1
|
Watson AA, Fleet GW, Asano N, Molyneux RJ, Nash RJ. Polyhydroxylated alkaloids -- natural occurrence and therapeutic applications. PHYTOCHEMISTRY 2001; 56:265-295. [PMID: 11243453 DOI: 10.1016/s0031-9422(00)00451-9] [Citation(s) in RCA: 552] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Over one hundred polyhydroxylated alkaloids have been isolated from plants and micro-organisms. These alkaloids can be potent and highly selective glycosidase inhibitors and are arousing great interest as tools to study cellular recognition and as potential therapeutic agents. However, only three of the natural products so far have been widely studied for therapeutic potential due largely to the limited commercial availability of the other compounds.
Collapse
|
Review |
24 |
552 |
2
|
Fan JQ, Ishii S, Asano N, Suzuki Y. Accelerated transport and maturation of lysosomal alpha-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor. Nat Med 1999; 5:112-5. [PMID: 9883849 DOI: 10.1038/4801] [Citation(s) in RCA: 473] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fabry disease is a disorder of glycosphingolipid metabolism caused by deficiency of lysosomal alpha-galactosidase A (alpha-Gal A), resulting in renal failure along with premature myocardial infarction and strokes. No effective treatment of this disorder is available at present. Studies of residual activities of mutant enzymes in many Fabry patients showed that some of them had kinetic properties similar to those for normal alpha-Gal A, but were significantly less stable, especially in conditions of neutral pH (refs. 3-5). The biosynthetic processing was delayed in cultured fibroblasts of a Fabry patient, and the mutant protein formed an aggregate in endoplasmic reticulum, indicating that the enzyme deficiency in some mutants was mainly caused by abortive exit from the endoplasmic reticulum, leading to excessive degradation of the enzyme. We report here that 1-deoxy-galactonojirimycin (DGJ), a potent competitive inhibitor of alpha-Gal A, effectively enhanced alpha-Gal A activity in Fabry lymphoblasts, when administrated at concentrations lower than that usually required for intracellular inhibition of the enzyme. DGJ seemed to accelerate transport and maturation of the mutant enzyme. Oral administration of DGJ to transgenic mice overexpressing a mutant alpha-Gal A substantially elevated the enzyme activity in some organs. We propose a new molecular therapeutic strategy for genetic metabolic diseases of administering competitive inhibitors as 'chemical chaperons' at sub-inhibitory intracellular concentrations.
Collapse
|
|
26 |
473 |
3
|
Asano N, Yamashita T, Yasuda K, Ikeda K, Kizu H, Kameda Y, Kato A, Nash RJ, Lee HS, Ryu KS. Polyhydroxylated alkaloids isolated from mulberry trees (Morusalba L.) and silkworms (Bombyx mori L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2001; 49:4208-13. [PMID: 11559112 DOI: 10.1021/jf010567e] [Citation(s) in RCA: 267] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
New polyhydroxylated alkaloids, (2R,3R,4R)-2-hydroxymethyl-3,4-dihydroxypyrrolidine-N-propionamide from the root bark of Morus alba L., and 4-O-alpha-D-galactopyranosyl-calystegine B(2) and 3 beta,6 beta-dihydroxynortropane from the fruits, were isolated by column chromatography using a variety of ion-exchange resins. Fifteen other polyhydroxylated alkaloids were also isolated. 1-Deoxynojirimycin, a potent alpha-glucosidase inhibitor, was concentrated 2.7-fold by silkworms feeding on mulberry leaves. Some alkaloids contained in mulberry leaves were potent inhibitors of mammalian digestive glycosidases but not inhibitors of silkworm midgut glycosidases, suggesting that the silkworm has enzymes specially adapted to enable it to feed on mulberry leaves. The possibility of preventing the onset of diabetes and obesity using natural dietary supplements containing 1-deoxynojirimycin and other alpha-glucosidase inhibitors in high concentration is of great potential interest.
Collapse
|
|
24 |
267 |
4
|
Abe T, Unno M, Onogawa T, Tokui T, Kondo TN, Nakagomi R, Adachi H, Fujiwara K, Okabe M, Suzuki T, Nunoki K, Sato E, Kakyo M, Nishio T, Sugita J, Asano N, Tanemoto M, Seki M, Date F, Ono K, Kondo Y, Shiiba K, Suzuki M, Ohtani H, Shimosegawa T, Iinuma K, Nagura H, Ito S, Matsuno S. LST-2, a human liver-specific organic anion transporter, determines methotrexate sensitivity in gastrointestinal cancers. Gastroenterology 2001; 120:1689-1699. [PMID: 11375950 DOI: 10.1053/gast.2001.24804] [Citation(s) in RCA: 260] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS One approach to the development of targeted cancer chemotherapy exploits increased uptake of the agent into neoplastic cells. In this scenario, higher concentrations of the agent in cancer cells are responsible for differential killing, whereas the low concentration in normal human cells decreases side effects. The aim of this study was to isolate an organic anion transporter that is weak in normal cells, but abundantly expressed in cancer cells, to deliver the anticancer drugs to the cells. METHODS A human liver complementary DNA (cDNA) library was screened with liver-specific transporter (LST)-1 cDNA as a probe. Northern blot analyses were performed using the isolated cDNA (termed LST-2). An LST-2-specific antibody was raised, and immunohistochemical analyses including immunoelectron microscopy were performed. Xenopus oocyte expression system was used for functional analysis. We also established a permanent cell line that consistently expresses LST-2 to examine the relationship between methotrexate uptake and sensitivity. RESULTS The isolated cDNA, LST-2, has 79.7% of overall homology with human LST-1. LST-2 exclusively expressed in the liver under normal conditions and its immunoreactivity was highest at the basolateral membrane of the hepatocytes around the central vein. Although its weak expression in the liver, LST-2 is abundantly expressed in the gastric, colon, and pancreatic cancers. On the other hand, the LST-1 was only detected in a hepatic cell line. LST-2 transports methotrexate in a saturable and dose-dependent manner. Furthermore, introduction of the LST-2 gene into mammalian cells potentiates sensitivity to methotrexate. CONCLUSIONS LST-2 is one of the prime candidate molecules for determining methotrexate sensitivity and may be a good target to deliver anticancer drugs to the gastrointestinal cancers.
Collapse
|
|
24 |
260 |
5
|
Horii S, Fukase H, Matsuo T, Kameda Y, Asano N, Matsui K. Synthesis and alpha-D-glucosidase inhibitory activity of N-substituted valiolamine derivatives as potential oral antidiabetic agents. J Med Chem 1986; 29:1038-46. [PMID: 3519969 DOI: 10.1021/jm00156a023] [Citation(s) in RCA: 255] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Various kinds of N-substituted valiolamine derivatives, including compounds 23a, 24a, and 34a, which are structurally analogous to the key pseudodisaccharides (25a and 26a) of naturally occurring oligosaccharide alpha-D-glucosidase inhibitors, have been synthesized and estimated by the measure of inhibitory activity against porcine sucrase and maltase. The N-substituted valiolamine derivatives evaluated in this study have been found to be more potent than the corresponding N-substituted valienamine derivatives as well as the parent valiolamine. It is noteworthy that even simple N-substituted valiolamine derivatives such as N-[2-hydroxy-1-(hydroxymethyl)ethyl]-, N-[(1R,2R)-2-hydroxycyclohexyl]-, and N-[(R)-(-)-beta-hydroxyphenethyl]valiolamine (6, 8a, and 9a) have the stronger alpha-D-glucosidase inhibitory activity against porcine intestinal maltase and sucrase than naturally occurring oligosaccharide alpha-D-glucosidase inhibitors.
Collapse
|
|
39 |
255 |
6
|
Morita T, Asano N, Awogi T, Sasaki YF, Sato S, Shimada H, Sutou S, Suzuki T, Wakata A, Sofuni T, Hayashi M. Evaluation of the rodent micronucleus assay in the screening of IARC carcinogens (groups 1, 2A and 2B) the summary report of the 6th collaborative study by CSGMT/JEMS MMS. Collaborative Study of the Micronucleus Group Test. Mammalian Mutagenicity Study Group. Mutat Res 1997; 389:3-122. [PMID: 9062586 DOI: 10.1016/s1383-5718(96)00070-8] [Citation(s) in RCA: 230] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To assess the correlation between micronucleus induction and human carcinogenicity, the rodent micronucleus assay was performed on known and potential human carcinogens in the 6th MMS/CSGMT collaborative study. Approximately 100 commercially available chemicals and chemical groups on which there was little or no micronucleus assay data were selected from IARC (International Agency for Research on Cancer) Groups 1 (human carcinogen), 2A (probable human carcinogen) and 2B (possible human carcinogen). As minimum requirements for the collaborative study, 5 male mice were treated by intraperitoneal injection or oral gavage once or twice with each chemical at three dose levels, and bone marrow and/or peripheral blood was analyzed. Five positives and 2 inconclusives out of 13 Group 1 chemicals, 7 positives and 5 inconclusives of 23 Group 2A chemicals, and 26 positives and 6 inconclusives of 67 Group 2B chemicals were found. Such low positive rates were not surprising because of a test chemical selection bias, and we excluded well-known micronucleus inducers. The overall evaluation of the rodent micronucleus assay was based on the present data combined with published data on the IARC carcinogens. After merging, the positive rates for Groups 1, 2A and 2B were 68.6, 54.5 and 45.6%, respectively. Structure-activity relationship analysis suggested that the micronucleus assay is more sensitive to the genetic toxicity of some classes of chemicals. Those to which it is sensitive consist of (1) aziridines and bis(2-chloroethyl) compounds; (2) alkyl sulfonate and sulfates; (3) acyl-type N-nitroso compounds; (4) hydrazines; (5) aminobiphenyl and benzidine derivatives; and (6) azo compounds. Those to which it is less sensitive consist of (1) dialkyl type N-nitroso compounds; (2) silica and metals and their compounds; (3) aromatic amines without other functional groups; (4) halogenated compounds; and (5) steroids and other hormones. After incorporation of structure-activity relationship information, the positive rates of the rodent micronucleus assay became 90.5, 65.2 and 60.0% for IARC Groups 1, 2A and 2B, respectively. Noteworthy was the tendency of the test to be more sensitive to those carcinogens with stronger evidence human carcinogenicity.
Collapse
|
Review |
28 |
230 |
7
|
Asano N, Ishii S, Kizu H, Ikeda K, Yasuda K, Kato A, Martin OR, Fan JQ. In vitro inhibition and intracellular enhancement of lysosomal alpha-galactosidase A activity in Fabry lymphoblasts by 1-deoxygalactonojirimycin and its derivatives. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:4179-86. [PMID: 10866822 DOI: 10.1046/j.1432-1327.2000.01457.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fabry disease is a lysosomal storage disorder caused by deficient lysosomal alpha-galactosidase A (alpha-Gal A) activity. Deficiency of the enzyme activity results in progressive deposition of neutral glycosphingolipids with terminal alpha-galactosyl residue in vascular endothelial cells. We recently proposed a chemical chaperone therapy for this disease by administration of 1-deoxygalactonojirimycin, a potent inhibitor of the enzyme, at subinhibitory intracellular concentrations [Fan, J.-Q., Ishii, S., Asano, N. and Suzuki, Y. (1999) Nat. Med. 5, 112-115]. 1-Deoxygalactonojirimycin served as a specific chaperone for those mutant enzymes that failed to maintain their proper conformation to avoid excessive degradation. In order to establish a correlation between in vitro inhibitory activity and intracellular enhancement activity of the specific chemical chaperone, a series of 1-deoxygalactonojirimycin derivatives were tested for activity with both alpha-Gal A and Fabry lymphoblasts. 1-Deoxygalactonojirimycin was the most potent inhibitor of alpha-Gal A with an IC50 value of 0.04 microM. alpha-Galacto-homonojirimycin, alpha-allo-homonojirimycin and beta-1-C-butyl-deoxygalactonojirimycin were effective inhibitors with IC50 values of 0.21, 4.3 and 16 microM, respectively. N-Alkylation, deoxygenation at C-2 and epimerization at C-3 of 1-deoxygalactonojirimycin markedly lowered or abolished its inhibition toward alpha-Gal A. Inclusion of 1-deoxygalactonojirimycin, alpha-galacto-homonojirimycin, alpha-allo-homonojirimycin and beta-1-C-butyl-deoxygalactonojirimycin at 100 microM in culture medium of Fabry lymphoblasts increased the intracellular alpha-Gal A activity by 14-fold, 5.2-fold, 2.4-fold and 2.3-fold, respectively. Weaker inhibitors showed only a minimum enhancement effect. These results suggest that more potent inhibitors act as more effective specific chemical chaperones for the mutant enzyme, and the potent competitive inhibitors of alpha-Gal A are effective specific chemical chaperones for Fabry disease.
Collapse
|
|
25 |
186 |
8
|
Ohyauchi M, Imatani A, Yonechi M, Asano N, Miura A, Iijima K, Koike T, Sekine H, Ohara S, Shimosegawa T. The polymorphism interleukin 8 -251 A/T influences the susceptibility of Helicobacter pylori related gastric diseases in the Japanese population. Gut 2005; 54:330-335. [PMID: 15710978 PMCID: PMC1774396 DOI: 10.1136/gut.2003.033050] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 10/05/2004] [Accepted: 10/08/2004] [Indexed: 12/19/2022]
Abstract
BACKGROUND Helicobacter pylori infection is associated with variable clinical outcomes, including gastroduodenal diseases, and genetic factors may be relevant in this process. AIMS We investigated the effects of an interleukin 8 (IL-8) gene polymorphism on the risk of gastroduodenal diseases, the degree of H pylori induced gastritis, and IL-8 gene transcription. SUBJECTS The study was performed in 244 healthy control subjects and 690 H pylori positive patients with non-cardia gastric cancer, gastric ulcer, duodenal ulcer, or gastritis. METHODS We identified the IL-8 -251 A/T polymorphism by direct sequence analysis, and measured the gastritis score and serum pepsinogen (PG). The transcriptional promoter activity of the IL-8 gene was assessed by luciferase assay. RESULTS IL-8 -251A was associated with a higher risk of gastric cancer and gastric ulcer. Patients carrying IL-8 -251A showed an increased risk of gastric cancer (odds ratios (OR) 2.01 (95% confidence interval (CI) 1.38-2.92)) and gastric ulcer (OR 2.07 (95% CI 1.37-3.12)). Compared with patients younger than 49 years, atrophy and metaplasia scores in the antrum were significantly higher and the PG I/II ratio significantly lower in -251A carriers than in T/T carriers. In the in vitro assay, IL-8 -251A showed enhanced promoter activity in response to IL-1beta or tumour necrosis factor alpha. CONCLUSIONS The IL-8 -251A allele may be associated with progression of gastric atrophy in patients with H pylori infection, and may increase the risk of gastric cancer and gastric ulcer in Japanese people.
Collapse
|
research-article |
20 |
175 |
9
|
Asano N, Oseki K, Tomioka E, Kizu H, Matsui K. N-containing sugars from Morus alba and their glycosidase inhibitory activities. Carbohydr Res 1994; 259:243-55. [PMID: 8050098 DOI: 10.1016/0008-6215(94)84060-1] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The reexamination of N-containing sugars from the roots of Morus alba by improved purification procedures led to the isolation of eighteen N-containing sugars, including seven that were isolated from the leaves of Morus bombycis. These N-containing sugars are 1-deoxynojirimycin (1), N-methyl-1-deoxynojirimycin (2), fagomine (3), 3-epi-fagomine (4), 1,4-dideoxy-1,4-imino-D-arabinitol (5), 1,4-dideoxy-1,4-imino-D-ribitol (6), calystegin B2 (1 alpha,2 beta,3 alpha,4 beta-tetrahydroxy-nor-tropane, 7), calystegin C1 (1 alpha,2 beta,3 alpha,4 beta,6 alpha-pentahydroxy-nor-tropane, 8), 1,4-dideoxy-1,4-imino-(2-O-beta-D-glucopyranosyl)-D-arabinitol (9), and nine glycosides of 1. These glycosides consist of 2-O- and 6-O-alpha-D-galactopyranosyl-1-deoxynojirimycins (10 and 11, respectively), 2-O-, 3-O- and 4-O-alpha-D-glucopyranosyl-1-deoxynojirimycins (12, 13, and 14, respectively), and 2-O-, 3-O-, 4-O- and 6-O-beta-D-glucopyranosyl-1-deoxynojirimycins (15, 16, 17, and 18, respectively). Compound 4 is a new member of polyhydroxylated piperidine alkaloids, and the isolation of 6 is the first report of its natural occurrence. It has recently been found that the polyhydroxy-nor-tropane alkaloids possess potent glycosidase inhibitory activities. Calystegin A3 is the trihydroxy-nor-tropane, and calystegins B1 and B2 are the tetrahydroxy-nor-tropane. Calystegin C1, a new member of calystegins, is the first naturally occurring pentahydroxy-nor-tropane alkaloid. The inhibitory activities of these compounds were investigated against rat digestive glycosidases and various commercially available glycosidases.
Collapse
|
|
31 |
166 |
10
|
Asano N, Tomioka E, Kizu H, Matsui K. Sugars with nitrogen in the ring isolated from the leaves of Morus bombycis. Carbohydr Res 1994; 253:235-45. [PMID: 8156550 DOI: 10.1016/0008-6215(94)80068-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
It is known that 1-deoxynojirimycin (1) is contained in the leaves and roots of Morus sp. The modified purification procedures of 1 from leaves of Morus bombycis led to the isolation of many polyhydroxylated alkaloids. These include 1, N-methyl-1-deoxynojirimycin (2), 2-O-alpha-D-galactopyranosyl-1-deoxynojirimycin (3), fagomine (4), 1,4-dideoxy-1,4-imino-D-arabinitol (5), 1,4-dideoxy-1,4-imino-(2-O-beta-D-glucopyranosyl)-D-arabinitol (6), and 1 alpha,2 beta,3 alpha,4 beta-tetrahydroxy-nor-tropane (7), designated nortropanoline. The isolation of 2 is the first report of its natural occurrence. Compounds 3 and 6 are the first naturally occurring glycosides of 1 and 5, respectively. Natural alkaloidal glycosidase inhibitors are classified into five structural types: namely polyhydroxylated piperidines, pyrrolidines, pyrrolines, indolizidines, and pyrrolizidines. Nortropanoline is a novel tropane alkaloid and a new type of polyhydroxylated alkaloid.
Collapse
|
|
31 |
135 |
11
|
Kameda Y, Asano N, Yoshikawa M, Takeuchi M, Yamaguchi T, Matsui K, Horii S, Fukase H. Valiolamine, a new alpha-glucosidase inhibiting aminocyclitol produced by Streptomyces hygroscopicus. J Antibiot (Tokyo) 1984; 37:1301-7. [PMID: 6392268 DOI: 10.7164/antibiotics.37.1301] [Citation(s) in RCA: 134] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Valiolamine, a new aminocyclitol has been isolated from the fermentation broth of Streptomyces hygroscopicus subsp. limoneus and its structure has been determined to be (1(OH),2,4,5/1,3)-5-amino-1-C-(hydroxymethyl)-1,2,3,4-cyclohexanetetr ol. Valiolamine has more potent alpha-glucosidase inhibitory activity against porcine intestinal sucrase, maltase and isomaltase than valienamine, validamine and hydroxyvalidamine which were reported as building blocks of validamycins and microbial oligosaccharide alpha-glucosidase inhibitors. In addition, valienamine, validamine and hydroxyvalidamine have been isolated from the fermentation broth.
Collapse
|
|
41 |
134 |
12
|
Asano N, Oseki K, Kizu H, Matsui K. Nitrogen-in-the-ring pyranoses and furanoses: structural basis of inhibition of mammalian glycosidases. J Med Chem 1994; 37:3701-6. [PMID: 7966130 DOI: 10.1021/jm00048a006] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Seven pyranoses and three furanoses with a nitrogen in the ring were prepared by chemical synthesis, microbial conversion, and isolation from plants to investigate the contribution of epimerization, deoxygenation, and conformation to the potency of inhibition and specificity of mammalian glycosidases. The seven pyranoses are 1-deoxynojirimycin (1), the D-manno (2), D-allo (3), and D-galacto (4) isomers of 1, fagomine (1,2-dideoxynojirimycin, 5), and the D-allo (6) and D-galacto (7) isomers of 5, while the three furanoses are 2,5-dideoxy-2,5-imino-D-mannitol (8), 1,4-dideoxy-1,4-imino-D-arabinitol (9), and 1,4-dideoxy-1,4-imino-D-ribitol (10). The 2-deoxygenation and/or 3-epimerization of 1 enhanced the potency for rat intestinal lactase and bovine liver cytosolic beta-galactosidase. Especially compound 6 showed a potent inhibitory activity against both enzymes, and compound 8, a mimic of beta-D-fructofuranose, was a potent inhibitor of both beta-galactosidases as well. Compound 4, which has been known as a powerful alpha-galactosidase inhibitor, exhibited no significant inhibitory activity for most of mammalian beta-galactosidases. In addition, compound 6 fairly retained a potency of 1 toward rat intestinal isomaltase. In this study, compound 8, known as a processing alpha-glucosidase I inhibitor in cell culture, has been found to have no effect on processing alpha-glucosidase II, whereas 9 has been shown to be a good nonspecific inhibitor of intestinal isomaltase, processing alpha-glucosidase II, Golgi alpha-mannosidases I and II, and porcine kidney trehalase. It has been speculated that glycosidase inhibitors have structures which resemble those of the respective glycosyl cations. This Broad inhibitory activity of 9 toward various glycosidases suggest that it superimposes well on the various glycosyl cations.
Collapse
|
|
31 |
126 |
13
|
Manabe T, Ohshio G, Baba N, Miyashita T, Asano N, Tamura K, Yamaki K, Nonaka A, Tobe T. Radical pancreatectomy for ductal cell carcinoma of the head of the pancreas. Cancer 1989; 64:1132-7. [PMID: 2547508 DOI: 10.1002/1097-0142(19890901)64:5<1132::aid-cncr2820640528>3.0.co;2-v] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Seventy-four patients were treated with a radical or a nonradical pancreatectomy for ductal cell carcinoma of the head of the pancreas. Their survival rates and the selection of the operative procedure were evaluated. In 32 patients, a radical pancreatectomy was attempted where there was sufficient clearance of regional or juxta-regional lymph nodes beyond the group of suspected metastatic nodes, as well as a resection of a greater margin of soft tissue around the pancreas. These patients' cumulative 5-year survival rate was 33.4%. In 14 Stage I or Stage II patients, the cumulative 5-year survival rate was 46.4%. In 18 Stage III or Stage IV patients, the cumulative 5-year survival rate was 20.7%. For 42 patients treated with a nonradical pancreatectomy with the dissection of lymph nodes adjacent to the pancreas or of regional lymph nodes but with insufficient clearance of the soft tissue around the pancreas, the cumulative 2-year and 3-year survival rates were 5.4% and 0%, respectively. In seven patients with Stage II carcinoma, the survival rate was 16.7% after 2 years and 0% after three years. In 35 Stage III or Stage IV patients, the survival rate was 3.2% after 2 years and 0% after 3 years. Thus, the survival rates were significantly higher in patients treated with radical operation than in patients who had nonradical operation. These results indicate that a radical pancreatectomy with sufficient lymph node clearance with the surrounding connective tissue around the pancreas is indispensable to cure patients with ductal cell carcinoma of the pancreas.
Collapse
|
|
36 |
126 |
14
|
Asano N, Kizu H, Oseki K, Tomioka E, Matsui K, Okamoto M, Baba M. N-alkylated nitrogen-in-the-ring sugars: conformational basis of inhibition of glycosidases and HIV-1 replication. J Med Chem 1995; 38:2349-56. [PMID: 7608901 DOI: 10.1021/jm00013a012] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The conformations of nitrogen-in-the-ring sugars and their N-alkyl derivatives were studied from 1H NMR analyses, mainly using 3J(H,H) coupling constants and quantitative NOE experiments. No significant difference was seen in the ring conformation of 1-deoxynojirimycin (1), N-methyl-1-deoxynojirimycin (2), and N-butyl-1-deoxynojirimycin (3). However, it was shown that the C6 OH group in 1 is predominantly equatorial to the piperidine ring, while that in 2 or 3 is predominantly axial, and its N-alkyl group is oriented equatorially. In the furanose analogues 1,4-dideoxy-1,4-imino-D-arabinitol (4) and its N-methyl (5) and N-butyl (6) derivatives, the five-membered ring conformation differed significantly by the presence or absence of the N-substituted group and the length of the N-alkyl chain. Compound 3 reduced its inhibitory effect on almost all glycosidases, resulting in an extremely specific inhibitor for processing alpha-glucosidase I since N-alkylation of 1 is known to enhance both the potency and specificity of this enzyme in vitro and in vivo. This preferred (C6 OH axial) conformation in 2 and 3 appears to be responsible for their strong alpha-glucosidase I activity. Compound 4 is a good inhibitor of intestinal alpha-glucohydrolases, alpha-glucosidase II, and Golgi alpha-mannosidases I and II, but its N-alkyl derivatives 5 and 6 markedly decreased inhibitory potential for all enzymes tested. In the case of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP, 7), which is a potent beta-galactosidase inhibitor, its N-methyl (8) and N-butyl (9) derivatives completely lost potency toward beta-galactosidase as well. N-Alkylation of compounds 4 and 7, known well as potent yeast alpha-glucosidase inhibitors, resulted in a serious loss of inhibitory activity toward yeast alpha-glucohydrolases. Activity of these nine analogues against HIV-1 replication was determined, based on the inhibition of virus-induced cytopathogenicity in MT-4 and MOLT-4 cells. Compounds 2 and 3, which are better inhibitors of alpha-glucosidase I than 1, proved active with EC50 values of 69 and 49 micrograms/mL in MT-4 cells and 100 and 37 micrograms/mL in MOLT-4 cells, respectively, while none of the furanose analogues exhibited any inhibitory effects on HIV-1. The change in potency and specificity of bioactivity by N-alkylation of nitrogen-in-the-ring sugars appears to be correlated with their conformational change.
Collapse
|
|
30 |
111 |
15
|
Kato A, Adachi I, Miyauchi M, Ikeda K, Komae T, Kizu H, Kameda Y, Watson AA, Nash RJ, Wormald MR, Fleet GW, Asano N. Polyhydroxylated pyrrolidine and pyrrolizidine alkaloids from Hyancinthoides non-scripta and Scilla campanulata. Carbohydr Res 1999; 316:95-103. [PMID: 10515698 DOI: 10.1016/s0008-6215(99)00043-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Aqueous ethanol extracts from the immature fruits and stalks of bluebell (Hyacinthoides non-scripta) were subjected to various ion-exchange column chromatographic steps to give 1,4-dideoxy-1,4-imino-D-arabinitol (1),2(R),5(R)-bis(hydroxymethyl)-3(R),4(R)-dihydroxypyrrolidine (DMDP) (2), 6-deoxy-6-C-(2,5-dihydroxyhexyl)-DMDP (3),2,5-dideoxy-2,5-imino-DL-glycero-D-manno-heptitol (homoDMDP)(4),homoDMDP-7-O-apioside (5), homoDMDP-7-O-beta-D-xylopyranoside (6), (1S*,2R*,3R*,5R*,7aR*)-1,2-dihydroxy-3,5- dihydroxymethylpyrrolizidine (7), and (1S*,2R*,3R*,5R*,6R*,7R*,7aR*)-3-hydroxymethyl-5-methyl-1,2,6,7 tetrahydroxypyrrolizidine (8). Bulbs of Scilla campanulata (Hyacinthaceae) yielded (1S*,2R*,3R*,5S*,7aR*)-1,2-dihydroxy-3,5-dihydroxy-methylpyrrol izidine (9) in addition to compounds 1-7. Compounds 3,6,7,8, and 9 are new natural products. Compound 4 is a potent competitive inhibitor with K(i) values of 1.5 microM for Caldocellum saccharolyticum beta-glucosidase and 2.2 microM for bovine liver beta-galactosidase. The 7-O-beta-D xyloside 6 was a stronger competitive inhibitor than 4 of C saccharolyticum beta-glucosidase and rat intestinal lactase, with K(i) values of 0.06 and 0.07 microM, respectively, but a weaker inhibitor of bovine liver beta-galactosidase. Furthermore, compound 4 is also a competitive inhibitor (K(i) = 1.8 microM) of porcine kidney trehalase, but 6 was inactive against this enzyme.
Collapse
|
|
26 |
109 |
16
|
Fujiwara K, Adachi H, Nishio T, Unno M, Tokui T, Okabe M, Onogawa T, Suzuki T, Asano N, Tanemoto M, Seki M, Shiiba K, Suzuki M, Kondo Y, Nunoki K, Shimosegawa T, Iinuma K, Ito S, Matsuno S, Abe T. Identification of thyroid hormone transporters in humans: different molecules are involved in a tissue-specific manner. Endocrinology 2001; 142:2005-2012. [PMID: 11316767 DOI: 10.1210/endo.142.5.8115] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We have recently identified that rat organic anion transporters, polypeptide2 (oatp2) and oatp3, both of which transport thyroid hormones. However, in humans the molecular organization of the organic anion transporters has diverged, and the responsible molecule for thyroid hormone transport has not been clarified, except for human liver-specific transporter (LST-1) identified by us. In this study we isolated and characterized a novel human organic anion transporter, OATP-E from human brain. The isolated complementary DNA encodes a polypeptide of 722 amino acids with 12 transmembrane domains. A rat counterpart, oatp-E, was also identified. Homology analysis and the phylogenetic tree analysis revealed that OATP-E/oatp-E is a subfamily of the organic anion transporter. Human OATP-E transported 3,3',5-triiodo-L-thyronine (K(m), 0.9 microM), thyronine, and rT(3) in a Na(+)-independent manner. Although the clone was isolated from the brain, OATP-E messenger RNA was abundantly expressed in various peripheral tissues. The rat counterpart, oatp-E, also transported 3,3',5-triiodo-L-thyronine. In addition, in this study we revealed that human OATP, which is exclusively expressed in the brain, transported 3,3',5-triiodo-L-thyronine (K(m), 6.5 microM), T(4) (K(m), 8.0 microM), and rT(3). These data suggest that in humans, several different molecules are involved in transporting thyroid hormone: OATP in the brain, LST-1 in the liver, and OATP-E in peripheral tissues.
Collapse
|
|
24 |
108 |
17
|
Nojima H, Kimura I, Chen FJ, Sugihara Y, Haruno M, Kato A, Asano N. Antihyperglycemic effects of N-containing sugars from Xanthocercis zambesiaca, Morus bombycis, Aglaonema treubii, and Castanospermum australe in streptozotocin-diabetic mice. JOURNAL OF NATURAL PRODUCTS 1998; 61:397-400. [PMID: 9544568 DOI: 10.1021/np970277l] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The aqueous MeOH extract of the leaves and root of Xanthocercis zambesiaca (Leguminosae) and eight structurally related nitrogen-containing sugars, fagomine (1), 4-O-beta-D-glucopyranosylfagomine (2), 3-O-beta-D-glucopyranosylfagomine (3), 3-epifagomine (4), 2,5-dideoxy-2,5-imino-D-mannitol (5), castanospermine (6), alpha-homonojirimycin (7), and 1-deoxynojirimycin (8) were evaluated for antihyperglycemic effects in streptozotocin (STZ)-diabetic mice. The insulin-releasing effects of 1 were also investigated. The blood glucose level fell after i.p. injection of the extract (50 mg/kg). Compounds 1, 2, 5, and 6 reduced the blood glucose level after i.p. injection of 150 mumol/kg. Compound 1 increased plasma insulin level in STZ-diabetic mice and potentiated the 8.3-mM glucose-induced insulin release from the rat isolated-perfused pancreas. The 1-induced potentiation of insulin release may partly contribute to antihyperglycemic action.
Collapse
|
|
27 |
105 |
18
|
Abstract
A large number of compounds mimicking the structures of monosaccharides or oligosaccharides have been discovered from natural sources. Such sugar mimics inhibit carbohydrate-degrading enzymes because of a structural resemblance to the sugar moiety of the natural substrate. Carbohydrate-degrading enzymes are involved in a wide range of important biological processes, such as intestinal digestion, posttranslational processing of the sugar chain of glycoproteins, their quality control mechanisms, lysosomal catabolism of glycoconjugates, and some viral infections. It has now been realized that inhibitors of the enzymes have enormous therapeutic potential in diabetes and lysosomal storage disorders. In this review, the general bioactivity, current applications, and the prospects for new therapeutic applications are described.
Collapse
|
Review |
16 |
103 |
19
|
Hayashi M, Ueda T, Uyeno K, Wada K, Kinae N, Saotome K, Tanaka N, Takai A, Sasaki YF, Asano N, Sofuni T, Ojima Y. Development of genotoxicity assay systems that use aquatic organisms. Mutat Res 1998; 399:125-33. [PMID: 9672655 DOI: 10.1016/s0027-5107(97)00251-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Our aim is to develop and evaluate monitoring systems that use aquatic organisms to assess the genotoxicity of water in the field and in the laboratory. In a field study, we have shown that the micronucleus assay is applicable to freshwater and marine fishes and that gill cells are more sensitive than hematopoietic cells to micronucleus-inducing agents. Gill cells from Carassius sp. (Funa) and Zacco platypus (Oikawa) collected upstream on the Tomio River (Nara, Japan), tended to have lower micronucleus frequencies than gill cells from fish collected at the midstream of the river. Leiognathus nuchalis (Hiiragi) and Ditrema temmincki (Umitanago), small marine fishes collected periodically at Mochimune Harbor (Shizuoka, Japan), showed seasonal differences in the frequencies of micronucleated gill cells and erythrocytes; they were highest in summer. For laboratory studies, we developed a method for analyzing chromosomal aberrations and micronuclei using Rhodeus ocellatus ocellatus (rose bitterling) embryos. One day after artificial insemination (gastrula stage), we observed structural chromosomal aberrations and micronuclei in the cells of embryos grown in water containing trichloroethylene. Although more work is needed to fully assess their sensitivity, these assays show promise as a means of detecting environmental genotoxins.
Collapse
|
|
27 |
96 |
20
|
Asano N, Kato A, Oseki K, Kizu H, Matsui K. Calystegins of Physalis alkekengi var. francheti (Solanaceae). Structure determination and their glycosidase inhibitory activities. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 229:369-76. [PMID: 7744059 DOI: 10.1111/j.1432-1033.1995.0369k.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Five calystegins were extracted from the roots of Physalis alkekengi var. francheti (Solanaceae) with hot water and purified to homogeneity by the combination of a variety of ion-exchange column chromatographies. Their structures have been determined from the 1H- and 13C-NMR spectral data, and two of the compounds were identified as calystegins A3 and B2, which have been isolated from the roots of Calystegia sepium (Convolvulaceae). Two of the remaining three were found to be 1 alpha, 3 alpha, 4 beta-trihydroxy-nor-tropane and 1 alpha, 2 alpha, 3 alpha, 4 beta-tetrahydroxy-nor-tropane and given the trivial name calystegins A5 and B3, respectively. The last calystegin was assigned as 1 alpha, 2 beta, 3 alpha, 6 alpha-tetrahydroxy-nor-tropane, which was the same as the relative configuration proposed in the literature for calystegin B1 isolated from C. sepium. However, the 13C-NMR spectral data for the compound from C. sepium differed substantially from our results. From a personal communication with the authors of the original paper on calystegins, it was clarified that the 13C-NMR chemical shifts of calystegin B1 in the original paper had been erroneous. Since their corrected 13C-NMR data of calystegin B1 and its 1H-NMR chemical shifts in the original paper are very close to our present data, we concluded that both compounds from C. sepium and P. alkekengi are identical. Calystegin B2 has been known to be a potent competitive inhibitor of almond beta-glucosidase (Ki = 1.2 microM) and coffee bean alpha-galactosidase (Ki = 0.86 microM). In this study calystegin B1 (1 alpha, 2 beta, 3 alpha, 6 alpha-tetrahydroxy-nor-tropane) proved to be a potent competitive inhibitor of almond beta-glucosidase (Ki = 1.9 microM) and bovine liver beta-galactosidase (Ki = 1.6 microM), but not an inhibitor of alpha-galactosidases. Calystegin A3 was found to be a weaker inhibitor compared to calystegin B2 but with the same inhibitory spectrum. Calystegin A5, a 2-deoxy derivative of calystegin B2, showed no activity against any glycosidases tested. Since calystegin B3, a 2-epimer of calystegin B2, also exhibited only a weak inhibitory activity, it was concluded that the equatorially oriented OH group at C2 is the essential feature for recognition and strong binding by the active site of glycosidases.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
|
30 |
88 |
21
|
Hondo S, Goto I, Minematsu I, Ikeda N, Asano N, Ishibashi M, Kinoshita Y, Nishibuchi N, Honda T, Miwatani T. Gastroenteritis due to Kanagawa negative Vibrio parahaemolyticus. Lancet 1987; 1:331-2. [PMID: 2880146 DOI: 10.1016/s0140-6736(87)92062-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
Letter |
38 |
79 |
22
|
Asano N, Kato A, Miyauchi M, Kizu H, Tomimori T, Matsui K, Nash RJ, Molyneux RJ. Specific alpha-galactosidase inhibitors, N-methylcalystegines--structure/activity relationships of calystegines from Lycium chinense. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:296-303. [PMID: 9346281 DOI: 10.1111/j.1432-1033.1997.00296.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An examination of the roots of Lycium chinense (Solanaceae) has resulted in the discovery of 14 calystegines, a cycloheptane bearing an amino group and three hydroxyl groups, and two polyhydroxylated piperidine alkaloids. Calystegines A7 and B5, in addition to the previously known calystegines A3, A5, A6, B1, B2, B3, B4, C1, C2 and N1, were isolated and determined as 1alpha,2beta,4alpha-trihydroxy-nortropane and 1alpha,2alpha,4alpha,7alpha-tetrahydroxy-nort ropane, respectively. L. chinense also had two polyhydroxytropanes bearing a methyl group on the nitrogen atom, unlike the previously reported nortropane alkaloids. They were established as N-methylcalystegines B2 and C1, and their N-methyl groups were found to be axially oriented from NOE experiments. 1Beta-amino-3beta,4beta,5alpha-trihydroxycyclohepta ne was also present in L. chinense and may be a biosynthetic precursor of the calystegines that occur in this plant. Two polyhydroxypiperidine alkaloids, fagomine and 6-deoxyfagomine, were isolated. Calystegine B2 is a potent competitive inhibitor of almond beta-glucosidase (Ki = 1.9 microM) and coffee bean alpha-galactosidase (Ki = 0.86 microM), while N-methylcalystegine B2 was a more potent competitive inhibitor of the latter enzyme (Ki = 0.47 microM) than the parent compound but showed a marked lack of inhibitory activities towards most other glycosidases. Since this compound is a very specific inhibitor of alpha-galactosidase and inhibits rat liver lysosomal alpha-galactosidase with a Ki of 1.8 microM, it may provide a useful experimental model for the lysosomal storage disorder, Fabry's disease. The addition of a hydroxyl group at C6exo, as in calystegines B1 and C1, enhances the inhibitory potential towards beta-glucosidase and beta-galactosidase but markedly lowers or abolishes inhibition towards alpha-galactosidase. Hence, the N-methylation of calystegine C1 did not enhance its inhibition of alpha-galactosidase. The chemical N-methylation of calystegines A3 and B4 markedly enhanced inhibition of coffee bean alpha-galactosidase, with Ki values of 5.2 microM and 36 microM, respectively, but almost eliminated their inhibitory potential towards beta-glucosidase and trehalase, respectively. Thus, methylation of the nitrogen atom significantly altered the specificity of the inhibitors.
Collapse
|
|
28 |
73 |
23
|
Asano N, Yamaguchi T, Kameda Y, Matsui K. Effect of validamycins on glycohydrolases of Rhizoctonia solani. J Antibiot (Tokyo) 1987; 40:526-32. [PMID: 3583921 DOI: 10.7164/antibiotics.40.526] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The pseudo-oligosaccharides, validamycins, showed potent inhibitory activity against trehalase of Rhizoctonia solani while no significant inhibition was exhibited against cellulase, pectinase, chitinase, alpha-amylase, alpha- and beta-glucosidases. In particular, validoxylamine A strongly inhibited trehalase in a competitive manner with a Ki value of 1.9 X 10(-9) M. The uptake of the antibiotic into the cell and the amount of the intracellular trehalose were investigated by incubating the washed mycelia of R. solani with validamycins. It was found that validamycin A is transported into the cell and hydrolyzed therein by a beta-glucosidase yielding validoxylamine A with greater inhibitory activity. Also validamycin A containing beta-D-glucosyl residue is more favorably taken up into the cell than validamycin D containing alpha-D-glucosyl residue or their common aglycone, validoxylamine A. In addition, validamycin A suppressed the in vivo degradation of the intracellular trehalose at very low concentration of 0.1 microgram/ml.
Collapse
|
Comparative Study |
38 |
72 |
24
|
Strober W, Kitani A, Fuss I, Asano N, Watanabe T. The molecular basis of NOD2 susceptibility mutations in Crohn's disease. Mucosal Immunol 2008; 1 Suppl 1:S5-9. [PMID: 19079230 PMCID: PMC3665012 DOI: 10.1038/mi.2008.42] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nucleotide oligomerization domain (NOD)2 is a member of the NOD-like receptor family of proteins that initiate inflammatory responses when exposed to ligands derived from bacterial components that gain access to the intracellular milieu. It is thus somewhat paradoxical that polymorphisms in the gene that encode NOD2 (CARD15) that lead to impaired NOD2 function, are susceptibility factors in Crohn's disease, a condition marked by excessive inflammatory responses to normal bacterial flora. In an initial series of studies conducted in our laboratory to better define NOD2 function and to resolve this paradox we showed that NOD2 activation by its ligand, muramyl dipeptide (MDP) ordinarily downregulates responses to Toll-like receptor (TLR) stimulation, and thus cells lacking NOD2 mount increased responses to such stimulation. This fits with the fact that mice bearing an NOD2 transgene, and thus having cells with increased NOD2 function display decreased responses to TLR stimulation and are resistant to experimental colitis induction. In further studies, we showed that prestimulation of cells with NOD2 ligand renders them unresponsive to TLR stimulation, because such prestimulation results in the elaboration of inhibitory factor (IRF4), an inhibitor of TLR-induced inflammatory pathways. Furthermore, administration of MDP to normal mice induces IRF4 and prevents experimental colitis. These studies strongly suggest that NOD2 polymorphisms are associated with Crohn's disease because they lead to a decrease in the negative regulation of TLR responses occurring in the normal gut, and thus a pathologic increase in responses to the normal flora. The finding that MDP administration prevents experimental colitis opens the door to the possibility that such treatment might quell Crohn's disease relapses in patients without NOD2 abnormalities.
Collapse
|
Review |
17 |
71 |
25
|
Asano N, Kato A, Miyauchi M, Kizu H, Kameda Y, Watson AA, Nash RJ, Fleet GW. Nitrogen-containing furanose and pyranose analogues from Hyacinthus orientalis. JOURNAL OF NATURAL PRODUCTS 1998; 61:625-628. [PMID: 9599261 DOI: 10.1021/np9705726] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Aqueous methanol extracts from the bulbs of Hyacinthusorientalis were subjected to various ion-exchange column chromatographic steps to give 2(R),5(R)-bis(hydroxymethyl)-3(R),4(R)-dihydroxypyrrolidine (DMDP) (1), 2,5-dideoxy-2,5-imino-dl-glycero-d-manno-heptitol (homoDMDP) (2), 2,5-imino-2,5,6-trideoxy-d-manno-heptitol (6-deoxy-homoDMDP) (3), 2,5-imino-2,5,6-trideoxy-d-gulo-heptitol (4), 1-deoxynojirimycin (5), 1-deoxymannojirimycin (6), alpha-homonojirimycin (7), beta-homonojirimycin (8), alpha-homomannojirimycin (9), beta-homomannojirimycin (10), and 7-O-beta-d-glucopyranosyl-alpha-homonojirimycin (MDL 25,637) (11). The structures of the new natural products 3 and 4 were determined by spectroscopic analysis, including extensive 1D and 2D NMR studies. Compound 2 was found to be a potent inhibitor of bacterial beta-glucosidase, mammalian beta-galactosidases, and mammalian trehalases, while 3 was a potent inhibitor of rice alpha-glucosidase and rat intestinal maltase. Compound 4 was observed to be a good inhibitor of alpha-l-fucosidase.
Collapse
|
|
27 |
70 |