1
|
Rometo AM, Krajewski SJ, Voytko ML, Rance NE. Hypertrophy and increased kisspeptin gene expression in the hypothalamic infundibular nucleus of postmenopausal women and ovariectomized monkeys. J Clin Endocrinol Metab 2007; 92:2744-50. [PMID: 17488799 DOI: 10.1210/jc.2007-0553] [Citation(s) in RCA: 275] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Human menopause is characterized by ovarian failure, gonadotropin hypersecretion, and neuronal hypertrophy in the hypothalamic infundibular (arcuate) nucleus. Recent studies have demonstrated a critical role for kisspeptins in reproductive regulation, but it is not known whether menopause is accompanied by changes in hypothalamic kisspeptin neurons. OBJECTIVES Our objective was to map the location of neurons expressing kisspeptin gene (KiSS-1) transcripts in the human hypothalamus and determine whether menopause is associated with changes in the size and gene expression of kisspeptin neurons. In monkeys, our objective was to evaluate the effects of ovariectomy and hormone replacement on neurons expressing KiSS-1 mRNA in the infundibular nucleus. SUBJECTS Hypothalamic tissues were collected at autopsy from eight premenopausal and nine postmenopausal women and from 42 young cynomolgus monkeys in various endocrine states. METHODS We used hybridization histochemistry, quantitative autoradiography, and computer-assisted microscopy. RESULTS Examination of human hypothalamic sections revealed that KiSS-1 neurons were located predominantly in the infundibular nucleus. In the infundibular nucleus of postmenopausal women, there was a significant increase in the size of neurons expressing KiSS-1 mRNA and the number of labeled cells and autoradiographic grains per neuron. Similar to postmenopausal women, ovariectomy induced neuronal hypertrophy and increased KiSS-1 gene expression in the monkey infundibular nucleus. Conversely, in ovariectomized monkeys, estrogen replacement markedly reduced KiSS-1 gene expression. CONCLUSIONS The cynomolgus monkey experiments provide strong evidence that the increase in KiSS-1 neuronal size and gene expression in postmenopausal women is secondary to ovarian failure. These studies suggest that kisspeptin neurons regulate estrogen negative feedback in the human.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
275 |
2
|
Rance NE, Dacks PA, Mittelman-Smith MA, Romanovsky AA, Krajewski-Hall SJ. Modulation of body temperature and LH secretion by hypothalamic KNDy (kisspeptin, neurokinin B and dynorphin) neurons: a novel hypothesis on the mechanism of hot flushes. Front Neuroendocrinol 2013; 34:211-27. [PMID: 23872331 PMCID: PMC3833827 DOI: 10.1016/j.yfrne.2013.07.003] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/09/2013] [Accepted: 07/12/2013] [Indexed: 12/31/2022]
Abstract
Despite affecting millions of individuals, the etiology of hot flushes remains unknown. Here we review the physiology of hot flushes, CNS pathways regulating heat-dissipation effectors, and effects of estrogen on thermoregulation in animal models. Based on the marked changes in hypothalamic kisspeptin, neurokinin B and dynorphin (KNDy) neurons in postmenopausal women, we hypothesize that KNDy neurons play a role in the mechanism of flushes. In the rat, KNDy neurons project to preoptic thermoregulatory areas that express the neurokinin 3 receptor (NK3R), the primary receptor for NKB. Furthermore, activation of NK₃R in the median preoptic nucleus, part of the heat-defense pathway, reduces body temperature. Finally, ablation of KNDy neurons reduces cutaneous vasodilatation and partially blocks the effects of estrogen on thermoregulation. These data suggest that arcuate KNDy neurons relay estrogen signals to preoptic structures regulating heat-dissipation effectors, supporting the hypothesis that KNDy neurons participate in the generation of flushes.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
228 |
3
|
Burke MC, Letts PA, Krajewski SJ, Rance NE. Coexpression of dynorphin and neurokinin B immunoreactivity in the rat hypothalamus: Morphologic evidence of interrelated function within the arcuate nucleus. J Comp Neurol 2006; 498:712-26. [PMID: 16917850 DOI: 10.1002/cne.21086] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Considerable evidence suggests that dynorphin and neurokinin B (NKB) neurons in the hypothalamic arcuate nucleus participate in the sex-steroid regulation of reproduction. In the present study, we used dual-label immunofluorescence to explore the distribution of prodynorphin and proNKB immunoreactivity in the rat hypothalamus. Additionally, we investigated whether arcuate prodynorphin-ir (immunoreactive) neurons expressed the neurokinin 3 receptor (NK3R) or nuclear estrogen receptor-alpha (ERalpha). We found that the majority of prodynorphin-ir neurons in the rat arcuate nucleus expressed proNKB, whereas nearly all (99%) of the proNKB neurons were immunoreactive for prodynorphin. The arcuate nucleus was the only site in the hypothalamus where neuronal somata coexpressing prodynorphin and proNKB-immunoreactivity were identified. A dense plexus of double-labeled prodynorphin/proNKB-ir fibers was found within the arcuate nucleus extending to the median eminence and throughout the periventricular zone of the hypothalamus. Prodynorphin/proNKB fibers were also identified in the paraventricular nucleus, anterior hypothalamic area, medial preoptic area, median preoptic nucleus, anteroventral periventricular nucleus, and bed nucleus of the stria terminalis in a distribution consistent with previously described arcuate nucleus projections. Interestingly, the majority of prodynorphin-ir neurons in the arcuate nucleus expressed NK3R, and nearly 100% of the prodynorphin-ir neurons contained nuclear ERalpha. Our results suggest that there is a close functional relationship between dynorphin and NKB peptides within the arcuate nucleus of the rat, which may include an autofeedback loop mediated through NK3R. The diverse hypothalamic projections of fibers expressing both prodynorphin and proNKB provide evidence that these neurons may participate in a variety of homeostatic and neuroendocrine processes.
Collapse
|
|
19 |
214 |
4
|
Rance NE, Young WS. Hypertrophy and increased gene expression of neurons containing neurokinin-B and substance-P messenger ribonucleic acids in the hypothalami of postmenopausal women. Endocrinology 1991; 128:2239-47. [PMID: 1708331 DOI: 10.1210/endo-128-5-2239] [Citation(s) in RCA: 182] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have previously described hypertrophy of neurons containing estrogen receptor mRNA in the infundibular nucleus of postmenopausal women. In the present investigation we identified peptide mRNAs in the hypertrophied neurons and determined whether postmenopausal neuronal hypertrophy was accompanied by changes in gene expression. In the first study in situ hybridization was performed on sections from hypothalami of postmenopausal women (n = 3) using synthetic 35S-labeled cDNA probes complementary to mRNAs encoding estrogen receptor, substance-P (SP), neurokinin-B (NKB), POMC, cholecystokinin, dynorphin, CRF, enkephalin, galanin, neuropeptide-Y, GH-releasing hormone, and tyrosine hydroxylase. Neuronal cross-sectional areas and cell densities were measured with the aid of a computer microscope system. Neurons labeled with the NKB and SP probes were comparable in size, morphology, and distribution to the hypertrophied neurons containing estrogen receptor mRNA. In contrast, neurons labeled with other cDNA probes were sparsely distributed (CRF and dynorphin), smaller in size (neuropeptide-Y, galanin, GH-releasing hormone, enkephalin, cholecystokinin, and POMC), or located anterior to the hypertrophied population (tyrosine hydroxylase). In the second study sections from hypothalami of premenopausal (n = 3) and postmenopausal (n = 3) women were incubated with cDNA probes complementary to SP or NKB mRNAs. The mean cross-sectional areas of postmenopausal infundibular neurons containing NKB and SP mRNAs increased to 194% and 176% of premenopausal values, respectively. The autoradiographic grain densities of infundibular neurons labeled with either probe were also significantly increased in the postmenopausal group. Finally, the numbers of labeled neurons/tissue increased 6-fold (SP) and 15-fold (NKB) in the postmenopausal infundibular nucleus. These data demonstrate that human menopause is associated with marked increases in hypothalamic NKB and SP gene expression. We propose that neurons containing estrogen receptor, SP, and NKB mRNAs participate in the hypothalamic circuitry regulating estrogen negative feedback in the human.
Collapse
|
|
34 |
182 |
5
|
Gordon B, Lesser RP, Rance NE, Hart J, Webber R, Uematsu S, Fisher RS. Parameters for direct cortical electrical stimulation in the human: histopathologic confirmation. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY 1990; 75:371-7. [PMID: 1692272 DOI: 10.1016/0013-4694(90)90082-u] [Citation(s) in RCA: 170] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Safe parameters for electrical cortical stimulation in humans are difficult to estimate from the animal experimental literature. We therefore examined the light microscopic histology at a total of 11 sites of direct subdural electrical stimulation, taken as part of anterior temporal lobectomies in 3 patients. Stimulations had been done through 3.175 mm diameter electrodes, with 0.3 msec square wave pulses of alternating polarity at 50 pulses/sec. In 2 patients, one site each had been used as a common reference for stimulation, receiving over 251 stimulation trials, most of 2-5 sec duration, at currents of 12.5-15.0 mA, 1 day prior to resection. The maximum charge per phase was 4.0-4.4 microC; the maximum charge density was 52-57 microC per geometric cm2 per pulse at the electrode surfaces. Comparison of hematoxylin and eosin, periodic acid-Schiff, and cresyl violet-stained material from the electrode sites with that from other regions did not show any histologic abnormalities attributable to the electrical stimulation. The relatively brief and intermittent periods utilized for human stimulation testing do not appear to cause structural damage at the light microscopic level at charge densities that exceed the threshold for damage established in animal studies with more continuous, chronic stimulation schedules.
Collapse
|
|
35 |
170 |
6
|
Rance NE. Menopause and the human hypothalamus: evidence for the role of kisspeptin/neurokinin B neurons in the regulation of estrogen negative feedback. Peptides 2009; 30:111-22. [PMID: 18614256 PMCID: PMC2632595 DOI: 10.1016/j.peptides.2008.05.016] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 05/01/2008] [Accepted: 05/05/2008] [Indexed: 10/22/2022]
Abstract
Menopause is characterized by depletion of ovarian follicles, a reduction of ovarian hormones to castrate levels and elevated levels of serum gonadotropins. Rather than degenerating, the reproductive neuroendocrine axis in postmenopausal women is intact and responds robustly to the removal of ovarian hormones. Studies in both human and non-human primates provide evidence that the gonadotropin hypersecretion in postmenopausal women is secondary to increased gonadotropin-releasing hormone (GnRH) secretion from the hypothalamus. In addition, menopause is accompanied by hypertrophy of neurons in the infundibular (arcuate) nucleus expressing KiSS-1, neurokinin B (NKB), substance P, dynorphin and estrogen receptor alpha (ERalpha) mRNA. Ovariectomy in experimental animals induces nearly identical findings, providing evidence that these changes are a compensatory response to ovarian failure. The anatomical site of the hypertrophied neurons, as well as the extensive data implicating kisspeptin, NKB and dynorphin in the regulation of GnRH secretion, provide compelling evidence that these neurons are part of the neural network responsible for the increased levels of serum gonadotropins in postmenopausal women. We propose that neurons expressing KiSS-1, NKB, substance P, dynorphin and ERalpha mRNA in the infundibular nucleus play an important role in sex-steroid feedback on gonadotropin secretion in the human.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
163 |
7
|
Krajewski SJ, Anderson MJ, Iles-Shih L, Chen KJ, Urbanski HF, Rance NE. Morphologic evidence that neurokinin B modulates gonadotropin-releasing hormone secretion via neurokinin 3 receptors in the rat median eminence. J Comp Neurol 2005; 489:372-86. [PMID: 16025449 DOI: 10.1002/cne.20626] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent studies suggest that arcuate neurokinin B (NKB) neurons play a role in the regulation of gonadotropin secretion, but there is little information on the relationship between these neurons and the hypothalamic reproductive axis. In the present study, dual-label fluorescent immunohistochemistry was used to visualize the relationship between gonadotropin-releasing hormone (GnRH) neurons and either proNKB or NK3 receptor (NK3R) immunoreactivity. Immunocytochemistry was also combined with i.p. injections of the fluorescent retrograde tracer aminostilbamidine to determine whether arcuate neuroendocrine neurons expressed either proNKB or NK3R. A dense interweaving and close apposition of GnRH and proNKB-immunoreactive (ir) fibers was observed within the rat median eminence, where GnRH axons expressed NK3R immunoreactivity. These data provide morphological evidence that NKB neurons could influence GnRH secretion via interaction with NK3R in the rat median eminence. Colocalization of GnRH and NK3R was also identified in fiber tracts converging within the organum vasculosum of the lamina terminalis. In contrast, only a small number (16%) of GnRH-ir somata exhibited NK3R staining. ProNKB and NK3R-ir somata were identified within the arcuate nucleus, but none of these neurons were labeled by aminostilbamidine. Thus, we found no evidence that arcuate NKB neurons project to the primary capillary plexus of the portal system. Arcuate neuroendocrine neurons, however, were surrounded and closely apposed by proNKB-ir puncta and fibers. These data suggest that NKB neurons could indirectly influence anterior pituitary function by inputs to arcuate neuroendocrine neurons, but through a receptor other than NK3R. Our results provide an anatomic framework for putative interactions between NKB neurons and the hypothalamic reproductive axis.
Collapse
|
|
20 |
152 |
8
|
Wise PM, Rance N, Barraclough CA. Effects of estradiol and progesterone on catecholamine turnover rates in discrete hypothalamic regions in ovariectomized rats. Endocrinology 1981; 108:2186-93. [PMID: 6785074 DOI: 10.1210/endo-108-6-2186] [Citation(s) in RCA: 147] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
|
44 |
147 |
9
|
Rance NE, Krajewski SJ, Smith MA, Cholanian M, Dacks PA. Neurokinin B and the hypothalamic regulation of reproduction. Brain Res 2010; 1364:116-28. [PMID: 20800582 PMCID: PMC2992576 DOI: 10.1016/j.brainres.2010.08.059] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Revised: 08/17/2010] [Accepted: 08/19/2010] [Indexed: 10/19/2022]
Abstract
Loss-of-function mutations in the genes encoding either neurokinin B (NKB) or its receptor, NK3 (NK3R), result in hypogonadotropic hypogonadism, characterized by an absence of pubertal development and low circulating levels of LH and gonadal steroids. These studies implicate NKB and NK3R as essential elements of the human reproductive axis. Studies over the last two decades provide evidence that a group of neurons in the hypothalamic infundibular/arcuate nucleus form an important component of this regulatory circuit. These neurons are steroid-responsive and coexpress NKB, kisspeptin, dynorphin, NK3R, and estrogen receptor α (ERα) in a variety of mammalian species. Compelling evidence in the human indicates these neurons function in the hypothalamic circuitry regulating estrogen negative feedback on gonadotropin-releasing hormone (GnRH) secretion. Moreover, in the rat, they form a bilateral, interconnected network that projects to NK3R-expressing GnRH terminals in the median eminence. This network provides an anatomical framework to explain how coordination among NKB/kisspeptin/dynorphin/NK3R/ERα neurons could mediate feedback information from the gonads to modulate pulsatile GnRH secretion. There is substantial (but indirect) evidence that this network may be part of the neural circuitry known as the "GnRH pulse generator," with NK3R signaling as an important component. This theory provides a compelling explanation for the occurrence of hypogonadotropic hypogonadism in patients with inactivating mutations in the TAC3 or TACR3 genes. Future studies will be needed to determine whether NKB signaling plays a permissive role in the onset of puberty or is part of the driving force initiating the maturation of reproductive function.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
141 |
10
|
Mittelman-Smith MA, Williams H, Krajewski-Hall SJ, Lai J, Ciofi P, McMullen NT, Rance NE. Arcuate kisspeptin/neurokinin B/dynorphin (KNDy) neurons mediate the estrogen suppression of gonadotropin secretion and body weight. Endocrinology 2012; 153:2800-12. [PMID: 22508514 PMCID: PMC3359616 DOI: 10.1210/en.2012-1045] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/21/2012] [Indexed: 01/08/2023]
Abstract
Estrogen withdrawal increases gonadotropin secretion and body weight, but the critical cell populations mediating these effects are not well understood. Recent studies have focused on a subpopulation of hypothalamic arcuate neurons that coexpress estrogen receptor α, neurokinin 3 receptor (NK(3)R), kisspeptin, neurokinin B, and dynorphin for the regulation of reproduction. To investigate the function of kisspeptin/neurokinin B/dynorphin (KNDy) neurons, a novel method was developed to ablate these cells using a selective NK(3)R agonist conjugated to the ribosome-inactivating toxin, saporin (NK(3)-SAP). Stereotaxic injections of NK(3)-SAP in the arcuate nucleus ablated KNDy neurons, as demonstrated by the near-complete loss of NK(3)R, NKB, and kisspeptin-immunoreactive (ir) neurons and depletion of the majority of arcuate dynorphin-ir neurons. Selectivity was demonstrated by the preservation of proopiomelanocortin, neuropeptide Y, and GnRH-ir elements in the arcuate nucleus and median eminence. In control rats, ovariectomy (OVX) markedly increased serum LH, FSH, and body weight, and these parameters were subsequently decreased by treatment with 17β-estradiol. KNDy neuron ablation prevented the rise in serum LH after OVX and attenuated the rise in serum FSH. KNDy neuron ablation did not completely block the suppressive effects of E(2) on gonadotropin secretion, a finding consistent with redundant pathways for estrogen negative feedback. However, regardless of estrogen status, KNDy-ablated rats had lower levels of serum gonadotropins compared with controls. Surprisingly, KNDy neuron ablation prevented the dramatic effects of OVX and 17β-estradiol (E(2)) replacement on body weight and abdominal girth. These data provide evidence that arcuate KNDy neurons are essential for tonic gonadotropin secretion, the rise in LH after removal of E(2), and the E(2) modulation of body weight.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
139 |
11
|
Krajewski SJ, Burke MC, Anderson MJ, McMullen NT, Rance NE. Forebrain projections of arcuate neurokinin B neurons demonstrated by anterograde tract-tracing and monosodium glutamate lesions in the rat. Neuroscience 2010; 166:680-97. [PMID: 20038444 PMCID: PMC2823949 DOI: 10.1016/j.neuroscience.2009.12.053] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 12/08/2009] [Accepted: 12/21/2009] [Indexed: 11/19/2022]
Abstract
Neurokinin B (NKB) and kisspeptin receptor signaling are essential components of the reproductive axis. A population of neurons resides within the arcuate nucleus of the rat that expresses NKB, kisspeptin, dynorphin, NK3 receptors and estrogen receptor alpha (ERalpha). Here we investigate the projections of these neurons using NKB-immunocytochemistry as a marker. First, the loss of NKB-immunoreactive (ir) somata and fibers was characterized after ablation of the arcuate nucleus by neonatal injections of monosodium glutamate. Second, biotinylated dextran amine was injected into the arcuate nucleus and anterogradely labeled NKB-ir fibers were identified using dual-labeled immunofluorescence. Four major projection pathways are described: (1) local projections within the arcuate nucleus bilaterally, (2) projections to the median eminence including the lateral palisade zone, (3) projections to a periventricular pathway extending rostrally to multiple hypothalamic nuclei, the septal region and BNST and dorsally to the dorsomedial nucleus and (4) Projections to a ventral hypothalamic tract to the lateral hypothalamus and medial forebrain bundle. The diverse projections provide evidence that NKB/kisspeptin/dynorphin neurons could integrate the reproductive axis with multiple homeostatic, behavioral and neuroendocrine processes. Interestingly, anterograde tract-tracing revealed NKB-ir axons originating from arcuate neurons terminating on other NKB-ir somata within the arcuate nucleus. Combined with previous studies, these experiments reveal a bilateral interconnected network of sex-steroid responsive neurons in the arcuate nucleus of the rat that express NKB, kisspeptin, dynorphin, NK3 receptors and ERalpha and project to GnRH terminals in the median eminence. This circuitry provides a mechanism for bilateral synchronization of arcuate NKB/kisspeptin/dynorphin neurons to modulate the pulsatile secretion of GnRH.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
138 |
12
|
Sandoval-Guzmán T, Rance NE. Central injection of senktide, an NK3 receptor agonist, or neuropeptide Y inhibits LH secretion and induces different patterns of Fos expression in the rat hypothalamus. Brain Res 2005; 1026:307-12. [PMID: 15488494 DOI: 10.1016/j.brainres.2004.08.026] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2004] [Indexed: 11/22/2022]
Abstract
Arcuate neurokinin B (NKB) neurons express estrogen receptor-alpha and are strongly modulated by gonadal steroids. Although numerous studies suggest that NKB neurons participate in the reproductive axis, there is no information on the regulation of luteinizing hormone (LH) secretion by NKB or its receptor, NK3. In the present study, we determined if central injection of senktide, a selective NK3 receptor agonist, would alter serum LH in ovariectomized, estrogen-primed rats. The effects of senktide were compared to neuropeptide Y (NPY), a well-characterized modulator of LH secretion. Saline, senktide, or NPY was injected into the lateral ventricle of unanesthetized rats and serial blood samples were collected for LH radioimmunoassay. The rats were sacrificed 90 min after injection and the brains were removed and processed for Fos immunocytochemistry. A significant inhibition of serum LH was observed from 30 to 90 min after injection of senktide relative to saline controls. In the senktide-injected rats, the inhibition of serum LH was accompanied by increased Fos expression in the medial preoptic area and arcuate nucleus--two reproductive control centers. Senktide also induced Fos in the paraventricular nuclei (PVN) and supraoptic nuclei (SON). Injection of NPY also inhibited serum LH but increased Fos expression only in the PVN and SON. This study provides the first demonstration of alterations in LH secretion by an NK3 receptor agonist. These data, combined with the induction of Fos in medial preoptic and arcuate neurons, strongly support the hypothesis that NKB neurons play a role in the regulation of gonadotropin secretion.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
123 |
13
|
Rance N, Wise PM, Selmanoff MK, Barraclough CA. Catecholamine turnover rates in discrete hypothalamic areas and associated changes in median eminence luteinizing hormone-releasing hormone and serum gonadotropins on proestrus and diestrous day 1. Endocrinology 1981; 108:1795-802. [PMID: 6783392 DOI: 10.1210/endo-108-5-1795] [Citation(s) in RCA: 108] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We have correlated catecholamine [CA; i.e. norepinephrine (NE), dopamine (DA), and epinephrine (E)] turnover rates in discrete hypothalamic nuclei and in the median eminence (ME), with concentration changes in ME LHRH and serum LH, FSH, PRL, estradiol, and progesterone levels at various times during proestrus and diestrous day 1 in 4-day cyclic rats. CA concentrations were measured with a radioenzymatic assay at 0, 60, and 120 min after ip injection of 400 mg/kg alpha-methyl-p-tyrosine, and rate constants and turnover rates were calculated. In a separate assay NE, DA, and E were separated by two-dimensional thin layer chromatography, and concentrations and turnover rates of CAs were calculated. The microdissected hypothalamic nuclei examined for NE turnover rates included the medial preoptic nucleus (MPN), suprachiasmatic nucleus (SCN), arcuate nucleus (AN), and ME. DA turnover rates also were measured in the MPN, ME, and AN. ME LHRH and serum hormone concentrations were measured by RIA. Between 0900--1200 h, proestrous serum estradiol was elevated, but other serum hormones were basal, and CA turnover rates in the brain were low. However, ME LHRH concentrations increased significantly between 0900--1200 h on proestrus. Between 1200--1500 h, serum LH, FSH, PRL, and progesterone levels increased and ME LHRH levels declined significantly; during this time interval (1200--1400 h), a significant rise in ME NE and DA turnover rates occurred. Between 1500--1700 h on proestrus, while serum gonadotropins were still rising toward peak concentrations, increased ME NE turnover rates were maintained, but increased NE turnover rates also were evident in MPN, SCN, and AN. During this same time interval (1500--1700 h), a marked decline in ME and AN DA turnover rates occurred, although such rates remained unchanged within the MPN. There were no corresponding changes in MPN E turnover rates at any of the time intervals studied. The increased turnover rates of ME NE coupled with the concomitant decline in ME LHRH levels and the rise in plasma LH and FSH levels suggest that increased NE release may be important in initiating preovulatory LH and FSH surges. These changes in brain neurotransmitters and serum hormones are not the result of a diurnal rhythm, since corresponding changes in CA turnover rates or serum gonadotropins did not occur between 0900--1100 h and 1500--1700 h diestrous day 1.
Collapse
|
|
44 |
108 |
14
|
Rance NE, McMullen NT, Smialek JE, Price DL, Young WS. Postmenopausal hypertrophy of neurons expressing the estrogen receptor gene in the human hypothalamus. J Clin Endocrinol Metab 1990; 71:79-85. [PMID: 2370302 DOI: 10.1210/jcem-71-1-79] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Computer microscopy and in situ hybridization were used to investigate neuronal hypertrophy in the infundibular nucleus of postmenopausal women. In the first experiment, hypothalami from premenopausal (n = 3) and postmenopausal (n = 3) women were formalin fixed, paraffin embedded, serially sectioned, and stained with cresyl violet. Soma areas of more than 3500 neurons were digitized using an image-combining computer microscope. The mean cross-sectional area of infundibular neurons in the postmenopausal women was 30% greater than that in premenopausal women, with no change in cell density. The mean cross-sectional area of mammillary neurons was unchanged, indicating that the infundibular neuronal hypertrophy was not an artifact of tissue processing. In the second experiment, hypothalami from premenopausal (n = 3) and postmenopausal (n = 2) women were frozen, serially sectioned, and incubated with a 48-base synthetic cDNA probe complementary to estrogen receptor (ER) mRNA. Adjacent sections were incubated with a cDNA probe complementary to GnRH mRNA. Morphometric analysis revealed that the mean cross-sectional area of infundibular neurons expressing the ER gene in the postmenopausal women was twice as large as the mean area in premenopausal hypothalami. The hypertrophied neurons did not contain GnRH mRNA. Finally, analysis of the infundibular nucleus from an oophorectomized 38-yr-old woman also revealed hypertrophied neurons containing ER mRNA. These data support the hypothesis that hypertrophy of infundibular neurons in postmenopausal women is secondary to loss of the inhibitory feedback of ovarian steroids.
Collapse
|
Comparative Study |
35 |
97 |
15
|
Rance NE, McArthur JC, Cornblath DR, Landstrom DL, Griffin JW, Price DL. Gracile tract degeneration in patients with sensory neuropathy and AIDS. Neurology 1988; 38:265-71. [PMID: 3340291 DOI: 10.1212/wnl.38.2.265] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
At autopsy, four homosexual men with acquired immunodeficiency syndrome (AIDS) were found to have selective degeneration of the gracile tract, a finding previously unreported in AIDS. Clinically, these patients had progressive lower extremity paresthesias and dysesthesias with reduced or absent ankle jerks, and eventually they developed dementia. Postmortem examination of spinal cords showed a striking loss of both axons and myelin sheaths confined to the fasciculus gracilis, with the most severe involvement in upper thoracic or cervical segments. Lumbar dorsal columns showed only a mild fiber loss, and no fiber loss was observed in lumbar dorsal roots. Lumbar dorsal root ganglia were available from one patient and showed a mild sensory ganglionitis. In all cases examined, microglial nodules were present in the brain. In 23 other individuals with AIDS who had autopsies consecutively with these four subjects, none had sensory neuropathy and the gracile tracts were normal. The combination of distal sensory neuropathy and gracile tract degeneration suggests a "dying-back" process of dorsal root ganglia neurons.
Collapse
|
Case Reports |
37 |
90 |
16
|
Rance NE, Bruce TR. Neurokinin B gene expression is increased in the arcuate nucleus of ovariectomized rats. Neuroendocrinology 1994; 60:337-45. [PMID: 7529897 DOI: 10.1159/000126768] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hypertrophy and increased gene expression of tachykinin neurons occur in the infundibular (arcuate) nucleus of postmenopausal women. We have hypothesized that the alterations in tachykinin gene expression in the hypothalami of postmenopausal women are secondary to ovarian failure and not due to age per se. In this study, in situ hybridization and computer-assisted microscopy were used to determine whether ovariectomy modulates neurokinin B (NKB), substance P (SP) or proopiomelanocortin (POMC) gene expression in the rat arcuate nucleus. Four groups were examined: proestrus; diestrous day 1; ovariectomized, and constant estrus induced by a single injection of 20 mg/kg estradiol valerate. Rats were sacrificed 2 months after treatment. Computer-assisted microscopy was used to determine the number of tachykinin neurons, cell areas, and the autoradiographic grain density of labeled neurons. We report marked changes in NKB gene expression in ovariectomized rats. The number of neurons containing NKB gene transcripts was significantly greater in ovariectomized rats (16.9 +/- 1.0 neurons/arcuate section) than all other groups. There was also a significant difference in the number of NKB neurons/arcuate section between proestrous (8.9 +/- 1.8 neurons) and diestrous (4.8 +/- 1.0 neurons) rats. The lowest number of neurons was detected in the estradiol valerate-injected rats (2.9 +/- 0.6 NKB neurons/arcuate section). Furthermore, the autoradiographic grain density of NKB neurons was doubled in the ovariectomized group compared to all other groups. In contrast, few SP neurons were identified in the rat arcuate nucleus and no changes were detected during the estrous cycle or in response to ovariectomy.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
|
31 |
89 |
17
|
Rappaport WD, Valente J, Hunter GC, Rance NE, Lick S, Lewis T, Neal D. Clinical utilization and complications of sural nerve biopsy. Am J Surg 1993; 166:252-6. [PMID: 8396357 DOI: 10.1016/s0002-9610(05)80968-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Surgeons frequently perform sural nerve biopsy as part of the work-up of patients with peripheral neuropathy. The indications for the procedure, therapeutic value, and complications associated with the procedure have received little attention in the surgical literature. A retrospective chart review of 60 patients with the suspected diagnosis of peripheral neuropathy undergoing sural nerve biopsy was performed. Vasculitis was suspected in 29 (48%) patients undergoing biopsy. This diagnosis was confirmed in 6 of the 29 patients and resulted in the alteration of therapy in 31% of patients with this suspected diagnosis. In 27 (45%) patients, the etiology of their peripheral neuropathy was unknown. Twelve (44%) patients in this group had sural nerve pathology; however, no change in therapy was required. Ten patients in our series had associated malignant tumors; some of these patients were diagnosed after referral for sural nerve biopsy. Twenty-five (42%) patients remained undiagnosed after biopsy. Nerve conduction studies were performed in 14 (22%) patients. Thirteen patients with abnormal lower extremity nerve conduction studies had 6 normal and 7 abnormal biopsy results. The one patient with a normal study had a normal nerve biopsy result. There were six (10%) patients with wound infections, seven (12%) patients with delayed wound healing, and three (5%) patients with new onset of chronic pain in the distribution of the sural nerve, for an overall complication rate of 27%. There was no correlation between the preoperative use of antibiotics, type of local anesthetic used, or length of nerve excised and complication rate. We conclude that the complication rate after sural nerve biopsy is significant. Strict criteria should be employed in selecting patients for sural nerve biopsy including a careful neurologic history and physical examination, nerve conduction studies, appropriate work-up for vasculitis if suspected, and implementation of a search for malignancy if this is not apparent. If the diagnosis is still in question, then sural nerve biopsy would seem appropriate, especially in patients with suspected vasculitis.
Collapse
|
|
32 |
76 |
18
|
Abstract
Human menopause is characterised by ovarian failure, gonadotrophin hypersecretion and hypertrophy of neurones expressing neurokinin B (NKB), kisspeptin (KiSS)-1 and oestrogen receptor (ER) alpha gene transcripts within the hypothalamic infundibular (arcuate) nucleus. In the arcuate nucleus of experimental animals, dynorphin, an opioid peptide, is colocalised with NKB, kisspeptin, ER alpha and progesterone receptors. Moreover, ovariectomy decreases the expression of prodynorphin gene transcripts in the arcuate nucleus of the ewe. Therefore, we hypothesised that the hypertrophied neurones in the infundibular nucleus of postmenopausal women would express prodynorphin mRNA and that menopause would be accompanied by changes in prodynorphin gene transcripts. In the present study, in situ hybridisation was performed on hypothalamic sections from premenopausal and postmenopausal women using a radiolabelled cDNA probe targeted to prodynorphin mRNA. Autoradiography and computer-assisted microscopy were used to map and count labelled neurones, measure neurone size and compare prodynorphin gene expression between premenopausal and postmenopausal groups. Neurones expressing dynorphin mRNA in the infundibular nucleus of the postmenopausal women were larger and exhibited hypertrophied morphological features. Moreover, there were fewer neurones labelled with the prodynorphin probe in the infundibular nucleus of the postmenopausal group compared to the premenopausal group. The number of dynorphin mRNA-expressing neurones was also reduced in the medial preoptic/anterior hypothalamic area of postmenopausal women without changes in cell size. No differences in cell number or size of dynorphin mRNA-expressing neurones were observed in any other hypothalamic region. Previous studies using animal models provide strong evidence that the changes in prodynorphin neuronal size and gene expression in postmenopausal women are secondary to the ovarian failure of menopause. Given the inhibitory effect of dynorphin on the reproductive axis, decreased dynorphin gene expression could play a role in the elevation in luteinising hormone secretion that occurs in postmenopausal women.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
75 |
19
|
Zhang W, Gardell S, Zhang D, Xie JY, Agnes RS, Badghisi H, Hruby VJ, Rance N, Ossipov MH, Vanderah TW, Porreca F, Lai J. Neuropathic pain is maintained by brainstem neurons co-expressing opioid and cholecystokinin receptors. ACTA ACUST UNITED AC 2008; 132:778-87. [PMID: 19050032 DOI: 10.1093/brain/awn330] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Descending input from the rostral ventromedial medulla (RVM) provides positive and negative modulation of spinal nociceptive transmission and has been proposed to be critical for maintaining neuropathic pain. This study tests the hypothesis that neuropathic pain requires the activity of a subset of RVM neurons that are distinguished by co-expression of mu opioid receptor (MOR) and cholecystokinin type 2 receptor (CCK2). Using male Sprague-Dawley rats, we demonstrate that discrete RVM neurons express MOR and CCK2; over 80% of these cells co-express both receptors. Agonist-directed cell lesion in the RVM with the cytotoxin, saporin, using either CCK-saporin to target CCK receptor expressing cells, or dermorphin-saporin to target MOR expressing cells, resulted in concomitant loss of CCK2 and MOR expressing cells, did not alter the basal sensory thresholds but abolished the hyperalgesia induced by microinjection of CCK into the RVM. The findings suggest that these CCK2-MOR co-expressing RVM neurons facilitate pain and can be directly activated by CCK input to the RVM. Furthermore, lesion of these RVM neurons did not affect the initial development of neuropathic pain in the hind paw upon injury to the sciatic nerve, but the abnormal pain states were short lived such that by about day 9 the sensory thresholds had reverted to pre-injury baselines despite the existing neuropathy. These data support our hypothesis and identify CCK2-MOR co-expressing neurons in the RVM as potential therapeutic targets for neuropathic pain.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
72 |
20
|
Chawla MK, Gutierrez GM, Young WS, McMullen NT, Rance NE. Localization of neurons expressing substance P and neurokinin B gene transcripts in the human hypothalamus and basal forebrain. J Comp Neurol 1997; 384:429-42. [PMID: 9254037 DOI: 10.1002/(sici)1096-9861(19970804)384:3<429::aid-cne8>3.0.co;2-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In situ hybridization histochemistry was used to map the distribution of neurons expressing the substance P (SP) or neurokinin B (NKB) genes in the human hypothalamus and basal forebrain. Hypothalami from five adult males were frozen in isopentane at -30 degrees C and serially sectioned at 20 jm thickness. Every 20th section was hybridized with [35S]-labeled, 48-base synthetic cDNA probes that were complementary to either SP or NKB mRNAs. Slides were dipped into nuclear emulsion for visualization of mRNAs at the single-cell level. The location of labeled neurons (greater than x 5 background) was mapped by using an image-combining computer microscope system. A distinct and complementary distribution pattern of SP and NKB neurons was observed in the human hypothalamus and basal forebrain. NKB was the predominant tachykinin in the rostral hypothalamus, whereas SP mRNA predominated in the posterior hypothalamus. Numerous NKB neurons were identified in the magnocellular basal forebrain, the bed nucleus of stria terminalis, and the anterior hypothalamic area. Scattered NKB neurons were present in the infundibular and paraventricular nuclei, paraolfactory gyrus, posterior hypothalamic area, lateral division of the medial mammillary nucleus, and amygdala. Numerous neurons expressing SP mRNAs were identified in the premammillary, supramammillary, and medial mammillary nuclei; the posterior hypothalamic area; and the corpus striatum. Scattered SP neurons were also observed in the preoptic area; the infundibular, intermediate, dorsomedial, and ventromedial nuclei; the infundibular stalk; the amygdala; the bed nucleus of stria terminalis; and the paraolfactory gyrus. These studies provide the first description of the location of neurons that express tachykinin gene transcripts in the human hypothalamus.
Collapse
|
Clinical Trial |
28 |
62 |
21
|
Rance NE, Young WS, McMullen NT. Topography of neurons expressing luteinizing hormone-releasing hormone gene transcripts in the human hypothalamus and basal forebrain. J Comp Neurol 1994; 339:573-86. [PMID: 8144747 DOI: 10.1002/cne.903390408] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The distribution of neurons expressing luteinizing hormone-releasing hormone (LHRH) gene transcripts was mapped in the human hypothalamus and basal forebrain by in situ hybridization and computer-assisted microscopy. Hypothalamic blocks were dissected from five adult males and one adult female and snap frozen in isopentane. The blocks were serially sectioned either in the coronal or in the sagittal plane at a thickness of 20 microns. Approximately every twentieth section was incubated with a 35S-labeled cDNA probe complementary to LHRH mRNA. Specificity was confirmed by hybridization of adjacent sections with a probe targeted to the gonadotropin-associated protein (GAP) region of LHRH messenger ribonucleic acids (mRNA). Maps of neurons containing LHRH mRNA were manually digitized with the aid of an image-combining computer microscope system. We report a much wider distribution and greater numbers of LHRH neurons than have been previously described in the human brain. Three morphological subtypes were observed based on cell size and labeling density: 1) small, heavily labeled, oval or fusiform neurons, located primarily in the medial basal hypothalamus, ventral preoptic area, and periventricular zone; 2) small, oval, sparsely labeled neurons located in the septum and dorsal preoptic region and scattered from the bed nucleus of the stria terminalis to the amygdala ("extended amygdala"); and 3) large round neurons (> 500 microns 2 sectional profile area), intermediate in labeling density, scattered within the magnocellular basal forebrain complex, extended amygdala, ventral pallidum, and putamen. The pronounced differences in morphology, labeling density, and location of the three subtypes suggest that distinct functional subgroups of LHRH neurons exist in the human brain.
Collapse
|
|
31 |
57 |
22
|
Wenk GL, Harrington CA, Tucker DA, Rance NE, Walker LC. Basal forebrain neurons and memory: A biochemical, histological, and behavioral study of differential vulnerability to ibotenate and quisqualate. Behav Neurosci 1992; 106:909-23. [PMID: 1282013 DOI: 10.1037/0735-7044.106.6.909] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The differential vulnerability of basal forebrain cells to ibotenate (IBO) or quisqualate (QUIS) was investigated in rats. IBO was also coinjected with cystine (CYS) or zinc (Zn). Cortical choline acetyltransferase (ChAT) and glutamate decarboxylase (GAD) activity, neurotensin receptors, and high-affinity choline uptake sites were quantified in conjunction with radioimmunoassays for neurotensin, substance P, and somatostatin; immunocytochemistry for neurotensin-, somatostatin-, Leu-enkephalin-, and ChAT-positive cells; and in situ hybridization histochemistry of somatostatin, substance P, and enkephalin mRNAs. Compared with the performance of controls, continuous alternation performance in a T maze of IBO+Zn or IBO+CYS rats was better than that of IBO rats, whereas the performance of QUIS rats was unimpaired. Of those neurotransmitter systems examined, only ChAT-immunoreactive cells were vulnerable to IBO or QUIS. However, cholinergic cell loss did not correlate with impaired performance.
Collapse
|
|
33 |
56 |
23
|
Rance N, Wise PM, Barraclough CA. Negative feedback effects of progesterone correlated with changes in hypothalamic norepinephrine and dopamine turnover rates, median eminence luteinizing hormone-releasing hormone, and peripheral plasma gonadotropins. Endocrinology 1981; 108:2194-9. [PMID: 6785075 DOI: 10.1210/endo-108-6-2194] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Progesterone (P) amplifies and advances gonadotropin surges when administered to estradiol (E2)-treated ovariectomized rats. While daily rhythmic LH surges continue to occur in E2-treated rats, they are extinguished in E2- and P (E2P)-treated animals 24 h after P treatment. We examined whether this negative feedback effect on P affect catecholamine activity within the median eminence, medial preoptic nucleus, arcuate nucleus, and suprachiasmatic nucleus and also the changes which occur in median eminence LHRH concentrations. Twenty-four hours after P exposure, LH and FSH surges in E2P-treated rats are extinguished, and the magnitude of the PRL surge is reduced. In E2-treated rats, there is an increase in medial preoptic nucleus, suprachiasmatic nucleus, and median eminence NE turnover rates from 1000--1200 to 1500--1700 h, but these changed in NE activity do not occur in E2-treated rats which received P 24 h earlier. Rather, such E2P-treated animals have markedly elevated medial preoptic nucleus, arcuate nucleus, and median eminence DA turnover rates during the period that plasma gonadotropin levels are suppressed. No differences in median eminence LHRH concentrations in E2- or E2P-treated rats were detected. P may exert its negative feedback action in suppressing LH, FSH, and PRL release by blocking activation of the hypothalamic noradrenergic system and by increasing dopaminergic activity within the tuberoinfundibular system.
Collapse
|
|
44 |
49 |
24
|
Dacks PA, Krajewski SJ, Rance NE. Activation of neurokinin 3 receptors in the median preoptic nucleus decreases core temperature in the rat. Endocrinology 2011; 152:4894-905. [PMID: 22028440 PMCID: PMC3230049 DOI: 10.1210/en.2011-1492] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 09/22/2011] [Indexed: 11/19/2022]
Abstract
Estrogens have pronounced effects on thermoregulation, as illustrated by the occurrence of hot flushes secondary to estrogen withdrawal in menopausal women. Because neurokinin B (NKB) gene expression is markedly increased in the infundibular (arcuate) nucleus of postmenopausal women, and is modulated by estrogen withdrawal and replacement in multiple species, we have hypothesized that NKB neurons could play a role in the generation of flushes. There is no information, however, on whether the primary NKB receptor [neurokinin 3 receptor (NK(3)R)] modulates body temperature in any species. Here, we determine the effects of microinfusion of a selective NK(3)R agonist (senktide) into the rat median preoptic nucleus (MnPO), an important site in the heat-defense pathway. Senktide microinfusion into the rat MnPO decreased core temperature in a dose-dependent manner. The hypothermia induced by senktide was similar in ovariectomized rats with and without 17β-estradiol replacement. The hypothermic effect of senktide was prolonged in rats exposed to an ambient temperature of 29.0 C, compared with 21.5 C. Senktide microinfusion also altered tail skin vasomotion in rats exposed to an ambient temperature of 29.0 but not 21.5 C. Comparisons of the effects of senktide at different ambient temperatures indicated that the hypothermia was not secondary to thermoregulatory failure or a reduction in cold-induced thermogenesis. Other than a very mild increase in drinking, senktide microinfusion did not affect behavior. Terminal fluorescent dextran microinfusion showed targeting of the MnPO and adjacent septum, and immunohistochemical studies revealed that senktide induced a marked increase in Fos-activation in the MnPO. Because MnPO neurons expressed NK(3)R-immunoreactivity, the induction of MnPO Fos by senktide is likely a direct effect. By demonstrating that NK(3)R activation in the MnPO modulates body temperature, these studies support the hypothesis that hypothalamic NKB neurons could be involved in the generation of menopausal flushes.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
49 |
25
|
Sandoval-Guzmán T, Stalcup ST, Krajewski SJ, Voytko ML, Rance NE. Effects of ovariectomy on the neuroendocrine axes regulating reproduction and energy balance in young cynomolgus macaques. J Neuroendocrinol 2004; 16:146-53. [PMID: 14764001 DOI: 10.1111/j.0953-8194.2004.01143.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Degeneration of the ovary in middle-aged women results in castrate levels of ovarian steroids and increased gonadotropin secretion from the anterior pituitary gland. Ageing in women is also accompanied by significant changes in energy homeostasis. We have observed alterations in hypothalamic morphology and gene expression in older women, including hypertrophy and increased gene expression of neurokinin B (NKB) neurones, elevated levels of gonadotropin releasing-hormone (GnRH) mRNA and decreased numbers of neurones expressing pro-opiomelanocortin (POMC) mRNA. To determine if loss of ovarian steroids could produce comparable changes in gene expression in young primates, we measured the effects of ovariectomy on NKB, GnRH and POMC gene expression in young cynomolgus monkeys. We also measured serum leptin and body weight to examine the consequences of ovariectomy on energy balance. NKB neurones in the infundibular nucleus of ovariectomized monkeys were larger, more numerous and displayed increased levels of NKB mRNA compared to those of intact controls. Moreover, ovariectomy increased the number of neurones expressing GnRH gene transcripts and elevated serum luteinizing hormone. By contrast, several parameters related to energy balance, including POMC gene expression, serum leptin and body weights, were unchanged by ovariectomy. Thus, the rise in NKB and GnRH gene expression in older women was simulated by ovariectomy in monkeys, but the changes in POMC gene expression and energy balance were not. This study provides strong support for the hypothesis that ovarian failure contributes to the increased NKB and GnRH gene expression observed in postmenopausal women.
Collapse
|
Comparative Study |
21 |
49 |