1
|
Pelletier RM, Layeghkhavidaki H, Kumar NM, Vitale ML. Cx30.2 deletion causes imbalances in testicular Cx43, Cx46, and Cx50 and insulin receptors. Reciprocally, diabetes/obesity alters Cx30.2 in mouse testis. Am J Physiol Regul Integr Comp Physiol 2020; 318:R1078-R1090. [PMID: 32348681 PMCID: PMC7311678 DOI: 10.1152/ajpregu.00044.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 11/22/2022]
Abstract
Cx30.2 protein content and localization were assessed during development. An account of Cx30.2, Cx43, Cx46, and Cx50, and insulin receptor (IR) responses to Cx30.2, Cx46, or Cx50 deficiency in mouse interstitial tissue (ITf)- and seminiferous tubule-enriched fractions (STf) is given. The impact of high glucose/insulin on Cx30.2 was investigated in spontaneously diabetic and obese db/db and ob/ob mouse testis and anterior pituitary (AP). Cx30.2 labeled contacts in vascular endothelial and Leydig cells and Sertoli cell junctions in stage V-VII. Cx30.2 expression is regulated differently in the interstitium and tubules. Cx30.2 at 30-kDa levels peaked by 28 days in ITf and by 14 days in STf. In STf, deleting Cx30.2 decreased Cx43 and Cx50, whereas deleting Cx50 downregulated Cx30.2. The opposite occurred in ITf. In STf, deleting Cx30.2 upregulated Cx46 except the full-length reciprocally, deleting Cx46 upregulated Cx30.2. In ITf, Cx30.2 deficiency upregulated full-length and phosphorylated Cx46, whereas deleting Cx46 downregulated 48- to 50-kDa Cx30.2. The db/db and ob/ob mouse ITf, STf, and AP showed imbalanced Cx30.2 levels. IRα levels at 135 kDa declined in Cx30.2-/- and Cx50-/- mouse ITf and Cx46-/- and Cx50-/- STf. IRβ at 98 to 110 kDa dropped in Cx30.2-/- and Cx46-/- mice STf suggesting that Cx30.2 deficiency decreases active IR sites. The results show the connexins interdependence and interaction and that altering a single connexin changes the remaining connexins expression, which can modify gap junction-mediated glucose exchanges in contacting cells. Data suggest that glucose/insulin influences Cx30.2 turnover in testis and AP and, reciprocally, that connexins modulate testis glucose uptake and response to insulin.
Collapse
|
2
|
Pelletier RM, Akpovi CD, Chen L, Kumar NM, Vitale ML. Complementary expression and phosphorylation of Cx46 and Cx50 during development and following gene deletion in mouse and in normal and orchitic mink testes. Am J Physiol Regul Integr Comp Physiol 2015; 309:R255-76. [PMID: 26017495 PMCID: PMC4525330 DOI: 10.1152/ajpregu.00152.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/23/2015] [Indexed: 01/11/2023]
Abstract
Gap junction-mediated communication helps synchronize interconnected Sertoli cell activities. Besides, coordination of germ cell and Sertoli cell activities depends on gap junction-mediated Sertoli cell-germ cell communication. This report assesses mechanisms underlying the regulation of connexin 46 (Cx46) and Cx50 in mouse testis and those accompanying a "natural" seasonal and a pathological arrest of spermatogenesis, resulting from autoimmune orchitis (AIO) in mink. Furthermore, the impact of deleting Cx46 or Cx50 on the expression, phosphorylation of junction proteins, and spermatogenesis is evaluated. Cx46 mRNA and protein expression increased, whereas Cx50 decreased with adulthood in normal mice and mink. Cx46 mRNA and protein expression increased, whereas Cx50 decreased with adulthood in normal mice and mink. During the mink active spermatogenic phase, Cx50 became phosphorylated and localized to the site of the blood-testis barrier. By contrast, Cx46 was dephosphorylated and associated with annular junctions, suggesting phosphorylation/dephosphorylation of Cx46 and Cx50 involvement in the barrier dynamics. Cx46-positive annular junctions in contact with lipid droplets were found. Cx46 and Cx50 expression and localization were altered in mink with AIO. The deletion of Cx46 or Cx50 impacted on other connexin expression and phosphorylation and differently affected tight and adhering junction protein expression. The level of apoptosis, determined by ELISA, and a number of Apostain-labeled spermatocytes and spermatids/tubules were higher in mice lacking Cx46 (Cx46-/-) than wild-type and Cx50-/- mice, arguing for life-sustaining Cx46 gap junction-mediated exchanges in late-stage germ cells secluded from the blood by the barrier. The data show that expression and phosphorylation of Cx46 and Cx50 are complementary in seminiferous tubules.
Collapse
|
3
|
Praveen-kumar S, Kumar NM, Agadi JB. Atopic myelitis: a case report from India. Clin Neurol Neurosurg 2014; 127:118-21. [PMID: 25459256 DOI: 10.1016/j.clineuro.2014.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 09/04/2014] [Accepted: 10/04/2014] [Indexed: 10/24/2022]
|
4
|
Manasson J, Tien T, Moore C, Kumar NM, Roy S. High glucose-induced downregulation of connexin 30.2 promotes retinal vascular lesions: implications for diabetic retinopathy. Invest Ophthalmol Vis Sci 2013; 54:2361-6. [PMID: 23385797 DOI: 10.1167/iovs.12-10815] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE To investigate whether high glucose (HG) alters expression of connexin 30.2 (Cx30.2) and influences gap junction intercellular communication (GJIC) in retinal endothelial cells and promotes vascular lesions characteristic of diabetic retinopathy (DR). METHODS Western blot analysis and immunostaining were performed to determine Cx30.2 protein expression and localization in rat retinal endothelial cells (RRECs) grown in normal (N; 5 mM) or HG (30 mM) medium for 7 days. Concurrently, GJIC was assessed in cells grown in N or HG medium and in cells transfected with Cx30.2 siRNA. Similarly, retinal Cx30.2 expression was assessed in nondiabetic and diabetic rats. Additionally, the effect of reduced Cx30.2 on development of acellular capillaries (ACs) and pericyte loss (PL) was studied in retinas of Cx30.2 knockout mice. RESULTS Cx30.2 was identified in RRECs in vitro and in vascular cells of retinal capillaries. RRECs grown in HG exhibited significantly reduced Cx30.2 protein levels consistent with decreased Cx30.2 immunostaining compared with those grown in N medium. Cells grown in HG and cells transfected with Cx30.2 siRNA exhibited significantly diminished dye transfer compared with N or nontransfected cells. Importantly, Cx30.2 protein level and immunostaining were decreased in diabetic retinas compared with nondiabetic retinas. Retinal capillaries of Cx30.2 knockout mice exhibited increased numbers of ACs and PL compared with those of wild-type mice. CONCLUSIONS These results indicate that HG- or diabetes-induced downregulation of Cx30.2 expression and decrease in GJIC activity play a critical role in the development of retinal vascular lesions in early DR.
Collapse
|
5
|
McAnany JJ, Alexander KR, Kumar NM, Ying H, Anastasakis A, Fishman GA. Electroretinographic findings in a patient with congenital stationary night blindness due to a novel NYX mutation. Ophthalmic Genet 2013; 34:167-73. [PMID: 23289809 DOI: 10.3109/13816810.2012.743570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To document a novel NYX gene mutation in a patient with X-linked complete congenital stationary night blindness and to describe this patient's electroretinogram (ERG) characteristics. METHODS ERGs were recorded from a 17-year-old male with a previously unreported NYX mutation (819G > A) that results in a missense codon change (Trp237Ter). ERGs were recorded in response to brief-flash stimuli, 6.33-Hz sawtooth flicker, and sinusoidal flicker ranging from 6.33-100 Hz. The omitted stimulus response (OSR) of the flicker ERG, which is thought to be generated within the ON-pathway, was also assessed. RESULTS The patient's single-flash responses were consistent with previously documented NYX ERG characteristics, including a high-luminance flash response that was electronegative under dark-adapted conditions and a square-like a-wave followed by an abnormally shaped positive potential under light-adapted conditions, both of which are consistent with an ON-pathway deficit. Further evidence for an ON-pathway deficit included: (1) ERGs to rapid-on sawtooth flicker in which b-wave amplitude was reduced more than a-wave amplitude, and (2) responses to sinusoidal flicker that lacked the normal amplitude minimum and phase inflection near 12 Hz, ERG characteristics that are like those of patients with other NYX mutations. Novel findings included a pronounced amplitude attenuation for sinusoidal flicker at frequencies above approximately 50 Hz and an absent OSR, suggesting ON-pathway dysfunction at high frequencies. CONCLUSION The substantial loss of ERG amplitude and apparent ON-pathway dysfunction at high temporal frequencies distinguish this patient with a Trp237Ter NYX mutation from those with other previously reported NYX mutations.
Collapse
|
6
|
Mureli S, Gans CP, Bare DJ, Geenen DL, Kumar NM, Banach K. Mesenchymal stem cells improve cardiac conduction by upregulation of connexin 43 through paracrine signaling. Am J Physiol Heart Circ Physiol 2012; 304:H600-9. [PMID: 23241322 DOI: 10.1152/ajpheart.00533.2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) were shown to improve cell survival and alleviate cardiac arrhythmias when transplanted into cardiac tissue; however, little is known about the mechanism by which MSCs modify the electrophysiological properties of cardiac tissue. We aimed to distinguish the influence of cell-cell coupling between myocytes and MSCs from that of MSC-derived paracrine factors on the spontaneous activity and conduction velocity (θ) of multicellular cardiomyocyte preparations. HL-1 cells were plated on microelectrode arrays and their spontaneous activity and θ was determined from field potential recordings. In heterocellular cultures of MSCs and HL-1 cells the beating frequency was attenuated (t(0h): 2.26 ± 0.18 Hz; t(4h): 1.98 ± 0.26 Hz; P < 0.01) concomitant to the intercellular coupling between MSCs and cardiomyocytes. In HL-1 monolayers supplemented with MSC conditioned media (ConM) or tyrode (ConT) θ significantly increased in a time-dependent manner (ConT: t(0h): 2.4 cm/s ± 0.2; t(4h): 3.1 ± 0.4 cm/s), whereas the beating frequency remained constant. Connexin (Cx)43 mRNA and protein expression levels also increased after ConM or ConT treatment over the same time period. Enhanced low-density lipoprotein receptor-related protein 6 (LRP6) phosphorylation after ConT treatment implicates the Wnt signaling pathway. Suppression of Wnt secretion from MSCs (IWP-2; 5 μmol/l) reduced the efficacy of ConT to induce phospho-LRP6 and to increase θ. Inhibition of β-catenin (cardamonin; 10 μmol/l) or GSK3-α/β (LiCl; 5 mmol/l) also suppressed changes in θ, further supporting the hypothesis that MSC-mediated Cx43 upregulation occurs in part through secreted Wnt ligands and activation of the canonical Wnt signaling pathway.
Collapse
|
7
|
Hamid IA, Kumar NM. H1N1: are our critical units prepared? Indian J Med Microbiol 2011; 29:193-4. [PMID: 21654122 DOI: 10.4103/0255-0857.81779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
Tang Y, Crowley TE, Kumar NM. Global gene expression analysis of lenses from different mouse strains and in the alpha3Cx46 knockout mouse. Mol Vis 2010; 16:113-21. [PMID: 20104256 PMCID: PMC2810875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 01/21/2010] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Disruption of the mouse gene encoding the gap junction subunit alpha3 connexin 46 (alpha3Cx46) results in the formation of lens cataracts that have a severity affected by the genetic background of the mouse strain. To identify the genes that influence the severity of the nuclear opacity, global gene expression was analyzed in lenses from the 129SvJae strain and compared to the C57BL/6J strain. METHODS Lens transcripts were subjected to cDNA microarray analysis. Results on selected genes were confirmed by real-time PCR. RESULTS GENES THAT WERE DETERMINED TO BE ALTERED IN EXPRESSION LEVELS AS A RESULT OF STRAIN DIFFERENCES COULD BE CLUSTERED INTO THREE GROUPS: energy metabolism, stress response, and cell growth. CONCLUSIONS There were no observed changes in gene expression as a result of the lack of alpha3Cx46 in the different mouse strains, suggesting that the pathways mediated by this connexin do not influence gene transcription in the lens. Analysis of the transcript changes due to strain differences provides new insights into potential genetic modifiers of cataractogenesis. More detailed experimentation will be needed to determine if these observed changes do indeed affect cataractogenesis.
Collapse
|
9
|
Galindo CL, McIver LJ, McCormick JF, Skinner MA, Xie Y, Gelhausen RA, Ng K, Kumar NM, Garner HR. Global microsatellite content distinguishes humans, primates, animals, and plants. Mol Biol Evol 2009; 26:2809-19. [PMID: 19717526 DOI: 10.1093/molbev/msp192] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Microsatellites are highly mutable, repetitive sequences commonly used as genetic markers, but they have never been studied en masse. Using a custom microarray to measure hybridization intensities of every possible repetitive nucleotide motif from 1-mers to 6-mers, we examined 25 genomes. Here, we show that global microsatellite content varies predictably by species, as measured by array hybridization signal intensities, correlating with established taxonomic relationships, and particular motifs are characteristic of one species versus another. For instance, hominid-specific microsatellite motifs were identified despite alignment of the human reference, Celera, and Venter genomic sequences indicating substantial variation (30-50%) among individuals. Differential microsatellite motifs were mainly associated with genes involved in developmental processes, whereas those found in intergenic regions exhibited no discernible pattern. This is the first description of a method for evaluating microsatellite content to classify individual genomes.
Collapse
|
10
|
De Maria A, Shi Y, Kumar NM, Bassnett S. Calpain expression and activity during lens fiber cell differentiation. J Biol Chem 2009; 284:13542-13550. [PMID: 19269960 PMCID: PMC2679455 DOI: 10.1074/jbc.m900561200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 03/05/2009] [Indexed: 12/28/2022] Open
Abstract
In animal models, the dysregulated activity of calcium-activated proteases, calpains, contributes directly to cataract formation. However, the physiological role of calpains in the healthy lens is not well defined. In this study, we examined the expression pattern of calpains in the mouse lens. Real time PCR and Western blotting data indicated that calpain 1, 2, 3, and 7 were expressed in lens fiber cells. Using controlled lysis, depth-dependent expression profiles for each calpain were obtained. These indicated that, unlike calpain 1, 2, and 7, which were most abundant in cells near the lens surface, calpain 3 expression was strongest in the deep cortical region of the lens. We detected calpain activities in vitro and showed that calpains were active in vivo by microinjecting fluorogenic calpain substrates into cortical fiber cells. To identify endogenous calpain substrates, membrane/cytoskeleton preparations were treated with recombinant calpain, and cleaved products were identified by two-dimensional difference electrophoresis/mass spectrometry. Among the calpain substrates identified by this approach was alphaII-spectrin. An antibody that specifically recognized calpain-cleaved spectrin was used to demonstrate that spectrin is cleaved in vivo, late in fiber cell differentiation, at or about the time that lens organelles are degraded. The generation of the calpain-specific spectrin cleavage product was not observed in lens tissue from calpain 3-null mice, indicating that calpain 3 is uniquely activated during lens fiber differentiation. Our data suggest a role for calpains in the remodeling of the membrane cytoskeleton that occurs with fiber cell maturation.
Collapse
|
11
|
Hoehenwarter W, Tang Y, Ackermann R, Pleissner KP, Schmid M, Stein R, Zimny-Arndt U, Kumar NM, Jungblut PR. Identification of proteins that modify cataract of mouse eye lens. Proteomics 2009; 8:5011-24. [PMID: 19003866 DOI: 10.1002/pmic.200800380] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The occurrence of a nuclear cataract in the eye lens due to disruption of the alpha3Cx46 connexin gene, Gja3, is dependent on strain background in a mouse model, implicating factors that modify the pathology. The differences upon cataractogenesis in the urea soluble proteins of the lens of two mouse strains, C57BL/6J and 129/SvJ, were analyzed by a comparative proteomics approach. Determination of the complete proteome of an organ offers the opportunity to characterize at a molecular level, differences in gene expression and PTMs occurring during pathology and between individuals. The abundance of 63 protein species was altered between the strains. A unique aspect of this study is the identification of chaperonin subunit 6A, mortalin, ERp29, and syntaxin-binding protein 6 in the eye lens. DNA polymorphisms resulting in nonconservative amino acid changes that led to altered physicochemical properties of the proteins were detected for mortalin, chaperonin subunit 6A, annexin A1, and possibly gamma-N crystallin. The results show HSP27/25 and/or ERp29 are the likely major modifying factors for cataractogenesis. Extension of the results suggests that small heat-shock proteins have a major role for influencing cataract formation in humans.
Collapse
|
12
|
Kumar NM. Molecular Biology of the Interactions between Connexins. NOVARTIS FOUNDATION SYMPOSIUM 219 - GAP JUNCTION-MEDIATED INTERCELLULAR SIGNALLING IN HEALTH AND DISEASE 2007. [DOI: 10.1002/9780470515587.ch2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
13
|
Tang Y, Liu X, Zoltoski RK, Novak LA, Herrera RA, Richard I, Kuszak JR, Kumar NM. Age-related cataracts in alpha3Cx46-knockout mice are dependent on a calpain 3 isoform. Invest Ophthalmol Vis Sci 2007; 48:2685-94. [PMID: 17525200 PMCID: PMC1959511 DOI: 10.1167/iovs.06-0926] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Previous studies have demonstrated that in 129alpha3Cx46-/- mice, age-related nuclear cataract is formed. In the present study, a more in vivo-relevant model was generated to test the hypothesis that the calpain 3 gene is involved in age-related nuclear cataractogenesis in alpha3Cx46 knockout mice. METHODS To test the hypothesis that the calpain 3 gene is involved in age-related nuclear cataractogenesis in alpha3Cx46 knockout mice, 129alpha3Cx46-/- and CAPN3-/- mice were mated to generate homozygous double-knockout (dKO) mice. Lenses from the mice were examined by visual observation, laser scan analysis, and histologic and biochemical methods. RESULTS In the absence of the CAPN3 gene, the formation of a cataract was delayed, and its appearance was changed to a more diffuse, pulverulent type. Unlike in the 129alpha3Cx46-/- mouse, cleavage of gamma-crystallin was not detected in the dKO mouse. In both 129alpha3Cx46-/- and dKO mice, total Ca2+ increased. CONCLUSIONS The present study shows for the first time that calpain 3 is necessary for the formation of age-dependent nuclear cataracts in alpha3Cx46-/- mice. Evidence that the calpain 3 gene is directly involved in, or part of the pathway that leads to, gamma-crystallin cleavage is presented. These results are consistent with the hypothesis that the loss of alpha3Cx46 leads to increased levels of Ca2+ ions, and this increase activates the CAPN3 isoform, Lp82/85, which results in the formation of a nuclear cataract.
Collapse
|
14
|
Hoehenwarter W, Ackermann R, Zimny-Arndt U, Kumar NM, Jungblut PR. The necessity of functional proteomics: protein species and molecular function elucidation exemplified by in vivo alpha A crystallin N-terminal truncation. Amino Acids 2006; 31:317-23. [PMID: 16964561 DOI: 10.1007/s00726-005-0377-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 12/15/2005] [Indexed: 11/24/2022]
Abstract
Ten years after the establishment of the term proteome, the science surrounding it has yet to fulfill its potential. While a host of technologies have generated lists of protein names, there are only a few reported studies that have examined the individual proteins at the covalent chemical level defined as protein species in 1997 and their function. In the current study, we demonstrate that this is possible with two-dimensional gel electrophoresis (2-DE) and mass spectrometry by presenting clear evidence of in vivo N-terminal alpha A crystallin truncation and relating this newly detected protein species to alpha crystallin activity regulation by protease cleavage in the healthy young murine lens. We assess the present state of technology and suggest a shift in resources and paradigm for the routine attainment of the protein species level in proteomics.
Collapse
|
15
|
Hoehenwarter W, Kumar NM, Wacker M, Zimny-Arndt U, Klose J, Jungblut PR. Eye lens proteomics: from global approach to detailed information about phakinin and gamma E and F crystallin genes. Proteomics 2005; 5:245-57. [PMID: 15744838 DOI: 10.1002/pmic.200300878] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Exploration of the lenticular proteome poses a challenging and worthwhile undertaking as cataracts, the products of a disease phenotype elicited by this proteome, remains the leading cause of vision impairment worldwide. The complete ten day old lens proteome of Mus musculus C57BL/6J was resolved into 900 distinct spots by large gel carrier ampholyte based 2-DE. The predicted amino acid sequences of all 16 crystallins ubiquitous in mammals were corroborated by mass spectrometry (MS). In detailed individual spot analyses, the primary structure of the full murine C57BL/6J beaded filament component phakinin CP49 was sequenced by liquid chromatography/electrospray ionization-tandem MS and amended at two positions. This definitive polypeptide sequence was aligned to the mouse genome, thus identifying the entire C57BL/6J genomic coding region. Also, two murine C57/6J polypeptides, both previously classified as gamma F crystallin, were clearly distinguished by MS and electrophoretic mobility. Both were assigned to their respective genes, one of the polypeptides was reclassified as C57BL/6J gamma E crystallin. Building on these data and previous investigations an updated crystallin reference map was put forth and several non crystallin lenticular components were examined. These results represent the first part of a comprehensive investigation of the mouse lens proteome (http://www.mpiib-berlin.mpg.de/2D-PAGE) with emphasis on understanding genetic effects on proteins and disease development.
Collapse
|
16
|
Nakamura H, Siddiqui SS, Shen X, Malik AB, Pulido JS, Kumar NM, Yue BYJT. RNA interference targeting transforming growth factor-beta type II receptor suppresses ocular inflammation and fibrosis. Mol Vis 2004; 10:703-11. [PMID: 15475878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
PURPOSE Transforming growth factor-beta(TGF-beta) is an important mediator of wound healing responses. In the eye, TGF-beta activity has been implicated in causing corneal haze after laser surgery and subconjunctival scarring following glaucoma surgery. The purpose of the study was to determine whether small interference RNAs (siRNAs) targeting the type II receptor of TGF-beta (TbetaRII) could be used to suppress the TGF-beta action. METHODS TbetaRII specific siRNAs designed from the human gene sequence were transfected into cultured human corneal fibroblasts. The protein and transcript levels of the receptor were determined by immunofluorescence, western blotting, and real time PCR. Immunofluorescence and immunoblotting were carried out to examine fibronectin assembly. A wound closure assay was used to assess cell migration in in vitro fibroblast cultures. In addition, the in vivo effects of TbetaRII siRNA were evaluated in a mouse model of ocular inflammation and fibrosis generated by subconjunctival injection of phosphate buffered saline and latex beads. Mouse TbetaRII siRNA was introduced into experimental eyes. Cellularity on tissue sections was evaluated after staining with hematoxylin and eosin. Collagen deposition was visualized by picrosirius red staining. RESULTS TbetaRII siRNAs abrogated the receptor transcript and protein expression in cultured corneal fibroblasts. The gene knockdown inhibited fibronectin assembly and retarded cell migration. In the mouse model, introduction of TbetaRII specific siRNA significantly reduced the inflammatory response and matrix deposition. CONCLUSIONS TbetaRII specific siRNAs were efficacious both in vitro and in vivo in knocking down the TGF-beta action. A direct application of siRNA into eyes to downregulate TbetaRII expression may provide a novel therapy for preventing ocular inflammation and scarring.
Collapse
MESH Headings
- Adolescent
- Adult
- Animals
- Blotting, Western
- Cell Movement/drug effects
- Cells, Cultured
- Collagen/metabolism
- Conjunctiva/pathology
- Conjunctivitis/pathology
- Conjunctivitis/prevention & control
- Cornea/cytology
- Cornea/metabolism
- Disease Models, Animal
- Down-Regulation
- Fibroblasts/metabolism
- Fibronectins/metabolism
- Fibrosis/prevention & control
- Fluorescent Antibody Technique, Indirect
- Humans
- Mice
- Mice, Inbred C57BL
- Microscopy, Fluorescence
- Middle Aged
- Protein Serine-Threonine Kinases
- RNA Interference/physiology
- RNA, Messenger/metabolism
- RNA, Small Interfering/pharmacology
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Transfection
- Transforming Growth Factor beta/metabolism
Collapse
|
17
|
Hua VB, Chang AB, Tchieu JH, Kumar NM, Nielsen PA, Saier MH. Sequence and phylogenetic analyses of 4 TMS junctional proteins of animals: connexins, innexins, claudins and occludins. J Membr Biol 2004; 194:59-76. [PMID: 14502443 DOI: 10.1007/s00232-003-2026-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2002] [Indexed: 10/27/2022]
Abstract
Connexins and probably innexins are the principal constituents of gap junctions, while claudins and occludins are principal tight junctional constituents. All have similar topologies with four alpha-helical transmembrane segments (TMSs), and all exhibit well-conserved extracytoplasmic cysteines that either are known to or potentially can form disulfide bridges. We have conducted sequence, topological and phylogenetic analyses of the proteins that comprise the connexin, innexin, claudin and occludin families. A multiple alignment of the sequences of each family was used to derive average hydropathy and similarity plots as well as phylogenetic trees. Analyses of the data generated led to the following evolutionary and functional suggestions: (1) In all four families, the most conserved regions of the proteins from each family are the four TMSs although the extracytoplasmic loops between TMSs 1 and 2, and TMSs 3 and 4 are usually well conserved. (2) The phylogenetic trees revealed sets of orthologues except for the innexins where phylogeny primarily reflects organismal source, probably due to a lack of relevant organismal sequence data. (3) The two halves of the connexins exhibit similarities suggesting that they were derived from a common origin by an internal gene duplication event. (4) Conserved cysteyl residues in the connexins and innexins may point to a similar extracellular structure involved in the docking of hemichannels to create intercellular communication channels. (5) We suggest a similar role in homomeric interactions for conserved extracellular residues in the claudins and occludins. The lack of sequence or motif similarity between the four different families indicates that, if they did evolve from a common ancestral gene, they have diverged considerably to fulfill separate, novel functions. We suggest that internal duplication was a general evolutionary strategy used to generate new families of channels and junctions with unique functions. These findings and suggestions should serve as guides for future studies concerning the structures, functions and evolutionary origins of junctional proteins.
Collapse
|
18
|
Nielsen PA, Baruch A, Shestopalov VI, Giepmans BNG, Dunia I, Benedetti EL, Kumar NM. Lens connexins alpha3Cx46 and alpha8Cx50 interact with zonula occludens protein-1 (ZO-1). Mol Biol Cell 2003; 14:2470-81. [PMID: 12808044 PMCID: PMC194895 DOI: 10.1091/mbc.e02-10-0637] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Connexin alpha1Cx43 has previously been shown to bind to the PDZ domain-containing protein ZO-1. The similarity of the carboxyl termini of this connexin and the lens fiber connexins alpha3Cx46 and alpha8Cx50 suggested that these connexins may also interact with ZO-1. ZO-1 was shown to be highly expressed in mouse lenses. Colocalization of ZO-1 with alpha3Cx46 and alpha8Cx50 connexins in fiber cells was demonstrated by immunofluorescence and by fracture-labeling electron microscopy but showed regional variations throughout the lens. ZO-1 was found to coimmunoprecipitate with alpha3Cx46 and alpha8Cx50, and pull-down experiments showed that the second PDZ domain of ZO-1 was involved in this interaction. Transiently expressed alpha3Cx46 and alpha8Cx50 connexins lacking the COOH-terminal residues did not bind to the second PDZ domain but still formed structures resembling gap junctions by immunofluorescence. These results indicate that ZO-1 interacts with lens fiber connexins alpha3Cx46 and alpha8Cx50 in a manner similar to that previously described for alpha1Cx43. The spatial variation in the interaction of ZO-1 with lens gap junctions is intriguing and is suggestive of multiple dynamic roles for this association.
Collapse
|
19
|
Nielsen PA, Kumar NM. Differences in expression patterns between mouse connexin-30.2 (Cx30.2) and its putative human orthologue, connexin-31.9. FEBS Lett 2003; 540:151-6. [PMID: 12681499 DOI: 10.1016/s0014-5793(03)00252-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel gap junction forming protein, mouse connexin-30.2 (Cx30.2) contains 278 amino acid residues, and is 79% identical to human Cx31.9 (GJA11). Northern analysis showed that Cx30.2 is ubiquitously expressed, most prominently in testis. Polyclonal antibodies against Cx30.2 detected a 30 kDa protein in cells overexpressing Cx30.2, and in mouse testis. Immunofluorescence showed that Cx30.2 was expressed in vascular smooth muscle, but also in cell types where Cx31.9 was not detected. These data demonstrate that Cx30.2 is a bona fide gene, and suggest that it is the orthologue of Cx31.9, but that it may have additional roles compared with Cx31.9.
Collapse
|
20
|
Nielsen PA, Baruch A, Giepmans BN, Kumar NM. Characterization of the association of connexins and ZO-1 in the lens. CELL COMMUNICATION & ADHESION 2003; 8:213-7. [PMID: 12064591 DOI: 10.3109/15419060109080726] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
ZO-1 (Zona Occludens protein 1) has previously been shown to bind Cx43alpha1. This interaction involves the most C-terminal residues of Cx43alpha1 and the second PDZ-domain of ZO-1. The biological significance of this interaction is not well understood. The similarity of the C-terminal residues of the lens connexins Cx46alpha3 and Cx50alpha8 to Cx43alpha1 prompted us to examine if ZO-1 is expressed in the lens, and if ZO-1 interacts with lens connexins. A high level of ZO-1 expression was detected in the mouse lens. Lens connexins were shown to co-immunoprecipitate with ZO-1, and the interaction was found to involve similar domains as those previously demonstrated for the Cx43alpha1/ZO-1 interaction (Nielsen et al. manuscript in preparation). Futhermore, transient expression of Cx46alpha3 and Cx50alpha8 in cell culture showed colocalization of gap junction plaques with ZO-1, further suggesting that lens connexins interact with ZO-1. Sequence comparison suggests that a large number of connexins of the alpha subclass may interact with ZO-1. Using the lens as a system to study connexin/ZO-1 interactions may further our understanding of their biological significance in the lens, as well as in other organs.
Collapse
|
21
|
Nielsen PA, Beahm DL, Giepmans BNG, Baruch A, Hall JE, Kumar NM. Molecular cloning, functional expression, and tissue distribution of a novel human gap junction-forming protein, connexin-31.9. Interaction with zona occludens protein-1. J Biol Chem 2002; 277:38272-83. [PMID: 12154091 DOI: 10.1074/jbc.m205348200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel human connexin gene (GJA11) was cloned from a genomic library. The open reading frame encoded a hypothetical protein of 294 amino acid residues with a predicted molecular mass of 31,933, hence referred to as connexin-31.9 (Cx31.9) or alpha 11 connexin. A clone in GenBank containing the Cx31.9 gene localized to chromosome 17q21.2. Northern analysis of Cx31.9 showed a major 4.4-kilobase transcript, which was expressed at varying levels in all tissues analyzed. Two monoclonal antibodies generated against different domains of Cx31.9 recognized a 30-33-kDa protein from cells overexpressing Cx31.9. Immunofluorescence of overexpressing cells indicated the presence of Cx31.9 between adjacent cells, consistent with its localization to gap junctions. Double voltage clamp analyses of Cx31.9-overexpressing cells, and of paired Xenopus oocytes injected with Cx31.9 cRNA, demonstrated junctional currents indicative of gap junction channel formation. In contrast to previously characterized connexins, Cx31.9 showed no voltage-dependent gating within a physiologically relevant range. Cx31.9 was detected in human tissues by immunoblot analysis, and immunofluorescence localized Cx31.9 expression to vascular smooth muscle cells. Furthermore, it was demonstrated that Cx31.9 interacted with ZO-1. Thus, Cx31.9 represents a novel connexin gene that in vivo generates a protein with unique voltage gating properties.
Collapse
|
22
|
Baldo GJ, Gong X, Martinez-Wittinghan FJ, Kumar NM, Gilula NB, Mathias RT. Gap junctional coupling in lenses from alpha(8) connexin knockout mice. J Gen Physiol 2001; 118:447-56. [PMID: 11696604 PMCID: PMC2233836 DOI: 10.1085/jgp.118.5.447] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Lens fiber cell gap junctions contain alpha(3) (Cx46) and alpha(8) (Cx50) connexins. To examine the roles of the two different connexins in lens physiology, we have genetically engineered mice lacking either alpha(3) or alpha(8) connexin. Intracellular impedance studies of these lenses were used to measure junctional conductance and its sensitivity to intracellular pH. In Gong et al. 1998, we described results from alpha(3) connexin knockout lenses. Here, we present original data from alpha(8) connexin knockout lenses and a comparison with the previous results. The lens has two functionally distinct domains of fiber cell coupling. In wild-type mouse lenses, the outer shell of differentiating fibers (see 1, DF) has an average coupling conductance per area of cell-cell contact of approximately 1 S/cm(2), which falls to near zero when the cytoplasm is acidified. In the inner core of mature fibers (see 1, MF), the average coupling conductance is approximately 0.4 S/cm(2), and is insensitive to acidification of the cytoplasm. Both connexin isoforms appear to contribute about equally in the DF since the coupling conductance for either heterozygous knockout (+/-) was approximately 70% of normal and 30-40% of the normal for both -/- lenses. However, their contribution to the MF was different. About 50% of the normal coupling conductance was found in the MF of alpha(3) +/- lenses. In contrast, the coupling of MF in the alpha(8) +/- lenses was the same as normal. Moreover, no coupling was detected in the MF of alpha(3) -/- lenses. Together, these results suggest that alpha(3) connexin alone is responsible for coupling MF. The pH- sensitive gating of DF junctions was about the same in wild-type and alpha(3) connexin -/- lenses. However, in alpha(8) -/- lenses, the pure alpha(3) connexin junctions did not gate closed in the response to acidification. Since alpha(3) connexin contributes about half the coupling conductance in DF of wild-type lenses, and that conductance goes to zero when the cytoplasmic pH drops, it appears alpha(8) connexin regulates the gating of alpha(3) connexin. Both connexins are clearly important to lens physiology as lenses null for either connexin lose transparency. Gap junctions in the MF survive for the lifetime of the organism without protein turnover. It appears that alpha(3) connexin provides the long-term communication in MF. Gap junctions in DF may be physiologically regulated since they are capable of gating when the cytoplasm is acidified. It appears alpha(8) connexin is required for gating in DF.
Collapse
|
23
|
Baruch A, Greenbaum D, Levy ET, Nielsen PA, Gilula NB, Kumar NM, Bogyo M. Defining a link between gap junction communication, proteolysis, and cataract formation. J Biol Chem 2001; 276:28999-9006. [PMID: 11395508 DOI: 10.1074/jbc.m103628200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Disruption of the connexin alpha 3 (Cx46) gene (alpha 3 (-/-)) in mice results in severe cataracts within the nuclear portion of the lens. These cataracts are associated with proteolytic processing of the abundant lens protein gamma-crystallin, leading to its aggregation and subsequent opacification of the lens. The general cysteine protease inhibitor, E-64, blocked cataract formation and gamma-crystallin cleavage in alpha 3 (-/-) lenses. Using a new class of activity-based cysteine protease affinity probes, we identified the calcium-dependent proteases, m-calpain and Lp82, as the primary targets of E-64 in the lens. Profiling changes in protease activities throughout cataractogenesis indicated that Lp82 activity was dramatically increased in alpha 3 (-/-) lenses and correlated both spatially and temporally with cataract formation. Increased Lp82 activity was due to calcium accumulation as a result of increased influx and decreased outflux of calcium ions in alpha 3 (-/-) lenses. These data establish a role for alpha 3 gap junctions in maintaining calcium homeostasis that in turn is required to control activity of the calcium-dependent cysteine protease Lp82, shown here to be a key initiator of the process of cataractogenesis.
Collapse
|
24
|
Dunia I, Recouvreur M, Nicolas P, Kumar NM, Bloemendal H, Benedetti EL. Sodium dodecyl sulfate-freeze-fracture immunolabeling of gap junctions. Methods Mol Biol 2001; 154:33-55. [PMID: 11218657 DOI: 10.1385/1-59259-043-8:33] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
25
|
Benedetti EL, Dunia I, Recouvreur M, Nicolas P, Kumar NM, Bloemendal H. Structural organization of gap junctions as revealed by freeze-fracture and SDS fracture-labeling. Eur J Cell Biol 2000; 79:575-82. [PMID: 11001494 DOI: 10.1078/0171-9335-00081] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|