1
|
Struski S, Lagarde S, Bories P, Puiseux C, Prade N, Cuccuini W, Pages MP, Bidet A, Gervais C, Lafage-Pochitaloff M, Roche-Lestienne C, Barin C, Penther D, Nadal N, Radford-Weiss I, Collonge-Rame MA, Gaillard B, Mugneret F, Lefebvre C, Bart-Delabesse E, Petit A, Leverger G, Broccardo C, Luquet I, Pasquet M, Delabesse E. NUP98 is rearranged in 3.8% of pediatric AML forming a clinical and molecular homogenous group with a poor prognosis. Leukemia 2016; 31:565-572. [PMID: 27694926 DOI: 10.1038/leu.2016.267] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/25/2016] [Accepted: 08/30/2016] [Indexed: 01/21/2023]
Abstract
Pediatric acute myeloid leukemia (AML) is a rare disease whose prognosis is highly variable according to factors such as chromosomal abnormalities. Recurrent genomic rearrangements are detected in half of pediatric AML by karyotype. NUcleoPorin 98 (NUP98) gene is rearranged with 31 different fusion partner genes. These rearrangements are frequently undetected by conventional cytogenetics, as the NUP98 gene is located at the end of the chromosome 11 short arm (11p15). By screening a series of 574 pediatric AML, we detected a NUP98 rearrangement in 22 cases (3.8%), a frequency similar to CBFB-MYH11 fusion gene (4.0%). The most frequent NUP98 fusion gene partner is NSD1. These cases are homogeneous regarding their biological and clinical characteristics, and associated with bad prognosis only improved by bone marrow transplantation. We detailed the biological characteristics of these AML by exome sequencing which demonstrated few recurrent mutations (FLT3 ITD, WT1, CEBPA, NBPF14, BCR and ODF1). The analysis of the clonal structure in these cases suggests that the mutation order in the NUP98-rearranged pediatric AML begins with the NUP98 rearrangement leading to epigenetic dysregulations then followed by mutations of critical hematopoietic transcription factors and finally, activation of the FLT3 signaling pathway.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
85 |
2
|
Pont F, Familiades J, Déjean S, Fruchon S, Cendron D, Poupot M, Poupot R, L'faqihi-Olive F, Prade N, Ycart B, Fournié JJ. The gene expression profile of phosphoantigen-specific human γδ T lymphocytes is a blend of αβ T-cell and NK-cell signatures. Eur J Immunol 2011; 42:228-40. [PMID: 21968650 DOI: 10.1002/eji.201141870] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 08/12/2011] [Accepted: 09/26/2011] [Indexed: 12/28/2022]
Abstract
Global transcriptional technologies have revolutionised the study of lymphoid cell populations, but human γδ T lymphocytes specific for phosphoantigens remain far less deeply characterised by these methods despite the great therapeutic potential of these cells. Here we analyse the transcriptome of circulating TCRVγ(+) γδ T cells isolated from healthy individuals, and their relation with those from other lymphoid cell subsets. We report that the gene signature of phosphoantigen-specific TCRVγ(+) γδ T cells is a hybrid of those from αβ T and NK cells, with more 'NK-cell' genes than αβ T cells have and more 'T-cell' genes than NK cells. The expression profile of TCRVγ(+) γδ T cells stimulated with phosphoantigen recapitulates their immediate physiological functions: Th1 cytokine, chemokine and cytotoxic activities reflect their high mitotic activity at later time points and do not indicate antigen-presenting functions. Finally, such hallmarks make the transcriptome of γδ T cells, whether resting or clonally expanding, clearly distinctive from that of NK/T or peripheral T-cell lymphomas of the γδ subtype.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
48 |
3
|
Despeaux M, Labat E, Gadelorge M, Prade N, Bertrand J, Demur C, Recher C, Bonnevialle P, Payrastre B, Bourin P, Racaud-Sultan C. Critical features of FAK-expressing AML bone marrow microenvironment through leukemia stem cell hijacking of mesenchymal stromal cells. Leukemia 2011; 25:1789-93. [PMID: 21647157 DOI: 10.1038/leu.2011.145] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
Research Support, Non-U.S. Gov't |
14 |
21 |
4
|
Laurent AP, Siret A, Ignacimouttou C, Panchal K, Diop M, Jenni S, Tsai YC, Roos-Weil D, Aid Z, Prade N, Lagarde S, Plassard D, Pierron G, Daudigeos E, Lecluse Y, Droin N, Bornhauser BC, Cheung LC, Crispino JD, Gaudry M, Bernard OA, Macintyre E, Barin Bonnigal C, Kotecha RS, Geoerger B, Ballerini P, Bourquin JP, Delabesse E, Mercher T, Malinge S. Constitutive Activation of RAS/MAPK Pathway Cooperates with Trisomy 21 and Is Therapeutically Exploitable in Down Syndrome B-cell Leukemia. Clin Cancer Res 2020; 26:3307-3318. [PMID: 32220889 DOI: 10.1158/1078-0432.ccr-19-3519] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/20/2020] [Accepted: 03/23/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Children with Down syndrome (constitutive trisomy 21) that develop acute lymphoblastic leukemia (DS-ALL) have a 3-fold increased likelihood of treatment-related mortality coupled with a higher cumulative incidence of relapse, compared with other children with B-cell acute lymphoblastic leukemia (B-ALL). This highlights the lack of suitable treatment for Down syndrome children with B-ALL. EXPERIMENTAL DESIGN To facilitate the translation of new therapeutic agents into clinical trials, we built the first preclinical cohort of patient-derived xenograft (PDX) models of DS-ALL, comprehensively characterized at the genetic and transcriptomic levels, and have proven its suitability for preclinical studies by assessing the efficacy of drug combination between the MEK inhibitor trametinib and conventional chemotherapy agents. RESULTS Whole-exome and RNA-sequencing experiments revealed a high incidence of somatic alterations leading to RAS/MAPK pathway activation in our cohort of DS-ALL, as well as in other pediatric B-ALL presenting somatic gain of the chromosome 21 (B-ALL+21). In murine and human B-cell precursors, activated KRASG12D functionally cooperates with trisomy 21 to deregulate transcriptional networks that promote increased proliferation and self renewal, as well as B-cell differentiation blockade. Moreover, we revealed that inhibition of RAS/MAPK pathway activation using the MEK1/2 inhibitor trametinib decreased leukemia burden in several PDX models of B-ALL+21, and enhanced survival of DS-ALL PDX in combination with conventional chemotherapy agents such as vincristine. CONCLUSIONS Altogether, using novel and suitable PDX models, this study indicates that RAS/MAPK pathway inhibition represents a promising strategy to improve the outcome of Down syndrome children with B-cell precursor leukemia.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
12 |
5
|
Largeaud L, Collin M, Monselet N, Vergez F, Fregona V, Larcher L, Hirsch P, Duployez N, Bidet A, Luquet I, Bustamante J, Dufrechou S, Prade N, Nolla M, Hamelle C, Tavitian S, Habib C, Meynier M, Bellanne-Chantelot C, Donadieu J, De Fontbrune FS, Fieschi C, Ferster A, Delhommeau F, Delabesse E, Pasquet M. Somatic genetic alterations predict hematological progression in GATA2 deficiency. Haematologica 2023; 108:1515-1529. [PMID: 36727400 PMCID: PMC10230419 DOI: 10.3324/haematol.2022.282250] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/19/2023] [Indexed: 02/03/2023] Open
Abstract
Germline GATA2 mutations predispose to myeloid malignancies resulting from the progressive acquisition of additional somatic mutations. Here we describe clinical and biological features of 78 GATA2-deficient patients. Hematopoietic stem and progenitor cell phenotypic characterization revealed an exhaustion of myeloid progenitors. Somatic mutations in STAG2, ASXL1 and SETBP1 genes along with cytogenetic abnormalities (monosomy 7, trisomy 8, der(1;7)) occurred frequently in patients with GATA2 germline mutations. Patients were classified into three hematopoietic spectra based on bone marrow cytomorphology. No somatic additional mutations were detected in patients with normal bone marrow (spectrum 0), whereas clonal hematopoiesis mediated by STAG2 mutations was frequent in those with a hypocellular and/or myelodysplastic bone marrow without excess blasts (spectrum 1). Finally, SETBP1, RAS pathway and RUNX1 mutations were predominantly associated with leukemic transformation stage (spectrum 2), highlighting their implications in the transformation process. Specific somatic alterations, potentially providing distinct selective advantages to affected cells, are therefore associated with the clinical/hematological evolution of GATA2 syndrome. Our study not only suggests that somatic genetic profiling will help clinicians in their management of patients, but will also clarify the mechanism of leukemogenesis in the context of germline GATA2 mutations.
Collapse
|
research-article |
2 |
11 |
6
|
Cresson C, Péron S, Jamrog L, Rouquié N, Prade N, Dubois M, Hébrard S, Lagarde S, Gerby B, Mancini SJC, Cogné M, Delabesse E, Delpy L, Broccardo C. PAX5A and PAX5B isoforms are both efficient to drive B cell differentiation. Oncotarget 2018; 9:32841-32854. [PMID: 30214688 PMCID: PMC6132355 DOI: 10.18632/oncotarget.26003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 07/31/2018] [Indexed: 11/25/2022] Open
Abstract
Pax5 is the guardian of the B cell identity since it primes or enhances the expression of B cell specific genes and concomitantly represses the expression of B cell inappropriate genes. The tight regulation of Pax5 is therefore required for an efficient B cell differentiation. A defect in its dosage can translate into immunodeficiency or malignant disorders such as leukemia or lymphoma. Pax5 is expressed from two different promoters encoding two isoforms that only differ in the sequence of their first alternative exon. Very little is known regarding the role of the two isoforms during B cell differentiation and the regulation of their expression. Our work aims to characterize the mechanisms of regulation of the expression balance of these two isoforms and their implication in the B cell differentiation process using murine ex vivo analyses. We show that these two isoforms are differentially regulated but have equivalent function during early B cell differentiation and may have functional differences after B cell activation. The tight control of their expression may thus reflect a way to finely tune Pax5 dosage during B cell differentiation process.
Collapse
|
Journal Article |
7 |
4 |
7
|
Coyaud E, Struski S, Prade N, Familiades J, Delabesse E, Dastugue N, Brousset P, Broccardo C. R63: Large spectre de mutations de PAX5 dans les LAL-B (V2). Bull Cancer 2010. [DOI: 10.1016/s0007-4551(15)30980-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
15 |
|
8
|
Juvin P, Laclau S, Prade N, Comont T, Delabesse E, Rauzy OB. Relevance of Next Generation Sequencing in Helping Diagnosis of Unexplained Cytopenias. Leuk Res 2017. [DOI: 10.1016/s0145-2126(17)30386-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
|
8 |
|