1
|
Cho AN, Jin Y, An Y, Kim J, Choi YS, Lee JS, Kim J, Choi WY, Koo DJ, Yu W, Chang GE, Kim DY, Jo SH, Kim J, Kim SY, Kim YG, Kim JY, Choi N, Cheong E, Kim YJ, Je HS, Kang HC, Cho SW. Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids. Nat Commun 2021; 12:4730. [PMID: 34354063 PMCID: PMC8342542 DOI: 10.1038/s41467-021-24775-5] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/06/2021] [Indexed: 11/10/2022] Open
Abstract
Brain organoids derived from human pluripotent stem cells provide a highly valuable in vitro model to recapitulate human brain development and neurological diseases. However, the current systems for brain organoid culture require further improvement for the reliable production of high-quality organoids. Here, we demonstrate two engineering elements to improve human brain organoid culture, (1) a human brain extracellular matrix to provide brain-specific cues and (2) a microfluidic device with periodic flow to improve the survival and reduce the variability of organoids. A three-dimensional culture modified with brain extracellular matrix significantly enhanced neurogenesis in developing brain organoids from human induced pluripotent stem cells. Cortical layer development, volumetric augmentation, and electrophysiological function of human brain organoids were further improved in a reproducible manner by dynamic culture in microfluidic chamber devices. Our engineering concept of reconstituting brain-mimetic microenvironments facilitates the development of a reliable culture platform for brain organoids, enabling effective modeling and drug development for human brain diseases.
Collapse
|
research-article |
4 |
184 |
2
|
Quintanilla-Martinez L, Wilkins EW, Choi N, Efird J, Hug E, Harris NL. Thymoma. Histologic subclassification is an independent prognostic factor. Cancer 1994; 74:606-17. [PMID: 8033040 DOI: 10.1002/1097-0142(19940715)74:2<606::aid-cncr2820740212>3.0.co;2-t] [Citation(s) in RCA: 163] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Several histologic classifications of thymomas have been proposed, and attempts have been made to correlate the different histologic subtypes to clinical behavior and prognosis. Recently, Marino and Müller-Hermelink and Kirchner et al. proposed a new morphologic classification of thymomas based on the resemblance of the neoplastic cells to subtypes of the normal thymic epithelial cells. In this classification, six categories of thymic epithelial tumors are recognized. They define four categories of thymoma: medullary, mixed, organoid (predominantly cortical), and cortical, and two subgroups of thymic carcinomas: well differentiated thymic carcinoma and high grade carcinomas. METHODS The authors studied 116 patients with thymic epithelial tumors classified according to the proposals of Marino and Müller-Hermelink and Kirchner et al. to assess the effect of histologic classification and other factors (stage, size of tumor, lymphoid hyperplasia, myasthenia gravis, age, sex, and treatment) on survival, and freedom from relapse. RESULTS Eight cases (7%) were medullary, 32 cases (28%) mixed, 20 cases (17%) organoid (predominantly cortical), 21 cases (18%) cortical, 29 cases (25%) well differentiated carcinoma (WDTC), two cases (2%) high grade carcinoma, and four cases (3%) unclassifiable. Fifty-two patients were in stage I, 32 stage II (16 IIA, 16 IIB), 28 stage III, and four Stage IVA. Only stage (P = 0.0001; hazard ratio = 5.36) and histology (P = 0.0019; hazard ratio = 8.010) were significant in predicting recurrence. Histology was highly correlated with stage, but by multivariate analysis was an independent factor in predicting relapse (P = 0.0281; hazard ratio = 5.92). None of the medullary or mixed thymomas recurred, even though 30% were invasive. Patients with WDTC recurred more often and earlier than patients with organoid and cortical thymoma (log rank, P = 0.0001). The actuarial freedom from relapse for patients with WDTC was 58% at 5 years and 46% at 10 years compared with 100% for other subtypes. Both advanced stage (III and IV) and the WDTC histologic subtype significantly increased the risk of death from thymoma (log rank, P = 0.0001). The actuarial survival of patients with WDTC was 80% at 5 years and 54% at 10 years, whereas that of patients with the other subtypes was 100% at 5 and 10 years. Five of seven relapses and six of seven deaths from thymoma occurred in patients with WDTC. In Stage II patients, one of 16 minimally invasive (Stage IIA) tumors recurred, compared with 3 of 16 grossly invasive (Stage IIB) tumors, indicating that microscopic assessment of invasion is important in staging. CONCLUSIONS The histologic classification of Marino and Müller-Hermelink has prognostic significance, independent of tumor stage. Medullary and mixed thymomas were benign tumors with no risk of recurrence, even when capsular invasion was present. Organoid and cortical thymoma showed intermediate invasiveness and a low, but significant, risk of late relapse, even with minimal invasion. WDTC were always invasive and had a significantly increased risk of relapse and death, even for Stage II patients. Adjuvant therapy appears unnecessary for medullary and mixed thymomas, even when invasive.
Collapse
|
|
31 |
163 |
3
|
Jo Y, Choi N, Kim K, Koo HJ, Choi J, Kim HN. Chemoresistance of Cancer Cells: Requirements of Tumor Microenvironment-mimicking In Vitro Models in Anti-Cancer Drug Development. Am J Cancer Res 2018; 8:5259-5275. [PMID: 30555545 PMCID: PMC6276092 DOI: 10.7150/thno.29098] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/04/2018] [Indexed: 01/09/2023] Open
Abstract
For decades, scientists have been using two-dimensional cell culture platforms for high-throughput drug screening of anticancer drugs. Growing evidence indicates that the results of anti-cancer drug screening vary with the cell culture microenvironment, and this variation has been proposed as a reason for the high failure rate of clinical trials. Since the culture condition-dependent drug sensitivity of anti-cancer drugs may negatively impact the identification of clinically effective drug candidates, more reliable in vitro cancer platforms are urgently needed. In this review article, we provide an overview of how cell culture conditions can alter drug efficacy and highlight the importance of developing more reliable cancer drug testing platforms for use in the drug discovery process. The environmental factors that can alter drug delivery and efficacy are reviewed. Based on these observations of chemoresistant tumor physiology, we summarize the recent advances in the fabrication of in vitro cancer models and the model-dependent cytotoxicity of anti-cancer drugs, with a particular focus on engineered environmental factors in these platforms. It is believed that more physiologically relevant cancer models can revolutionize the drug discovery process.
Collapse
|
Review |
7 |
125 |
4
|
Yeon JH, Jeong HE, Seo H, Cho S, Kim K, Na D, Chung S, Park J, Choi N, Kang JY. Cancer-derived exosomes trigger endothelial to mesenchymal transition followed by the induction of cancer-associated fibroblasts. Acta Biomater 2018; 76:146-153. [PMID: 30078422 DOI: 10.1016/j.actbio.2018.07.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/01/2018] [Accepted: 07/02/2018] [Indexed: 01/10/2023]
Abstract
Cancer-associated fibroblasts (CAFs) play a pivotal role in tumor growth, but very little has been known about its characteristics and origin. Recently, cancer-derived exosome has been suggested to transdifferentiate CAFs, by a new mechanism of endothelial to mesenchymal transition (EndMT), initiating angiogenic processes and triggering metastatic evolution. However, an enabling tool in vitro is yet to be developed to investigate complicated procedures of the EndMT and the transdifferentiation under reconstituted tumor microenvironment. Here we proposed an in vitro microfluidic model which enables to monitor a synergetic effect of complex tumor microenvironment in situ, including extracellular matrix (ECM), interstitial flow and environmental exosomes. The number of CAFs differentiated from human umbilical vein endothelial cells (HUVECs) increased with melanoma-derived exosomes, presenting apparent morphological and molecular changes with pronounced motility. Mesenchymal stem cell (MSC)-derived exosomes were found to suppress EndMT, induce angiogenesis and maintain vascular homeostasis, while cancer-derived exosomes promoted EndMT. Capabilities of the new microfluidic model exist in precise regulation of the complex tumor microenvironment and therefore successful reconstitution of 3D microvasculature niches, enabling in situ investigation of EndMT procedure between various cell types. STATEMENT OF SIGNIFICANCE This study presents an in vitro 3D EndMT model to understand the progress of the CAF generation by recapitulating the 3D tumor microenvironment in a microfluidic device. Both cancer-derived exosomes and interstitial fluid flow synergetically played a pivotal role in the EndMT and consequent formation of CAFs through a collagen-based ECM. Our approach also enabled the demonstration of a homeostatic capability of MSC-derived exosomes, ultimately leading to the recovery of CAFs back to endothelial cells. The in vitro 3D EndMT model can serve as a powerful tool to validate exosomal components that could be further developed to anti-cancer drugs.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
115 |
5
|
Kim JA, Kim HN, Im SK, Chung S, Kang JY, Choi N. Collagen-based brain microvasculature model in vitro using three-dimensional printed template. BIOMICROFLUIDICS 2015; 9:024115. [PMID: 25945141 PMCID: PMC4401807 DOI: 10.1063/1.4917508] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/30/2015] [Indexed: 05/07/2023]
Abstract
We present an engineered three-dimensional (3D) in vitro brain microvasculature system embedded within the bulk of a collagen matrix. To create a hydrogel template for the functional brain microvascular structure, we fabricated an array of microchannels made of collagen I using microneedles and a 3D printed frame. By culturing mouse brain endothelial cells (bEnd.3) on the luminal surface of cylindrical collagen microchannels, we reconstructed an array of brain microvasculature in vitro with circular cross-sections. We characterized the barrier function of our brain microvasculature by measuring transendothelial permeability of 40 kDa fluorescein isothiocyanate-dextran (Stoke's radius of ∼4.5 nm), based on an analytical model. The transendothelial permeability decreased significantly over 3 weeks of culture. We also present the disruption of the barrier function with a hyperosmotic mannitol as well as a subsequent recovery over 4 days. Our brain microvasculature model in vitro, consisting of system-in-hydrogel combined with the widely emerging 3D printing technique, can serve as a useful tool not only for fundamental studies associated with blood-brain barrier in physiological and pathological settings but also for pharmaceutical applications.
Collapse
|
research-article |
10 |
103 |
6
|
Shin H, Jeong S, Lee JH, Sun W, Choi N, Cho IJ. 3D high-density microelectrode array with optical stimulation and drug delivery for investigating neural circuit dynamics. Nat Commun 2021; 12:492. [PMID: 33479237 PMCID: PMC7820464 DOI: 10.1038/s41467-020-20763-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023] Open
Abstract
Investigation of neural circuit dynamics is crucial for deciphering the functional connections among regions of the brain and understanding the mechanism of brain dysfunction. Despite the advancements of neural circuit models in vitro, technologies for both precisely monitoring and modulating neural activities within three-dimensional (3D) neural circuit models have yet to be developed. Specifically, no existing 3D microelectrode arrays (MEAs) have integrated capabilities to stimulate surrounding neurons and to monitor the temporal evolution of the formation of a neural network in real time. Herein, we present a 3D high-density multifunctional MEA with optical stimulation and drug delivery for investigating neural circuit dynamics within engineered 3D neural tissues. We demonstrate precise measurements of synaptic latencies in 3D neural networks. We expect our 3D multifunctional MEA to open up opportunities for studies of neural circuits through precise, in vitro investigations of neural circuit dynamics with 3D brain models.
Collapse
|
research-article |
4 |
94 |
7
|
Kim J, Lee KT, Lee JS, Shin J, Cui B, Yang K, Choi YS, Choi N, Lee SH, Lee JH, Bahn YS, Cho SW. Fungal brain infection modelled in a human-neurovascular-unit-on-a-chip with a functional blood-brain barrier. Nat Biomed Eng 2021; 5:830-846. [PMID: 34127820 DOI: 10.1038/s41551-021-00743-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/30/2021] [Indexed: 02/05/2023]
Abstract
The neurovascular unit, which consists of vascular cells surrounded by astrocytic end-feet and neurons, controls cerebral blood flow and the permeability of the blood-brain barrier (BBB) to maintain homeostasis in the neuronal milieu. Studying how some pathogens and drugs can penetrate the human BBB and disrupt neuronal homeostasis requires in vitro microphysiological models of the neurovascular unit. Here we show that the neurotropism of Cryptococcus neoformans-the most common pathogen causing fungal meningitis-and its ability to penetrate the BBB can be modelled by the co-culture of human neural stem cells, brain microvascular endothelial cells and brain vascular pericytes in a human-neurovascular-unit-on-a-chip maintained by a stepwise gravity-driven unidirectional flow and recapitulating the structural and functional features of the BBB. We found that the pathogen forms clusters of cells that penetrate the BBB without altering tight junctions, suggesting a transcytosis-mediated mechanism. The neurovascular-unit-on-a-chip may facilitate the study of the mechanisms of brain infection by pathogens, and the development of drugs for a range of brain diseases.
Collapse
|
|
4 |
87 |
8
|
Son Y, Jenny Lee H, Kim J, Shin H, Choi N, Justin Lee C, Yoon ES, Yoon E, Wise KD, Geun Kim T, Cho IJ. In vivo optical modulation of neural signals using monolithically integrated two-dimensional neural probe arrays. Sci Rep 2015; 5:15466. [PMID: 26494437 PMCID: PMC4616027 DOI: 10.1038/srep15466] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 09/17/2015] [Indexed: 11/09/2022] Open
Abstract
Integration of stimulation modalities (e.g. electrical, optical, and chemical) on a large array of neural probes can enable an investigation of important underlying mechanisms of brain disorders that is not possible through neural recordings alone. Furthermore, it is important to achieve this integration of multiple functionalities in a compact structure to utilize a large number of the mouse models. Here we present a successful optical modulation of in vivo neural signals of a transgenic mouse through our compact 2D MEMS neural array (optrodes). Using a novel fabrication method that embeds a lower cladding layer in a silicon substrate, we achieved a thin silicon 2D optrode array that is capable of delivering light to multiple sites using SU-8 as a waveguide core. Without additional modification to the microelectrodes, the measured impedance of the multiple microelectrodes was below 1 MΩ at 1 kHz. In addition, with a low background noise level (± 25 μV), neural spikes from different individual neurons were recorded on each microelectrode. Lastly, we successfully used our optrodes to modulate the neural activity of a transgenic mouse through optical stimulation. These results demonstrate the functionality of the 2D optrode array and its potential as a next-generation tool for optogenetic applications.
Collapse
|
research-article |
10 |
73 |
9
|
Shin H, Son Y, Chae U, Kim J, Choi N, Lee HJ, Woo J, Cho Y, Yang SH, Lee CJ, Cho IJ. Multifunctional multi-shank neural probe for investigating and modulating long-range neural circuits in vivo. Nat Commun 2019; 10:3777. [PMID: 31439845 PMCID: PMC6706395 DOI: 10.1038/s41467-019-11628-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 07/26/2019] [Indexed: 01/18/2023] Open
Abstract
Investigation and modulation of neural circuits in vivo at the cellular level are very important for studying functional connectivity in a brain. Recently, neural probes with stimulation capabilities have been introduced, and they provided an opportunity for studying neural activities at a specific region in the brain using various stimuli. However, previous methods have a limitation in dissecting long-range neural circuits due to inherent limitations on their designs. Moreover, the large size of the previously reported probes induces more significant tissue damage. Herein, we present a multifunctional multi-shank MEMS neural probe that is monolithically integrated with an optical waveguide for optical stimulation, microfluidic channels for drug delivery, and microelectrode arrays for recording neural signals from different regions at the cellular level. In this work, we successfully demonstrated the functionality of our probe by confirming and modulating the functional connectivity between the hippocampal CA3 and CA1 regions in vivo. Microelectromechanical neural probes can cause tissue damage and often cannot record from distant brain areas. Here the authors combine electrical recording, optical stimulation and microfluidic drug delivery in one multi-shank probe with thinner shanks to reduce damage and a flexible design to target long-range neural circuits.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
69 |
10
|
Bang S, Jeong S, Choi N, Kim HN. Brain-on-a-chip: A history of development and future perspective. BIOMICROFLUIDICS 2019; 13:051301. [PMID: 31616534 PMCID: PMC6783295 DOI: 10.1063/1.5120555] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/25/2019] [Indexed: 05/04/2023]
Abstract
Since the advent of organ-on-a-chip, many researchers have tried to mimic the physiology of human tissue on an engineered platform. In the case of brain tissue, structural connections and cell-cell interactions are important factors for brain function. The recent development of brain-on-a-chip is an effort to mimic those structural and functional aspects of brain tissue within a miniaturized engineered platform. From this perspective, we provide an overview of trace of brain-on-a-chip development, especially in terms of complexity and high-content/high-throughput screening capabilities, and future perspectives on more in vivo-like brain-on-a-chip development.
Collapse
|
other |
6 |
68 |
11
|
Choi N, Baumann M, Flentjie M, Kellokumpu-Lehtinen P, Senan S, Zamboglou N, Kosmidis P. Predictive factors in radiotherapy for non-small cell lung cancer: present status. Lung Cancer 2001; 31:43-56. [PMID: 11162866 DOI: 10.1016/s0169-5002(00)00156-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE To evaluate the predictive factors for radiation response in non-small cell lung cancer (NSCLC) and the role of such factors in guiding high dose radiation therapy. METHODS The first International Workshop on Prognostic and Predictive Factors in Lung Cancer was organized by the Hellenic Cooperative Oncology Group and held in Athens, Greece under the auspices of the International Association for the Study of Lung Cancer. Presentations at this meeting provided the outline of this report, which has also been supplemented with available data from the current literature. RESULTS The predictive factors for both the natural history and the therapy outcome of NSCLC are grouped as follows: (1) tumor related factors (anatomic factors); the extent of tumor (tumor stage) is one of most important prognostic factors affecting the therapy outcome. Tumor size (T stage), anatomical structures involved (T4 vs. T3 lesion), and the presence of regional lymph node metastasis have a significant impact on both prognosis and response to appropriate therapy; (2) host-related factors (clinical factors) that are important in therapy response include performance status, weight loss of more than 10% of body weight in the previous 6 months, and associated co-morbidities, i.e. pulmonary and cardiac diseases; (3) technical factors of radiation therapy which play a decisive role in successful outcome. The target volume should be defined accurately using modern imaging studies. The radiation dose fractionation schedule, in terms of the dose intensity and total dose, should be high enough to provide local tumor control in the majority of patients. Three-dimensional (3-D) conformal planning is an essential tool in dose escalation studies to determine the maximum tolerated dose of radiation; (4) biological/radiobiological/metabolic factors. Biologic markers resulting from genetic lesions in lung cancer are grouped as follows: (a) oncogene amplification and overexpression (aberrant gene expression) and mutated tumor suppressor genes -- ras gene, myc gene, HER-2/neu and survivin gene, p53 and mutated beta-tubulin gene; (b) tumor biologic/radiobiologic factors -- tumor cell proliferation kinetics, hypoxia, intrinsic cellular radiosensitivity, gamma factor, and DNA content; (c) enzymes and hormones: neuron-specific enolase, serum lactate dehydrogenase, and enhanced glucose metabolic rate supported by increased glucose transporter protein. The surviving fraction of tumor cells at 2.0 Gy of radiation (SF2) as a measure of intrinsic tumor cell radiosensitivity, potential doubling time (T(Pot)) as a measure of the rate of tumor cell proliferation and gamma factor representing the slope of the survival curve at 50% survival rate are being investigated as potential predictors for therapy response. Enhanced glucose utilization, a hallmark of malignant transformation, is being studied as a potential monitor for therapy response by using PET-FDG. CONCLUSION Current data indicate that there is a dose-response relationship between radiation dose and local tumor control, and also between local tumor control and survival in stage III NSCLC. Therapeutic factors, i.e. total radiation dose, fractionation schedule and dose intensity, and use of 3-D conformal radiation to secure the optimum therapeutic ratio are important for improved local tumor control and survival. Future research should be directed towards radiation dose escalation using 3-D conformal therapy to determine the maximum tolerated dose (MTD) of radiation in chemo-radiotherapy, and the use of this MTD for improved local tumor control and survival. Radiobiological, molecular, and metabolic markers may have potential for monitoring tumor response and optimizing radiation therapy.
Collapse
|
Review |
24 |
65 |
12
|
Cai W, Lee T, Lee M, Cho W, Han DY, Choi N, Yip ACK, Choi J. Thermal structural transitions and carbon dioxide adsorption properties of zeolitic imidazolate framework-7 (ZIF-7). J Am Chem Soc 2014; 136:7961-71. [PMID: 24813064 DOI: 10.1021/ja5016298] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As a subset of the metal-organic frameworks, zeolitic imidazolate frameworks (ZIFs) have potential use in practical separations as a result of flexible yet reliable control over their pore sizes along with their chemical and thermal stabilities. Among many ZIF materials, we explored the effect of thermal treatments on the ZIF-7 structure, known for its promising characteristics toward H2 separations; the pore sizes of ZIF-7 (0.29 nm) are desirable for molecular sieving, favoring H2 (0.289 nm) over CO2 (0.33 nm). Although thermogravimetric analysis indicated that ZIF-7 is thermally stabile up to ~400 °C, the structural transition of ZIF-7 to an intermediate phase (as indicated by X-ray analysis) was observed under air as guest molecules were removed. The transition was further continued at higher temperatures, eventually leading toward the zinc oxide phase. Three types of ZIF-7 with differing shapes and sizes (~100 nm spherical, ~400 nm rhombic-dodecahedral, and ~1300 nm rod-shaped) were employed to elucidate (1) thermal structural transitions while considering kinetically relevant processes and (2) discrepancies in the N2 physisorption and CO2 adsorption isotherms. The largest rod-shaped ZIF-7 particles showed a delayed thermal structural transition toward the stable zinc oxide phase. The CO2 adsorption behaviors of the three ZIF-7s, despite their identical crystal structures, suggested minute differences in the pore structures; in particular, the smaller spherical ZIF-7 particles provided reversible CO2 adsorption isotherms at ~30-75 °C, a typical temperature range of flue gases from coal-fired power plants, in contrast to the larger rhombic-dodecahedral and rod-shaped ZIF-7 particles, which exhibited hysteretic CO2 adsorption/desorption behavior.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
60 |
13
|
Beswick MA, Choi N, Harmer CN, Hopkins AD, McPartlin M, Wright DS. Low-temperature synthesis of zintl compounds with a single-source molecular precursor. Science 1998; 281:1500-1. [PMID: 9727974 DOI: 10.1126/science.281.5382.1500] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Thermolysis of the heterobimetallic phosphinidene complex [Sb(PCy)3]2- Li6.6HNMe2 (Cy = C6H11) at 303 to 313 kelvin gives Zintl compounds containing (Sb7)3- anions. The complex thus constitutes a stable molecular single-source precursor to Zintl compounds and provides a potential low-temperature route to photoactive alkali metal antimonates. The new chemical reaction involved, which is driven thermodynamically by the formation of P-P bonds, has implications in the low-temperature synthesis of other technologically important materials (such as gallium arsenide).
Collapse
|
|
27 |
46 |
14
|
Lee HJ, Choi N, Yoon ES, Cho IJ. MEMS devices for drug delivery. Adv Drug Deliv Rev 2018; 128:132-147. [PMID: 29117510 DOI: 10.1016/j.addr.2017.11.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/06/2017] [Accepted: 11/02/2017] [Indexed: 01/27/2023]
Abstract
Novel drug delivery systems based on microtechnology have advanced tremendously, but yet face some technological and societal hurdles to fully achieve their potential. The novel drug delivery systems aim to deliver drugs in a spatiotemporal- and dosage-controlled manner with a goal to address the unmet medical needs from oral delivery and hypodermic injection. The unmet needs include effective delivery of new types of drug candidates that are otherwise insoluble and unstable, targeted delivery to areas protected by barriers (e.g. brain and posterior eye segment), localized delivery of potent drugs, and improved patient compliance. After scrutinizing the design considerations and challenges associated with delivery to areas that cannot be efficiently targeted through standard drug delivery (e.g. brain, posterior eye segment, and gastrointestinal tract), this review provides a summary of recent advances that addressed these challenges and summarizes yet unresolved problems in each target area. The opportunities for innovation in devising the novel drug delivery systems are still high; with integration of advanced microtechnology, advanced fabrication of biomaterials, and biotechnology, the novel drug delivery is poised to be a promising alternative to the oral administration and hypodermic injection for a large spectrum of drug candidates.
Collapse
|
Review |
7 |
46 |
15
|
Kim J, Shim JS, Han BH, Kim HJ, Park J, Cho IJ, Kang SG, Kang JY, Bong KW, Choi N. Hydrogel-based hybridization chain reaction (HCR) for detection of urinary exosomal miRNAs as a diagnostic tool of prostate cancer. Biosens Bioelectron 2021; 192:113504. [PMID: 34298498 DOI: 10.1016/j.bios.2021.113504] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022]
Abstract
Although urinary exosomal microRNAs (miRNAs) have recently emerged as potential biomarkers, clinical applications are still limited due to their low concentration in small volumes of clinical samples. Therefore, the development of a non-invasive, specific diagnostic tool, along with profiling exosomal miRNA markers from urine, remains a significant challenge. Here, we present hydrogel-based hybridization chain reaction (HCR) for multiplex signal amplification to detect urinary exosomal miRNAs from human clinical samples. We succeeded in identifying small amounts (~amol) of exosomal miRNAs from 600 μL of urine with up to ~35-fold amplification and enhanced detection limits by over an order of magnitude for two miRNA biomarker candidates, hsa-miR-6090 and hsa-miR-3665. Furthermore, we proposed ratiometric analysis without requiring normalization to a reference miRNA and validated the clinical diagnostic potential toward differentiating prostate cancer patients from healthy controls. Our hydrogel-based HCR could serve as a new diagnostic platform for a non-invasive liquid biopsy before burdensome tissue biopsy of various diseases, including prostate cancer screening, complementing the PSA test.
Collapse
|
Journal Article |
4 |
45 |
16
|
Mathisen DJ, Wain JC, Wright C, Choi N, Carey R, Hilgenberg A, Grossbard M, Lynch T, Grillo H. Assessment of preoperative accelerated radiotherapy and chemotherapy in stage IIIA (N2) non-small-cell lung cancer. J Thorac Cardiovasc Surg 1996; 111:123-31; discussion 131-3. [PMID: 8551756 DOI: 10.1016/s0022-5223(96)70408-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Forty patients with N2 non-small-cell lung cancer (stage IIIA), as determined by mediastinoscopy, were entered into a preoperative neoadjuvant study of chemotherapy (platinum, 5-fluorouracil, vinblastine) and accelerated radiotherapy (150 cGy twice per day for 7 days) for two cycles. Surgical resection was then performed and followed up with an additional cycle of chemotherapy and radiotherapy. All patients completed preoperative therapy. A major clinical response was seen in 87% of patients. Thirty-five patients underwent resection (one preoperative death, one refused operation, one had deterioration of pulmonary function, and two had pleural metastases). Operative mortality rate was 5.7% (2/35). Sixty percent of patients had no complications. Major complications included pulmonary emboli (three), pneumonia (two), and myocardial infarction (one). Down-staging was seen in 46% of patients, with two patients (5.7%) having no evidence of tumor in the specimen, five patients having sterilization of all lymph nodes, and nine patients having sterilization of mediastinal nodes but positive N1 nodes. Median survival of 40 patients was 28 months, with a projected 5-year survival of 43%. Patients with downstaged disease had statistically significant improved survival compared with patients whose disease was not downstaged.
Collapse
|
Clinical Trial |
29 |
40 |
17
|
Shin H, Lee HJ, Chae U, Kim H, Kim J, Choi N, Woo J, Cho Y, Lee CJ, Yoon ES, Cho IJ. Neural probes with multi-drug delivery capability. LAB ON A CHIP 2015; 15:3730-7. [PMID: 26235309 DOI: 10.1039/c5lc00582e] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Multi-functional neural probes are promising platforms to conduct efficient and effective in-depth studies of brain by recording neural signals as well as modulating the signals with various stimuli. Here we present a neural probe with an embedded microfluidic channel (chemtrode) with multi-drug delivery capability suitable for small animal experiments. We integrated a staggered herringbone mixer (SHM) in a 3-inlet microfluidic chip directly into our chemtrode. This chip, which also serves as a compact interface for the chemtrode, allows for efficient delivery of small volumes of multiple or concentration-modulated drugs via chaotic mixing. We demonstrated the successful infusion of combinatorial inputs of three chemicals with a low flow rate (170 nl min(-1)). By sequentially delivering red, green, and blue inks from each inlet and conducting visual inspections at the tip of the chemtrode, we measured a short residence time of 14 s which corresponds to a small swept volume of 66 nl. Finally, we demonstrated the potential of our proposed chemtrode as an enabling tool through extensive in vivo mice experiments. Through simultaneous infusions of a chemical (pilocarpine or tetrodotoxin (TTX) at inlet 1), a buffer solution (saline at inlet 2), and 4',6-diamidino-2-phenylindole (DAPI at inlet 3) locally into a mouse brain, we not only modulated the neural activities by varying the concentration of the chemical but also locally stained the cells at our target region (CA1 in hippocampus). More specifically, infusion of pilocarpine with a higher concentration resulted in an increase in neural activities while infusion of TTX with a higher concentration resulted in a distinctive reduction. For each chemical, we acquired multiple sets of data using only one mouse through a single implantation of the chemtrode. Our proposed chemtrode offers 1) multiplexed delivery of three drugs through a compact packaging with a small swept volume and 2) simultaneous recording to monitor near real-time effects on neural signals, which allows for more versatile in vivo experiments with a minimum number of animals to be sacrificed.
Collapse
|
|
10 |
40 |
18
|
Hong S, You JY, Paek K, Park J, Kang SJ, Han EH, Choi N, Chung S, Rhee WJ, Kim JA. Inhibition of tumor progression and M2 microglial polarization by extracellular vesicle-mediated microRNA-124 in a 3D microfluidic glioblastoma microenvironment. Am J Cancer Res 2021; 11:9687-9704. [PMID: 34646393 PMCID: PMC8490520 DOI: 10.7150/thno.60851] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/14/2021] [Indexed: 01/01/2023] Open
Abstract
Background: Glioblastoma (GBM) is one of the most aggressive types of brain cancer. GBM progression is closely associated with microglia activation; therefore, understanding the regulation of the crosstalk between human GBM and microglia may help develop effective therapeutic strategies. Elucidation of efficient delivery of microRNA (miRNA) via extracellular vesicles (EVs) and their intracellular communications is required for therapeutic applications in GBM treatment. Methods: We used human GBM cells (U373MG) and human microglia. MiRNA-124 was loaded into HEK293T-derived EVs (miR-124 EVs). Various anti-tumor effects (proliferation, metastasis, chemosensitivity, M1/M2 microglial polarization, and cytokine profile) were investigated in U373MG and microglia. Anti-tumor effect of miR-124 EVs was also investigated in five different patient-derived GBM cell lines (SNU-201, SNU-466, SNU-489, SNU-626, and SNU-1105). A three-dimensional (3D) microfluidic device was used to investigate the interactive microenvironment of the tumor and microglia. Results: MiR-124 EVs showed highly efficient anti-tumor effects both in GBM cells and microglia. The mRNA expression levels of tumor progression and M2 microglial polarization markers were decreased in response to miR-124 EVs. The events were closely related to signal transducer and activator of transcription (STAT) 3 signaling in both GBM and microglia. In 3D microfluidic experiments, both U373MG and microglia migrated to a lesser extent and showed less-elongated morphology in the presence of miR-124 EVs compared to the control. Analyses of changes in cytokine levels in the microfluidic GBM-microglia environment showed that the treatment with miR-124 EVs led to tumor suppression and anti-cancer immunity, thereby recruiting natural killer (NK) cells into the tumor. Conclusions: In this study, we demonstrated that EV-mediated miR-124 delivery exerted synergistic anti-tumor effects by suppressing the growth of human GBM cells and inhibiting M2 microglial polarization. These findings provide new insights toward a better understanding of the GBM microenvironment and provide substantial evidence for the development of potential therapeutic strategies using miRNA-loaded EVs.
Collapse
|
|
4 |
37 |
19
|
Umemura K, Komatsu J, Uchihashi T, Choi N, Ikawa S, Nishinaka T, Shibata T, Nakayama Y, Katsura S, Mizuno A, Tokumoto H, Ishikawa M, Kuroda R. Atomic force microscopy of RecA--DNA complexes using a carbon nanotube tip. Biochem Biophys Res Commun 2001; 281:390-5. [PMID: 11181060 DOI: 10.1006/bbrc.2001.4333] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report high resolution images of RecA-double stranded (ds) DNA complexes obtained by atomic force microscopy (AFM). When a carbon nanotube (CNT) tip was used, AFM images visualized the 10-nm pitch of RecA-dsDNA complexes and RecA filaments as three-dimensional surface topography without reconstruction analysis. The depth of the notch between two pitches was less than 1 nm. When adsorbed on a soft surface covered with proteins, naked DNA, RecA monomers, RecA hexamers, and short RecA filaments were all clearly resolved in one image. The high resolution images with a CNT tip provided valuable information on the initiation process of RecA-dsDNA complex formation.
Collapse
|
|
24 |
36 |
20
|
Sunday ME, Choi N, Spindel ER, Chin WW, Mark EJ. Gastrin-releasing peptide gene expression in small cell and large cell undifferentiated lung carcinomas. Hum Pathol 1991; 22:1030-9. [PMID: 1668786 DOI: 10.1016/0046-8177(91)90011-d] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Gastrin-releasing peptide (GRP; mammalian bombesin) is present in the neuroendocrine cells of human fetal lung and in small cell lung carcinomas (SCLCs), where it may act as a growth factor. Considering the potential importance of GRP as a tumor marker, we have conducted a retrospective immunohistochemical analysis of 176 lung tumors for markers of GRP gene expression, as well as several other markers of neuroendocrine cell differentiation: chromogranin A, neuron-specific enolase, and calcitonin. The majority of carcinoids contained mature GRP, in contrast to only a minority of SCLCs and large cell lung carcinomas (LCLCs). However, a majority of SCLCs and LCLCs contained proGRP immunoreactivity. In situ hybridization did not add any information beyond what was obtained using proGRP antisera. In spite of sharing these neuroendocrine cell markers, SCLCs are associated with a graver prognosis than LCLCs. No prognostic significance was associated with immunostaining for GRP or several other markers of neuroendocrine cell differentiation.
Collapse
|
|
34 |
33 |
21
|
Seo Y, Jeong S, Chung JJ, Kim SH, Choi N, Jung Y. Development of an Anisotropically Organized Brain dECM Hydrogel-Based 3D Neuronal Culture Platform for Recapitulating the Brain Microenvironment in Vivo. ACS Biomater Sci Eng 2019; 6:610-620. [PMID: 33463191 DOI: 10.1021/acsbiomaterials.9b01512] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To mimic the brain tissue microenvironment in vitro, the biological and structural properties of the utilized system must be similar to those of the native brain in the microenvironment in vivo. To promote the bioactive (biological) properties of matrix hydrogels, we used the decellularized extracellular matrix (dECM) of porcine brain, which was found to enhance neuronal differentiation/outgrowth and neuron-to-brain dECM interactions. To implement the desired structural properties, we aligned microfibrils within a composite hydrogel mixed with the brain dECM and collagen I, with or without encapsulated neurons, by the stretching and releasing of a hydrogel-based chip. We then tested the ability of the aligned brain dECM hydrogel-based three-dimensional (3D) culture platform to mimic the in vivo brain microenvironment. We found that dECM-containing gels harbored brain-derived ECM proteins, including collagen I, collagen IV, laminin, and various cytokines, and that neurons incubated in these gels exhibited enhanced neurite outgrowth and development compared to those incubated in collagen gel (dECM 0 mg/mL). We evaluated the surface morphology and mechanical properties of the hydrogel with and without the brain dECM and found that their encapsulated neurons showed similar levels of cell viability. We then used a mechanical process to align the composite dECM hydrogel, conferring the desired structural properties to our system. Together, our results suggest that our newly developed brain dECM-based 3D culture platform could potentially be further developed for use in drug screening.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
32 |
22
|
Choi N, Blitz M, McKee K, Pilling M, Seakins P. H atom branching ratios from the reactions of CN radicals with C2H2 and C2H4. Chem Phys Lett 2004. [DOI: 10.1016/j.cplett.2003.11.100] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
|
21 |
31 |
23
|
Kim HN, Choi N. Consideration of the Mechanical Properties of Hydrogels for Brain Tissue Engineering and Brain-on-a-chip. BIOCHIP JOURNAL 2019. [DOI: 10.1007/s13206-018-3101-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
6 |
31 |
24
|
Kim D, Hwang KS, Seo EU, Seo S, Lee BC, Choi N, Choi J, Kim HN. Vascularized Lung Cancer Model for Evaluating the Promoted Transport of Anticancer Drugs and Immune Cells in an Engineered Tumor Microenvironment. Adv Healthc Mater 2022; 11:e2102581. [PMID: 35286780 PMCID: PMC11468795 DOI: 10.1002/adhm.202102581] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/08/2022] [Indexed: 01/09/2023]
Abstract
The tumor microenvironment (TME) is the environment around the tumor, including blood vessels, immune cells, fibroblasts, signaling molecules, and the extracellular matrix (ECM). Owing to its component interactions, the TME influences tumor growth and drug delivery in a highly complex manner. Although several vascularized cancer models are developed to mimic the TME in vitro, these models cannot comprehensively reflect blood vessel-tumor spheroid interactions. Here, a method for inducing controlled tumor angiogenesis by engineering the microenvironment is presented. The interstitial flow direction regulates the direction of capillary sprouting, showing that angiogenesis occurs in the opposite direction of flow, while the existence of lung fibroblasts affects the continuity and lumen formation of sprouted capillaries. The vascularized tumor model shows enhanced delivery of anticancer drugs and immune cells to the tumor spheroids because of the perfusable vascular networks. The possibility of capillary embolism using anticancer drug-conjugated liquid metal nanoparticles is investigated using the vascularized tumor model. This vascularized tumor platform can aid in the development of effective anticancer drugs and cancer immunotherapy.
Collapse
|
research-article |
3 |
29 |
25
|
Yang WI, Efird JT, Quintanilla-Martinez L, Choi N, Harris NL. Cell kinetic study of thymic epithelial tumors using PCNA (PC10) and Ki-67 (MIB-1) antibodies. Hum Pathol 1996; 27:70-6. [PMID: 8543314 DOI: 10.1016/s0046-8177(96)90140-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We performed an immunohistochemical cell kinetic study with monoclonal antibodies to proliferating cell nuclear antigen (PCNA)-PC10-and Ki-67-MIB-1-on 62 thymic epithelial tumors, to evaluate whether there is correlation between the proliferation indices of the neoplastic epithelial cells and histological subtype, stage, and risk of relapse. The 62 cases of thymic epithelial tumors were classified as medullary thymoma (4 cases), composite (mixed) thymoma (17 cases), organoid thymoma (predominantly cortical) (11 cases), cortical thymoma (10 cases), well-differentiated thymic carcinoma (18 cases), and poorly differentiated thymic carcinoma (2 cases). Labeling indices were expressed as percentage of epithelial cells with positive nuclear immunostaining by random counting of 1,000 epithelial tumor cells, using an oil immersion 100 x objective. PCNA labeling indices were consistently higher than those of Ki-67, and they correlated with each other. Well-differentiated thymic carcinoma showed higher labeling indices (3.11% +/- 3.53%) by Ki-67 antibody compared with the medullary type (0.60% +/- 0.07%) (P < .05) but there were no statistically significant differences between the other histological subtypes. Stage IV cases showed higher PCNA labeling indices (PCNA: 11.07% +/- 7.35%, Ki-67: 6.86% +/- 5.87%) than cases of the other stages (P < .05), but there were no statistically significant differences in either labeling index between the other stages. The number of patients who relapsed was too small to permit meaningful correlation between labeling indices and relapse. Our results indicate that the differences in biological behavior of the different histological subtypes of thymic epithelial tumors may be in part explained by differences in tumor growth fraction. Analysis of a larger group of patients will be required to determine whether proliferation fraction as determined by this method can be used to predict outcome in individual cases.
Collapse
|
|
29 |
28 |