586-024-07998-6] [Show More Authors] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/28/2024] [Indexed: 10/11/2024]
Abstract
Undesired coupling to the surrounding environment destroys long-range correlations in quantum processors and hinders coherent evolution in the nominally available computational space. This noise is an outstanding challenge when leveraging the computation power of near-term quantum processors1. It has been shown that benchmarking random circuit sampling with cross-entropy benchmarking can provide an estimate of the effective size of the Hilbert space coherently available2-8. Nevertheless, quantum algorithms' outputs can be trivialized by noise, making them susceptible to classical computation spoofing. Here, by implementing an algorithm for random circuit sampling, we demonstrate experimentally that two phase transitions are observable with cross-entropy benchmarking, which we explain theoretically with a statistical model. The first is a dynamical transition as a function of the number of cycles and is the continuation of the anti-concentration point in the noiseless case. The second is a quantum phase transition controlled by the error per cycle; to identify it analytically and experimentally, we create a weak-link model, which allows us to vary the strength of the noise versus coherent evolution. Furthermore, by presenting a random circuit sampling experiment in the weak-noise phase with 67 qubits at 32 cycles, we demonstrate that the computational cost of our experiment is beyond the capabilities of existing classical supercomputers. Our experimental and theoretical work establishes the existence of transitions to a stable, computationally complex phase that is reachable with current quantum processors.
Collapse
|
research-article |
1 |
1 |
5
|
Mi X, Michailidis AA, Shabani S, Miao KC, Klimov PV, Lloyd J, Rosenberg E, Acharya R, Aleiner I, Andersen TI, Ansmann M, Arute F, Arya K, Asfaw A, Atalaya J, Bardin JC, Bengtsson A, Bortoli G, Bourassa A, Bovaird J, Brill L, Broughton M, Buckley BB, Buell DA, Burger T, Burkett B, Bushnell N, Chen Z, Chiaro B, Chik D, Chou C, Cogan J, Collins R, Conner P, Courtney W, Crook AL, Curtin B, Dau AG, Debroy DM, Del Toro Barba A, Demura S, Di Paolo A, Drozdov IK, Dunsworth A, Erickson C, Faoro L, Farhi E, Fatemi R, Ferreira VS, Burgos LF, Forati E, Fowler AG, Foxen B, Genois É, Giang W, Gidney C, Gilboa D, Giustina M, Gosula R, Gross JA, Habegger S, Hamilton MC, Hansen M, Harrigan MP, Harrington SD, Heu P, Hoffmann MR, Hong S, Huang T, Huff A, Huggins WJ, Ioffe LB, Isakov SV, Iveland J, Jeffrey E, Jiang Z, Jones C, Juhas P, Kafri D, Kechedzhi K, Khattar T, Khezri M, Kieferová M, Kim S, Kitaev A, Klots AR, Korotkov AN, Kostritsa F, Kreikebaum JM, Landhuis D, Laptev P, Lau KM, Laws L, Lee J, Lee KW, Lensky YD, Lester BJ, Lill AT, Liu W, Locharla A, et alMi X, Michailidis AA, Shabani S, Miao KC, Klimov PV, Lloyd J, Rosenberg E, Acharya R, Aleiner I, Andersen TI, Ansmann M, Arute F, Arya K, Asfaw A, Atalaya J, Bardin JC, Bengtsson A, Bortoli G, Bourassa A, Bovaird J, Brill L, Broughton M, Buckley BB, Buell DA, Burger T, Burkett B, Bushnell N, Chen Z, Chiaro B, Chik D, Chou C, Cogan J, Collins R, Conner P, Courtney W, Crook AL, Curtin B, Dau AG, Debroy DM, Del Toro Barba A, Demura S, Di Paolo A, Drozdov IK, Dunsworth A, Erickson C, Faoro L, Farhi E, Fatemi R, Ferreira VS, Burgos LF, Forati E, Fowler AG, Foxen B, Genois É, Giang W, Gidney C, Gilboa D, Giustina M, Gosula R, Gross JA, Habegger S, Hamilton MC, Hansen M, Harrigan MP, Harrington SD, Heu P, Hoffmann MR, Hong S, Huang T, Huff A, Huggins WJ, Ioffe LB, Isakov SV, Iveland J, Jeffrey E, Jiang Z, Jones C, Juhas P, Kafri D, Kechedzhi K, Khattar T, Khezri M, Kieferová M, Kim S, Kitaev A, Klots AR, Korotkov AN, Kostritsa F, Kreikebaum JM, Landhuis D, Laptev P, Lau KM, Laws L, Lee J, Lee KW, Lensky YD, Lester BJ, Lill AT, Liu W, Locharla A, Malone FD, Martin O, McClean JR, McEwen M, Mieszala A, Montazeri S, Morvan A, Movassagh R, Mruczkiewicz W, Neeley M, Neill C, Nersisyan A, Newman M, Ng JH, Nguyen A, Nguyen M, Niu MY, O'Brien TE, Opremcak A, Petukhov A, Potter R, Pryadko LP, Quintana C, Rocque C, Rubin NC, Saei N, Sank D, Sankaragomathi K, Satzinger KJ, Schurkus HF, Schuster C, Shearn MJ, Shorter A, Shutty N, Shvarts V, Skruzny J, Smith WC, Somma R, Sterling G, Strain D, Szalay M, Torres A, Vidal G, Villalonga B, Heidweiller CV, White T, Woo BWK, Xing C, Yao ZJ, Yeh P, Yoo J, Young G, Zalcman A, Zhang Y, Zhu N, Zobrist N, Neven H, Babbush R, Bacon D, Boixo S, Hilton J, Lucero E, Megrant A, Kelly J, Chen Y, Roushan P, Smelyanskiy V, Abanin DA. Stable quantum-correlated many-body states through engineered dissipation. Science 2024; 383:1332-1337. [PMID: 38513021 DOI: 10.1126/science.adh9932] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 02/13/2024] [Indexed: 03/23/2024]
Abstract
Engineered dissipative reservoirs have the potential to steer many-body quantum systems toward correlated steady states useful for quantum simulation of high-temperature superconductivity or quantum magnetism. Using up to 49 superconducting qubits, we prepared low-energy states of the transverse-field Ising model through coupling to dissipative auxiliary qubits. In one dimension, we observed long-range quantum correlations and a ground-state fidelity of 0.86 for 18 qubits at the critical point. In two dimensions, we found mutual information that extends beyond nearest neighbors. Lastly, by coupling the system to auxiliaries emulating reservoirs with different chemical potentials, we explored transport in the quantum Heisenberg model. Our results establish engineered dissipation as a scalable alternative to unitary evolution for preparing entangled many-body states on noisy quantum processors.
Collapse
|
|
1 |
|
6
|
Rosenberg E, Andersen TI, Samajdar R, Petukhov A, Hoke JC, Abanin D, Bengtsson A, Drozdov IK, Erickson C, Klimov PV, Mi X, Morvan A, Neeley M, Neill C, Acharya R, Allen R, Anderson K, Ansmann M, Arute F, Arya K, Asfaw A, Atalaya J, Bardin JC, Bilmes A, Bortoli G, Bourassa A, Bovaird J, Brill L, Broughton M, Buckley BB, Buell DA, Burger T, Burkett B, Bushnell N, Campero J, Chang HS, Chen Z, Chiaro B, Chik D, Cogan J, Collins R, Conner P, Courtney W, Crook AL, Curtin B, Debroy DM, Barba ADT, Demura S, Di Paolo A, Dunsworth A, Earle C, Faoro L, Farhi E, Fatemi R, Ferreira VS, Burgos LF, Forati E, Fowler AG, Foxen B, Garcia G, Genois É, Giang W, Gidney C, Gilboa D, Giustina M, Gosula R, Dau AG, Gross JA, Habegger S, Hamilton MC, Hansen M, Harrigan MP, Harrington SD, Heu P, Hill G, Hoffmann MR, Hong S, Huang T, Huff A, Huggins WJ, Ioffe LB, Isakov SV, Iveland J, Jeffrey E, Jiang Z, Jones C, Juhas P, Kafri D, Khattar T, Khezri M, Kieferová M, Kim S, Kitaev A, Klots AR, Korotkov AN, Kostritsa F, Kreikebaum JM, Landhuis D, Laptev P, Lau KM, et alRosenberg E, Andersen TI, Samajdar R, Petukhov A, Hoke JC, Abanin D, Bengtsson A, Drozdov IK, Erickson C, Klimov PV, Mi X, Morvan A, Neeley M, Neill C, Acharya R, Allen R, Anderson K, Ansmann M, Arute F, Arya K, Asfaw A, Atalaya J, Bardin JC, Bilmes A, Bortoli G, Bourassa A, Bovaird J, Brill L, Broughton M, Buckley BB, Buell DA, Burger T, Burkett B, Bushnell N, Campero J, Chang HS, Chen Z, Chiaro B, Chik D, Cogan J, Collins R, Conner P, Courtney W, Crook AL, Curtin B, Debroy DM, Barba ADT, Demura S, Di Paolo A, Dunsworth A, Earle C, Faoro L, Farhi E, Fatemi R, Ferreira VS, Burgos LF, Forati E, Fowler AG, Foxen B, Garcia G, Genois É, Giang W, Gidney C, Gilboa D, Giustina M, Gosula R, Dau AG, Gross JA, Habegger S, Hamilton MC, Hansen M, Harrigan MP, Harrington SD, Heu P, Hill G, Hoffmann MR, Hong S, Huang T, Huff A, Huggins WJ, Ioffe LB, Isakov SV, Iveland J, Jeffrey E, Jiang Z, Jones C, Juhas P, Kafri D, Khattar T, Khezri M, Kieferová M, Kim S, Kitaev A, Klots AR, Korotkov AN, Kostritsa F, Kreikebaum JM, Landhuis D, Laptev P, Lau KM, Laws L, Lee J, Lee KW, Lensky YD, Lester BJ, Lill AT, Liu W, Locharla A, Mandrà S, Martin O, Martin S, McClean JR, McEwen M, Meeks S, Miao KC, Mieszala A, Montazeri S, Movassagh R, Mruczkiewicz W, Nersisyan A, Newman M, Ng JH, Nguyen A, Nguyen M, Niu MY, O'Brien TE, Omonije S, Opremcak A, Potter R, Pryadko LP, Quintana C, Rhodes DM, Rocque C, Rubin NC, Saei N, Sank D, Sankaragomathi K, Satzinger KJ, Schurkus HF, Schuster C, Shearn MJ, Shorter A, Shutty N, Shvarts V, Sivak V, Skruzny J, Smith WC, Somma RD, Sterling G, Strain D, Szalay M, Thor D, Torres A, Vidal G, Villalonga B, Heidweiller CV, White T, Woo BWK, Xing C, Yao ZJ, Yeh P, Yoo J, Young G, Zalcman A, Zhang Y, Zhu N, Zobrist N, Neven H, Babbush R, Bacon D, Boixo S, Hilton J, Lucero E, Megrant A, Kelly J, Chen Y, Smelyanskiy V, Khemani V, Gopalakrishnan S, Prosen T, Roushan P. Dynamics of magnetization at infinite temperature in a Heisenberg spin chain. Science 2024; 384:48-53. [PMID: 38574139 DOI: 10.1126/science.adi7877] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 03/01/2024] [Indexed: 04/06/2024]
Abstract
Understanding universal aspects of quantum dynamics is an unresolved problem in statistical mechanics. In particular, the spin dynamics of the one-dimensional Heisenberg model were conjectured as to belong to the Kardar-Parisi-Zhang (KPZ) universality class based on the scaling of the infinite-temperature spin-spin correlation function. In a chain of 46 superconducting qubits, we studied the probability distribution of the magnetization transferred across the chain's center, [Formula: see text]. The first two moments of [Formula: see text] show superdiffusive behavior, a hallmark of KPZ universality. However, the third and fourth moments ruled out the KPZ conjecture and allow for evaluating other theories. Our results highlight the importance of studying higher moments in determining dynamic universality classes and provide insights into universal behavior in quantum systems.
Collapse
|
|
1 |
|
7
|
Andersen TI, Astrakhantsev N, Karamlou AH, Berndtsson J, Motruk J, Szasz A, Gross JA, Schuckert A, Westerhout T, Zhang Y, Forati E, Rossi D, Kobrin B, Paolo AD, Klots AR, Drozdov I, Kurilovich V, Petukhov A, Ioffe LB, Elben A, Rath A, Vitale V, Vermersch B, Acharya R, Beni LA, Anderson K, Ansmann M, Arute F, Arya K, Asfaw A, Atalaya J, Ballard B, Bardin JC, Bengtsson A, Bilmes A, Bortoli G, Bourassa A, Bovaird J, Brill L, Broughton M, Browne DA, Buchea B, Buckley BB, Buell DA, Burger T, Burkett B, Bushnell N, Cabrera A, Campero J, Chang HS, Chen Z, Chiaro B, Claes J, Cleland AY, Cogan J, Collins R, Conner P, Courtney W, Crook AL, Das S, Debroy DM, Lorenzo LD, Barba ADT, Demura S, Donohoe P, Dunsworth A, Earle C, Eickbusch A, Elbag AM, Elzouka M, Erickson C, Faoro L, Fatemi R, Ferreira VS, Burgos LF, Fowler AG, Foxen B, Ganjam S, Gasca R, Giang W, Gidney C, Gilboa D, Giustina M, Gosula R, Dau AG, Graumann D, Greene A, Habegger S, Hamilton MC, Hansen M, Harrigan MP, Harrington SD, Heslin S, Heu P, Hill G, Hoffmann MR, Huang HY, Huang T, Huff A, Huggins WJ, et alAndersen TI, Astrakhantsev N, Karamlou AH, Berndtsson J, Motruk J, Szasz A, Gross JA, Schuckert A, Westerhout T, Zhang Y, Forati E, Rossi D, Kobrin B, Paolo AD, Klots AR, Drozdov I, Kurilovich V, Petukhov A, Ioffe LB, Elben A, Rath A, Vitale V, Vermersch B, Acharya R, Beni LA, Anderson K, Ansmann M, Arute F, Arya K, Asfaw A, Atalaya J, Ballard B, Bardin JC, Bengtsson A, Bilmes A, Bortoli G, Bourassa A, Bovaird J, Brill L, Broughton M, Browne DA, Buchea B, Buckley BB, Buell DA, Burger T, Burkett B, Bushnell N, Cabrera A, Campero J, Chang HS, Chen Z, Chiaro B, Claes J, Cleland AY, Cogan J, Collins R, Conner P, Courtney W, Crook AL, Das S, Debroy DM, Lorenzo LD, Barba ADT, Demura S, Donohoe P, Dunsworth A, Earle C, Eickbusch A, Elbag AM, Elzouka M, Erickson C, Faoro L, Fatemi R, Ferreira VS, Burgos LF, Fowler AG, Foxen B, Ganjam S, Gasca R, Giang W, Gidney C, Gilboa D, Giustina M, Gosula R, Dau AG, Graumann D, Greene A, Habegger S, Hamilton MC, Hansen M, Harrigan MP, Harrington SD, Heslin S, Heu P, Hill G, Hoffmann MR, Huang HY, Huang T, Huff A, Huggins WJ, Isakov SV, Jeffrey E, Jiang Z, Jones C, Jordan S, Joshi C, Juhas P, Kafri D, Kang H, Kechedzhi K, Khaire T, Khattar T, Khezri M, Kieferová M, Kim S, Kitaev A, Klimov P, Korotkov AN, Kostritsa F, Kreikebaum JM, Landhuis D, Langley BW, Laptev P, Lau KM, Guevel LL, Ledford J, Lee J, Lee KW, Lensky YD, Lester BJ, Li WY, Lill AT, Liu W, Livingston WP, Locharla A, Lundahl D, Lunt A, Madhuk S, Maloney A, Mandrà S, Martin LS, Martin O, Martin S, Maxfield C, McClean JR, McEwen M, Meeks S, Miao KC, Mieszala A, Molina S, Montazeri S, Morvan A, Movassagh R, Neill C, Nersisyan A, Newman M, Nguyen A, Nguyen M, Ni CH, Niu MY, Oliver WD, Ottosson K, Pizzuto A, Potter R, Pritchard O, Pryadko LP, Quintana C, Reagor MJ, Rhodes DM, Roberts G, Rocque C, Rosenberg E, Rubin NC, Saei N, Sankaragomathi K, Satzinger KJ, Schurkus HF, Schuster C, Shearn MJ, Shorter A, Shutty N, Shvarts V, Sivak V, Skruzny J, Small S, Smith WC, Springer S, Sterling G, Suchard J, Szalay M, Sztein A, Thor D, Torres A, Torunbalci MM, Vaishnav A, Vdovichev S, Villalonga B, Heidweiller CV, Waltman S, Wang SX, White T, Wong K, Woo BWK, Xing C, Yao ZJ, Yeh P, Ying B, Yoo J, Yosri N, Young G, Zalcman A, Zhu N, Zobrist N, Neven H, Babbush R, Boixo S, Hilton J, Lucero E, Megrant A, Kelly J, Chen Y, Smelyanskiy V, Vidal G, Roushan P, Läuchli AM, Abanin DA, Mi X. Thermalization and criticality on an analogue-digital quantum simulator. Nature 2025; 638:79-85. [PMID: 39910386 PMCID: PMC11798852 DOI: 10.1038/s41586-024-08460-3] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/27/2024] [Indexed: 02/07/2025]
Abstract
Understanding how interacting particles approach thermal equilibrium is a major challenge of quantum simulators1,2. Unlocking the full potential of such systems towards this goal requires flexible initial state preparation, precise time evolution and extensive probes for final state characterization. Here we present a quantum simulator comprising 69 superconducting qubits that supports both universal quantum gates and high-fidelity analogue evolution, with performance beyond the reach of classical simulation in cross-entropy benchmarking experiments. This hybrid platform features more versatile measurement capabilities compared with analogue-only simulators, which we leverage here to reveal a coarsening-induced breakdown of Kibble-Zurek scaling predictions3 in the XY model, as well as signatures of the classical Kosterlitz-Thouless phase transition4. Moreover, the digital gates enable precise energy control, allowing us to study the effects of the eigenstate thermalization hypothesis5-7 in targeted parts of the eigenspectrum. We also demonstrate digital preparation of pairwise-entangled dimer states, and image the transport of energy and vorticity during subsequent thermalization in analogue evolution. These results establish the efficacy of superconducting analogue-digital quantum processors for preparing states across many-body spectra and unveiling their thermalization dynamics.
Collapse
|
research-article |
1 |
|
8
|
Mi X, Sonner M, Niu MY, Lee KW, Foxen B, Acharya R, Aleiner I, Andersen TI, Arute F, Arya K, Asfaw A, Atalaya J, Bardin JC, Basso J, Bengtsson A, Bortoli G, Bourassa A, Brill L, Broughton M, Buckley BB, Buell DA, Burkett B, Bushnell N, Chen Z, Chiaro B, Collins R, Conner P, Courtney W, Crook AL, Debroy DM, Demura S, Dunsworth A, Eppens D, Erickson C, Faoro L, Farhi E, Fatemi R, Flores L, Forati E, Fowler AG, Giang W, Gidney C, Gilboa D, Giustina M, Dau AG, Gross JA, Habegger S, Harrigan MP, Hoffmann M, Hong S, Huang T, Huff A, Huggins WJ, Ioffe LB, Isakov SV, Iveland J, Jeffrey E, Jiang Z, Jones C, Kafri D, Kechedzhi K, Khattar T, Kim S, Kitaev AY, Klimov PV, Klots AR, Korotkov AN, Kostritsa F, Kreikebaum JM, Landhuis D, Laptev P, Lau KM, Lee J, Laws L, Liu W, Locharla A, Martin O, McClean JR, McEwen M, Meurer Costa B, Miao KC, Mohseni M, Montazeri S, Morvan A, Mount E, Mruczkiewicz W, Naaman O, Neeley M, Neill C, Newman M, O’Brien TE, Opremcak A, Petukhov A, Potter R, Quintana C, Rubin NC, Saei N, Sank D, Sankaragomathi K, Satzinger KJ, et alMi X, Sonner M, Niu MY, Lee KW, Foxen B, Acharya R, Aleiner I, Andersen TI, Arute F, Arya K, Asfaw A, Atalaya J, Bardin JC, Basso J, Bengtsson A, Bortoli G, Bourassa A, Brill L, Broughton M, Buckley BB, Buell DA, Burkett B, Bushnell N, Chen Z, Chiaro B, Collins R, Conner P, Courtney W, Crook AL, Debroy DM, Demura S, Dunsworth A, Eppens D, Erickson C, Faoro L, Farhi E, Fatemi R, Flores L, Forati E, Fowler AG, Giang W, Gidney C, Gilboa D, Giustina M, Dau AG, Gross JA, Habegger S, Harrigan MP, Hoffmann M, Hong S, Huang T, Huff A, Huggins WJ, Ioffe LB, Isakov SV, Iveland J, Jeffrey E, Jiang Z, Jones C, Kafri D, Kechedzhi K, Khattar T, Kim S, Kitaev AY, Klimov PV, Klots AR, Korotkov AN, Kostritsa F, Kreikebaum JM, Landhuis D, Laptev P, Lau KM, Lee J, Laws L, Liu W, Locharla A, Martin O, McClean JR, McEwen M, Meurer Costa B, Miao KC, Mohseni M, Montazeri S, Morvan A, Mount E, Mruczkiewicz W, Naaman O, Neeley M, Neill C, Newman M, O’Brien TE, Opremcak A, Petukhov A, Potter R, Quintana C, Rubin NC, Saei N, Sank D, Sankaragomathi K, Satzinger KJ, Schuster C, Shearn MJ, Shvarts V, Strain D, Su Y, Szalay M, Vidal G, Villalonga B, Vollgraff-Heidweiller C, White T, Yao Z, Yeh P, Yoo J, Zalcman A, Zhang Y, Zhu N, Neven H, Bacon D, Hilton J, Lucero E, Babbush R, Boixo S, Megrant A, Chen Y, Kelly J, Smelyanskiy V, Abanin DA, Roushan P. Noise-resilient edge modes on a chain of superconducting qubits. Science 2022; 378:785-790. [DOI: 10.1126/science.abq5769] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Inherent symmetry of a quantum system may protect its otherwise fragile states. Leveraging such protection requires testing its robustness against uncontrolled environmental interactions. Using 47 superconducting qubits, we implement the one-dimensional kicked Ising model, which exhibits nonlocal Majorana edge modes (MEMs) with
ℤ
2
parity symmetry. We find that any multiqubit Pauli operator overlapping with the MEMs exhibits a uniform late-time decay rate comparable to single-qubit relaxation rates, irrespective of its size or composition. This characteristic allows us to accurately reconstruct the exponentially localized spatial profiles of the MEMs. Furthermore, the MEMs are found to be resilient against certain symmetry-breaking noise owing to a prethermalization mechanism. Our work elucidates the complex interplay between noise and symmetry-protected edge modes in a solid-state environment.
Collapse
|
|
3 |
|