Beheshtian N, Karimi E, Oskoueian E, Shokryazdan P, Faseleh Jahromi M. Lactic acid bacteria supplementation: A bioprotective approach to mitigating cadmium-induced toxicity and modulating gene expression in murine models.
Food Chem Toxicol 2024;
193:115043. [PMID:
39413950 DOI:
10.1016/j.fct.2024.115043]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/24/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
This study aimed to assess the effects of different strains of lactic acid bacteria, namely LeviLactobacillus brevis (AC10), Lacticaseibacillus rhamnosus (AC11), and Pediococcus acidilactici (AC15), on mice exposed to cadmium-induced oxidative stress. The study assessed weight gain, liver enzymes, antioxidant enzymes, immunoglobulin factors, lipid peroxidation, and gene expression in liver and brain of mice. The findings revealed that the AC10 and AC11 strains had a higher ability to absorb Cd as compared to AC15. The in vivo analysis demonstrated that the dietary dual supplementation of AC10 and AC11 resulted in significant (p < 0.05) improvements, including increased body weight and food intake, reduced cadmium tissue deposition, decreased lipid peroxidation, enhanced cellular antioxidant redox potential, suppressed inflammation genes in the liver and brain tissues, and improved morpho-characteristics of the jejunum in mice challenged by cadmium-induced toxicity. The multiple mechanisms of action, including heavy metal sequestration, antioxidant enhancement, and maintenance of intestinal integrity, highlight the potential of these probiotics' intervention as a viable approach to counteract the deleterious effects of cadmium exposure.
Collapse