1
|
da Fontoura CSG, Miller SF, Wehby GL, Amendt BA, Holton NE, Southard TE, Allareddy V, Moreno Uribe LM. Candidate Gene Analyses of Skeletal Variation in Malocclusion. J Dent Res 2015; 94:913-20. [PMID: 25910506 DOI: 10.1177/0022034515581643] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study evaluated associations between craniofacial candidate genes and skeletal variation in patients with malocclusion. Lateral cephalometric radiographs of 269 untreated adults with skeletal classes I, II, and III malocclusion were digitized with 14 landmarks. Two-dimensional coordinates were analyzed using Procrustes fit and principal component (PC) analysis to generate continuous malocclusion phenotypes. Skeletal class classifications (I, II, or III) were used as a categorical phenotype. Individuals were genotyped for 198 single-nucleotide polymorphisms (SNPs) in 71 craniofacial genes and loci. Phenotype-genotype associations were tested via multivariate linear regression for continuous phenotypes and multinomial logistic regression for skeletal malocclusion class. PC analysis resulted in 4 principal components (PCs) explaining 69% of the total skeletal facial variation. PC1 explained 32.7% of the variation and depicted vertical discrepancies ranging from skeletal deep to open bites. PC1 was associated with a SNP near PAX5 (P = 0.01). PC2 explained 21.7% and captured horizontal maxillomandibular discrepancies. PC2 was associated with SNPs upstream of SNAI3 (P = 0.0002) and MYO1H (P = 0.006). PC3 explained 8.2% and captured variation in ramus height, body length, and anterior cranial base orientation. PC3 was associated with TWIST1 (P = 0.000076). Finally, PC4 explained 6.6% and detected variation in condylar inclination as well as symphysis projection. PC4 was associated with PAX7 (P = 0.007). Furthermore, skeletal class II risk increased relative to class I with the minor alleles of SNPs in FGFR2 (odds ratio [OR] = 2.1, P = 0.004) and declined with SNPs in EDN1 (OR = 0.5, P = 0.007). Conversely, skeletal class III risk increased versus class I with SNPs in FGFR2 (OR 2.2, P = 0.005) and COL1A1 (OR = 2.1, P = 0.008) and declined with SNPs in TBX5 (OR = 0.5, P = 0.014). PAX5, SNAI3, MYO1H, TWIST1, and PAX7 are associated with craniofacial skeletal variation among patients with malocclusion, while FGFR2, EDN1, TBX5, and COL1A1 are associated with type of skeletal malocclusion.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
83 |
2
|
O'Connor CF, Franciscus RG, Holton NE. Bite force production capability and efficiency in Neandertals and modern humans. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2005; 127:129-51. [PMID: 15558614 DOI: 10.1002/ajpa.20025] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although there is consensus that Neandertal craniofacial morphology is unique in the genus Homo, debate continues regarding the precise anatomical basis for this uniqueness and the evolutionary mechanism that produced it. In recent years, biomechanical explanations have received the most attention. Some proponents of the "anterior dental loading hypothesis" (ADLH) maintain that Neandertal facial anatomy was an adaptive response to high-magnitude forces resulting from both masticatory and paramasticatory activity. However, while many have argued that Neandertal facial structure was well-adapted to dissipate heavy occlusal loads, few have considered, much less demonstrated, the ability of the Neandertal masticatory system to generate these presumably heavy loads. In fact, the Neandertal masticatory configuration has often been simultaneously interpreted as being disadvantageous for producing large bite forces. With rare exception, analyses that attempted to resolve this conflict were qualitative rather than quantitative. Using a three-dimensional digitizer, we recorded a sequence of points on the cranium and associated mandible of the Amud 1, La Chapelle-aux-Saints, and La Ferrassie 1 Neandertals, and a sample of early and recent modern humans (n = 29), including a subsample with heavy dental wear and documented paramasticatory behavior. From these points, we calculated measures of force-production capability (i.e., magnitudes of muscle force, bite force, and condylar reaction force), measures of force production efficiency (i.e., ratios of force magnitudes and muscle mechanical advantages), and a measure of overall size (i.e., the geometric mean of all linear craniofacial measurements taken). In contrast to the expectations set forth by the ADLH, the primary dichotomy in force-production capability was not between Neandertal and modern specimens, but rather between large (robust) and small (gracile) specimens overall. Our results further suggest that the masticatory system in the genus Homo scales such that a certain level of force-production efficiency is maintained across a considerable range of size and robusticity. Natural selection was probably not acting on Neandertal facial architecture in terms of peak bite force dissipation, but rather on large tooth size to better resist wear and abrasion from submaximal (but more frequent) biting and grinding forces. We conclude that masticatory biomechanical adaptation does not underlie variation in the facial skeleton of later Pleistocene Homo in general, and that continued exploration of alternative explanations for Neandertal facial architecture (e.g., climatic, respiratory, developmental, and/or stochastic mechanisms) seems warranted.
Collapse
|
|
20 |
71 |
3
|
Holton N, Yokley T, Butaric L. The morphological interaction between the nasal cavity and maxillary sinuses in living humans. Anat Rec (Hoboken) 2013; 296:414-26. [PMID: 23382025 DOI: 10.1002/ar.22655] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 12/06/2012] [Indexed: 12/29/2022]
Abstract
To understand how variation in nasal architecture accommodates the need for effective conditioning of respired air, it is necessary to assess the morphological interaction between the nasal cavity and other aspects of the nasofacial skeleton. Previous studies indicate that the maxillary sinuses may play a key role in accommodating climatically induced nasal variation such that a decrease in nasal cavity volume is associated with a concomitant increase in maxillary sinus volume. However, due to conflicting results in previous studies, the precise interaction of the nasal cavity and maxillary sinuses, in humans, is unclear. This is likely due to the prior emphasis on nasal cavity size, whereas arguably, nasal cavity shape is more important with regard to the interaction with the maxillary sinuses. Using computed tomography scans of living human subjects (N=40), the goal of this study is to assess the interaction between nasal cavity form and maxillary sinus volume in European- and African-derived individuals with differences in nasal cavity morphology. First, we assessed whether there is an inverse relationship between nasal cavity and maxillary sinus volumes. Next, we examined the relationship between maxillary sinus volume and nasal cavity shape using multivariate regression. Our results show that there is a positive relationship between nasal cavity and maxillary sinus volume, indicating that the maxillary sinuses do not accommodate variation in nasal cavity size. However, maxillary sinus volume is significantly correlated with variation in relative internal nasal breadth. Thus, the maxillary sinuses appear to be important for accommodating nasal cavity shape rather than size.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
12 |
53 |
4
|
Sun Z, Yu W, Sanz Navarro M, Sweat M, Eliason S, Sharp T, Liu H, Seidel K, Zhang L, Moreno M, Lynch T, Holton NE, Rogers L, Neff T, Goodheart MJ, Michon F, Klein OD, Chai Y, Dupuy A, Engelhardt JF, Chen Z, Amendt BA. Sox2 and Lef-1 interact with Pitx2 to regulate incisor development and stem cell renewal. Development 2016; 143:4115-4126. [PMID: 27660324 PMCID: PMC5117215 DOI: 10.1242/dev.138883] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/06/2016] [Indexed: 12/26/2022]
Abstract
Sox2 marks dental epithelial stem cells (DESCs) in both mammals and reptiles, and in this article we demonstrate several Sox2 transcriptional mechanisms that regulate dental stem cell fate and incisor growth. Conditional Sox2 deletion in the oral and dental epithelium results in severe craniofacial defects, including impaired dental stem cell proliferation, arrested incisor development and abnormal molar development. The murine incisor develops initially but is absorbed independently of apoptosis owing to a lack of progenitor cell proliferation and differentiation. Tamoxifen-induced inactivation of Sox2 demonstrates the requirement of Sox2 for maintenance of the DESCs in adult mice. Conditional overexpression of Lef-1 in mice increases DESC proliferation and creates a new labial cervical loop stem cell compartment, which produces rapidly growing long tusk-like incisors, and Lef-1 epithelial overexpression partially rescues the tooth arrest in Sox2 conditional knockout mice. Mechanistically, Pitx2 and Sox2 interact physically and regulate Lef-1, Pitx2 and Sox2 expression during development. Thus, we have uncovered a Pitx2-Sox2-Lef-1 transcriptional mechanism that regulates DESC homeostasis and dental development.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
43 |
5
|
Holton NE, Yokley TR, Froehle AW, Southard TE. Ontogenetic scaling of the human nose in a longitudinal sample: implications for genus Homo facial evolution. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2013; 153:52-60. [PMID: 24318941 DOI: 10.1002/ajpa.22402] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 09/30/2013] [Indexed: 01/02/2023]
Abstract
Researchers have hypothesized that nasal morphology, both in archaic Homo and in recent humans, is influenced by body mass and associated oxygen consumption demands required for tissue maintenance. Similarly, recent studies of the adult human nasal region have documented key differences in nasal form between males and females that are potentially linked to sexual dimorphism in body size, composition, and energetics. To better understand this potential developmental and functional dynamic, we first assessed sexual dimorphism in the nasal cavity in recent humans to determine when during ontogeny male-female differences in nasal cavity size appear. Next, we assessed whether there are significant differences in nasal/body size scaling relationships in males and females during ontogeny. Using a mixed longitudinal sample we collected cephalometric and anthropometric measurements from n = 20 males and n = 18 females from 3.0 to 20.0+ years of age totaling n = 290 observations. We found that males and females exhibit similar nasal size values early in ontogeny and that sexual dimorphism in nasal size appears during adolescence. Moreover, when scaled to body size, males exhibit greater positive allometry in nasal size compared to females. This differs from patterns of sexual dimorphism in overall facial size, which are already present in our earliest age groups. Sexually dimorphic differences in nasal development and scaling mirror patterns of ontogenetic variation in variables associated with oxygen consumption and tissue maintenance. This underscores the importance of considering broader systemic factors in craniofacial development and may have important implications for the study of patters craniofacial evolution in the genus Homo.
Collapse
|
Journal Article |
12 |
40 |
6
|
Holton NE, Yokley TR, Figueroa A. Nasal septal and craniofacial form in European- and African-derived populations. J Anat 2012; 221:263-74. [PMID: 22747629 DOI: 10.1111/j.1469-7580.2012.01533.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
As a component of the chondrocranium, the nasal septum influences the anteroposterior dimensions of the facial skeleton. The role of the septum as a facial growth center, however, has been studied primarily in long-snouted mammals, and its precise influence on human facial growth is not as well understood. Whereas the nasal septum may be important in the anterior growth of the human facial skeleton early in ontogeny, the high incidence of nasal septal deviation in humans suggests the septum's influence on human facial length is limited to the early phases of facial growth. Nevertheless, the nasal septum follows a growth trajectory similar to the facial skeleton and, as such, its prolonged period of growth may influence other aspects of facial development. Using computed tomography scans of living human subjects (n = 70), the goal of the present study is to assess the morphological relationship between the nasal septum and facial skeleton in European- and African-derived populations, which have been shown to exhibit early developmental differences in the nasal septal-premaxillary complex. First we assessed whether there is population variation in the size of the nasal septum in European- and African-derived samples. This included an evaluation of septal deviation and the spatial constraints that influence variation in this condition. Next, we assessed the relationship between nasal septal size and craniofacial shape using multivariate regression techniques. Our results indicate that there is significant population variation in septal size and magnitude of septal deviation, both of which are greater in the European-derived sample. While septal deviation suggests a disjunction between the nasal septum and other components of the facial skeleton, we nevertheless found a significant relationship between the size of the nasal septum and craniofacial shape, which appears to largely be a response to the need to accommodate variation in nasal septal size.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
13 |
36 |
7
|
Hartman C, Holton N, Miller S, Yokley T, Marshall S, Srinivasan S, Southard T. Nasal Septal Deviation and Facial Skeletal Asymmetries. Anat Rec (Hoboken) 2016; 299:295-306. [DOI: 10.1002/ar.23303] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/12/2015] [Accepted: 11/02/2015] [Indexed: 11/12/2022]
|
|
9 |
28 |
8
|
Foster A, Holton N. Variation in the Developmental and Morphological Interaction Between the Nasal Septum and Facial Skeleton. Anat Rec (Hoboken) 2016; 299:730-40. [PMID: 26940849 DOI: 10.1002/ar.23340] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/30/2015] [Accepted: 02/04/2016] [Indexed: 11/11/2022]
Abstract
While the nasal septum exerts a morphogenetic influence on the facial skeleton, there is evidence that this relationship is highly variable. To better appreciate the precise role of the septum, it is important understand the variable interaction between the septum and surrounding skeleton during ontogeny. Here we analyzed nasal septal and facial skeletal postnatal phenotypic variation using cross-sectional samples of C3H/HeJ and C57BL/6J mice. Initial observations indicated between-strain variation in the magnitude of septal deviation, suggesting differences in septal and facial skeletal interaction. We examined whether variation in septal deviation is due to ontogenetic differences in septal size, or whether variation in facial skeletal growth imposes spatial constraints on the septum. Using microCT we quantified septal size and deviation, and collected coordinate landmark data, which we analyzed using geometric morphometrics. C3H/HeJ mice were significantly more deviated than C57BL/6J during development. We found no differences in septal size between the two strains. However, while both strains exhibited an ontogenetic increase in snout length, C3H/HeJ mice exhibited a non-allometric reduction in nasal bone length. This appears to be influenced by between-strain variation in the spatial relationship between the nasal septum and nasofrontal suture. Unlike C57BL/6J mice, the C3H/HeJ nasal septum is positioned anterior to the nasofrontal suture potentially limiting an early direct influence of septal growth (e.g., through interstitial expansion) on sutural growth. Ultimately, our results underscore that while the septum is a key facial growth center, its precise influence on facial growth varies even in narrow morphological and taxonomic ranges. Anat Rec, 299:730-740, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
|
Journal Article |
9 |
24 |
9
|
Holton NE, Franciscus RG, Nieves MA, Marshall SD, Reimer SB, Southard TE, Keller JC, Maddux SD. Sutural growth restriction and modern human facial evolution: an experimental study in a pig model. J Anat 2010; 216:48-61. [PMID: 19929910 PMCID: PMC2807975 DOI: 10.1111/j.1469-7580.2009.01162.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2009] [Indexed: 11/30/2022] Open
Abstract
Facial size reduction and facial retraction are key features that distinguish modern humans from archaic Homo. In order to more fully understand the emergence of modern human craniofacial form, it is necessary to understand the underlying evolutionary basis for these defining characteristics. Although it is well established that the cranial base exerts considerable influence on the evolutionary and ontogenetic development of facial form, less emphasis has been placed on developmental factors intrinsic to the facial skeleton proper. The present analysis was designed to assess anteroposterior facial reduction in a pig model and to examine the potential role that this dynamic has played in the evolution of modern human facial form. Ten female sibship cohorts, each consisting of three individuals, were allocated to one of three groups. In the experimental group (n = 10), microplates were affixed bilaterally across the zygomaticomaxillary and frontonasomaxillary sutures at 2 months of age. The sham group (n = 10) received only screw implantation and the controls (n = 10) underwent no surgery. Following 4 months of post-surgical growth, we assessed variation in facial form using linear measurements and principal components analysis of Procrustes scaled landmarks. There were no differences between the control and sham groups; however, the experimental group exhibited a highly significant reduction in facial projection and overall size. These changes were associated with significant differences in the infraorbital region of the experimental group including the presence of an infraorbital depression and an inferiorly and coronally oriented infraorbital plane in contrast to a flat, superiorly and sagittally infraorbital plane in the control and sham groups. These altered configurations are markedly similar to important additional facial features that differentiate modern humans from archaic Homo, and suggest that facial length restriction via rigid plate fixation is a potentially useful model to assess the developmental factors that underlie changing patterns in craniofacial form associated with the emergence of modern humans.
Collapse
|
research-article |
15 |
22 |
10
|
Sun Z, da Fontoura CSG, Moreno M, Holton NE, Sweat M, Sweat Y, Lee MK, Arbon J, Bidlack FB, Thedens DR, Nopoulos P, Cao H, Eliason S, Weinberg SM, Martin JF, Moreno-Uribe L, Amendt BA. FoxO6 regulates Hippo signaling and growth of the craniofacial complex. PLoS Genet 2018; 14:e1007675. [PMID: 30286078 PMCID: PMC6197693 DOI: 10.1371/journal.pgen.1007675] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 10/22/2018] [Accepted: 08/31/2018] [Indexed: 12/17/2022] Open
Abstract
The mechanisms that regulate post-natal growth of the craniofacial complex and that ultimately determine the size and shape of our faces are not well understood. Hippo signaling is a general mechanism to control tissue growth and organ size, and although it is known that Hippo signaling functions in neural crest specification and patterning during embryogenesis and before birth, its specific role in postnatal craniofacial growth remains elusive. We have identified the transcription factor FoxO6 as an activator of Hippo signaling regulating neonatal growth of the face. During late stages of mouse development, FoxO6 is expressed specifically in craniofacial tissues and FoxO6-/- mice undergo expansion of the face, frontal cortex, olfactory component and skull. Enlargement of the mandible and maxilla and lengthening of the incisors in FoxO6-/- mice are associated with increases in cell proliferation. In vitro and in vivo studies demonstrated that FoxO6 activates Lats1 expression, thereby increasing Yap phosphorylation and activation of Hippo signaling. FoxO6-/- mice have significantly reduced Hippo Signaling caused by a decrease in Lats1 expression and decreases in Shh and Runx2 expression, suggesting that Shh and Runx2 are also linked to Hippo signaling. In vitro, FoxO6 activates Hippo reporter constructs and regulates cell proliferation. Furthermore PITX2, a regulator of Hippo signaling is associated with Axenfeld-Rieger Syndrome causing a flattened midface and we show that PITX2 activates FoxO6 expression. Craniofacial specific expression of FoxO6 postnatally regulates Hippo signaling and cell proliferation. Together, these results identify a FoxO6-Hippo regulatory pathway that controls skull growth, odontogenesis and face morphology.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
22 |
11
|
Marshall SD, Low LE, Holton NE, Franciscus RG, Frazier M, Qian F, Mann K, Schneider G, Scott JE, Southard TE. Chin development as a result of differential jaw growth. Am J Orthod Dentofacial Orthop 2011; 139:456-64. [PMID: 21457856 DOI: 10.1016/j.ajodo.2009.05.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2009] [Revised: 05/01/2009] [Accepted: 05/01/2009] [Indexed: 10/18/2022]
Abstract
INTRODUCTION During facial growth, the maxilla and mandible translate downward and forward. Although the forward displacement of the maxilla is less than that of the mandible, the interarch relationship of the teeth in the sagittal view during growth remains essentially unchanged. Interdigitation is thought to provide a compensatory (tooth movement) mechanism for maintaining the pattern of occlusion during growth: the maxillary teeth move anteriorly relative to the maxilla while the mandibular teeth move posteriorly relative to the basilar mandible. The purpose of this study was to investigate the hypothesis that the human chin develops as a result of this process. METHODS Twenty-five untreated subjects from the Iowa Facial Growth Study with Class I normal occlusion were randomly selected based on availability of cephalograms at T1 (mean = 8.32 yr) and T2 (mean = 19.90 yr). Measurements of growth (T2 minus T1) parallel to the Frankfort horizontal (FH) for the maxilla, maxillary dentition, mandible, mandibular dentition, and pogonion (Pg) were made. RESULTS Relative to Pg (a stable bony landmark), B-point moved posteriorly, on average 2.34 mm during growth, and bony chin development (B-point to Pg) increased concomitantly. Similarly, the mandibular and maxillary incisors moved posteriorly relative to Pg 2.53 mm and 2.76 mm, respectively. A-point, relative to Pg, moved posteriorly 4.47 mm during growth. CONCLUSIONS Bony chin development during facial growth occurs, in part, from differential jaw growth and compensatory dentoalveolar movements.
Collapse
|
Journal Article |
14 |
21 |
12
|
Holton NE, Yokley TR, Franciscus RG. Climatic adaptation and Neandertal facial evolution: A comment on Rae et al. (2011). J Hum Evol 2011; 61:624-7; author reply 628-9. [DOI: 10.1016/j.jhevol.2011.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/25/2011] [Accepted: 08/02/2011] [Indexed: 10/17/2022]
|
|
14 |
20 |
13
|
Ries RJ, Yu W, Holton N, Cao H, Amendt BA. Inhibition of the miR-17-92 Cluster Separates Stages of Palatogenesis. J Dent Res 2017; 96:1257-1264. [PMID: 28662367 DOI: 10.1177/0022034517716915] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The role that noncoding regions of the genome play in the etiology of cleft palate is not well studied. A novel method of microRNA (miR) inhibition that allows for specific miR knockdown in vivo has been developed by our laboratory. To further understand the role of miRs in palatogenesis, we used a new mouse model to inhibit specific miRs within the miR-17-92 cluster. Transgenic mice expressing inhibitory complexes for miR-17 and miR-18 manifested a clefting phenotype that was distinct from that observed in mice carrying inhibitory complexes for miR-17, miR-18, miR-19, and miR-92. An in silico candidate gene analysis and bioinformatics review led us to identify TGFBR2 as a likely target of miR-17 and miR-19 family members. Reverse transcription polymerase chain reaction (RT-PCR) experiments showed that TGFBR1 and TGFBR2 expression levels were elevated in the palates of these miR transgenic embryos at embryonic day 15.5. RT-PCR data also showed that the expression of mature miRs from the miR-17-92 cluster was significantly decreased in the transgenic embryos. Decreased expression of TGFB pathway signaling ligands was also observed. Experiments in cells showed that inhibition of miR-17 and miR-18 was sufficient to induce increases in expression of TGFB receptors, while a concomitant decrease in TGFB signaling ligands was not observed. RT-PCR of mature miR-17-92 in cells demonstrated the selectivity and specificity of inhibitory complexes. While this study builds on previous studies that have implicated miR-17-92 in the regulation of important molecular components of the TGFB signaling pathway, it is likely that interactions remain to be elucidated between miR-17-92 and as-of-yet unidentified molecules important for the control of palatogenesis. The differential regulation of palatogenesis by members of the miR-17-92 cluster indicates that several gene combinations regulate palate elevation and extension during development.
Collapse
|
Journal Article |
8 |
19 |
14
|
Holton NE, Franciscus RG, Marshall SD, Southard TE, Nieves MA. Nasal septal and premaxillary developmental integration: implications for facial reduction in Homo. Anat Rec (Hoboken) 2010; 294:68-78. [PMID: 21157917 DOI: 10.1002/ar.21288] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 09/02/2010] [Accepted: 09/02/2010] [Indexed: 11/06/2022]
Abstract
The influence of the chondrocranium in craniofacial development and its role in the reduction of facial size and projection in the genus Homo is incompletely understood. As one component of the chondrocranium, the nasal septum has been argued to play a significant role in human midfacial growth, particularly with respect to its interaction with the premaxilla during prenatal and early postnatal development. Thus, understanding the precise role of nasal septal growth on the facial skeleton is potentially informative with respect to the evolutionary change in craniofacial form. In this study, we assessed the integrative effects of the nasal septum and premaxilla by experimentally reducing facial length in Sus scrofa via circummaxillary suture fixation. Following from the nasal septal-traction model, we tested the following hypotheses: (1) facial growth restriction produces no change in nasal septum length; and (2) restriction of facial length produces compensatory premaxillary growth due to continued nasal septal growth. With respect to hypothesis 1, we found no significant differences in septum length (using the vomer as a proxy) in our experimental (n = 10), control (n = 9) and surgical sham (n = 9) trial groups. With respect to hypothesis 2, the experimental group exhibited a significant increase in premaxilla length. Our hypotheses were further supported by multivariate geometric morphometric analysis and support an integrative relationship between the nasal septum and premaxilla. Thus, continued assessment of the growth and integration of the nasal septum and premaxilla is potentially informative regarding the complex developmental mechanisms that underlie facial reduction in genus Homo evolution.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
19 |
15
|
Goergen MJ, Holton NE, Grünheid T. Morphological interaction between the nasal septum and nasofacial skeleton during human ontogeny. J Anat 2017; 230:689-700. [PMID: 28220482 PMCID: PMC5382596 DOI: 10.1111/joa.12596] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2017] [Indexed: 01/26/2023] Open
Abstract
The nasal septal cartilage is thought to be a key growth center that contributes to nasofacial skeletal development. Despite the developmental influence of the nasal septum however, humans often exhibit a high frequency of septal deviation suggesting discordance in the growth between the septum and surrounding nasofacial skeleton. While there are numerous etiological factors that contribute to septal deviation, the surrounding nasofacial skeleton may also act to constrain the septum, resulting in altered patterns of growth. That is, while the nasal septum has a direct morphogenetic influence on aspects of the nasofacial skeleton, other nasofacial skeletal components may restrict septal growth resulting in deviation. Detailing the developmental relationship between these structures is important not only for understanding the causal determinants of nasal septal deviation, but also for developing a broader understanding of the complex interaction between the facial skeleton and chondrocranium. We selected 66 non-syndromic subjects from the University of Minnesota Orthodontic Clinic who ranged from 7 to 18 years in age and had an existing pretreatment cone-beam computed tomography (CBCT) scan. Using CBCT data, we examined the developmental relationship between nasal septal deviation and the surrounding nasofacial skeleton. We measured septal deviation as a percentage of septal volume relative to a modeled non-deviated septum. We then collected a series of coordinate landmark data in the region immediately surrounding the nasal septum in the midsagittal plane representing the nasofacial skeleton. First, we examined ontogenetic changes in the magnitude of nasal septal deviation relative to chronological age and nasofacial size. Next, using Procrustes-based geometric morphometric techniques, we assessed the morphological relationship between nasal septal deviation and nasofacial skeletal shape. Our results indicate that variation in the magnitude of nasal septal deviation was established in our earliest age group and maintained throughout ontogeny. Moreover, nasal septal deviation was correlated with non-allometric variation in nasofacial shape restricted to the region of the anterior sphenoid body. Ultimately, our results suggest that early developmental variation in midline basicranial components may act to alter or constrain patterns of nasal septal growth.
Collapse
|
research-article |
8 |
17 |
16
|
Franks EM, Holton NE, Scott JE, McAbee KR, Rink JT, Pax KC, Pasquinelly AC, Scollan JP, Eastman MM, Ravosa MJ. Betwixt and Between: Intracranial Perspective on Zygomatic Arch Plasticity and Function in Mammals. Anat Rec (Hoboken) 2017; 299:1646-1660. [PMID: 27870345 DOI: 10.1002/ar.23477] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 06/04/2016] [Accepted: 06/22/2016] [Indexed: 01/01/2023]
Abstract
The zygomatic arch is morphologically complex, providing a key interface between the viscerocranium and neurocranium. It also serves as an attachment site for masticatory muscles, thereby linking it to the feeding apparatus. Though morphological variation related to differential loading is well known for many craniomandibular elements, the adaptive osteogenic response of the zygomatic arch remains to be investigated. Here, experimental data are presented that address the naturalistic influence of masticatory loading on the postweaning development of the zygoma and other cranial elements. Given the similarity of bone-strain levels among the zygoma and maxillomandibular elements, a rabbit and pig model were used to test the hypothesis that variation in cortical bone formation and biomineralization along the zygomatic arch and masticatory structures are linked to increased stresses. It was also hypothesized that neurocranial structures would be minimally affected by varying loads. Rabbits and pigs were raised for 48 weeks and 8 weeks, respectively. In both experimental models, CT analyses indicated that elevated masticatory loading did not induce differences in cortical bone thickness of the zygomatic arch, though biomineralization was positively affected. Hypotheses were supported regarding bone formation for maxillomandibular and neurocranial elements. Varying osteogenic responses in the arch suggests that skeletal adaptation, and corresponding variation in performance, may reside differentially at one level of bony architecture. Thus, it is possible that phenotypic diversity in the mammalian zygoma is due more singularly to natural selection (vs. plasticity). These findings underscore the complexity of the zygomatic arch and, more generally, determinants of skull form. Anat Rec, 299:1646-1660, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
8 |
17 |
17
|
Holton NE, Alsamawi A, Yokley TR, Froehle AW. The ontogeny of nasal shape: An analysis of sexual dimorphism in a longitudinal sample. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2016; 160:52-61. [DOI: 10.1002/ajpa.22941] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/10/2015] [Accepted: 12/28/2015] [Indexed: 12/22/2022]
|
|
9 |
16 |
18
|
Holton NE, Bonner LL, Scott JE, Marshall SD, Franciscus RG, Southard TE. The ontogeny of the chin: an analysis of allometric and biomechanical scaling. J Anat 2015; 226:549-59. [PMID: 25865897 DOI: 10.1111/joa.12307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2015] [Indexed: 11/29/2022] Open
Abstract
The presence of a prominent chin in modern humans has been viewed by some researchers as an architectural adaptation to buttress the anterior corpus from bending stresses during mastication. In contrast, ontogenetic studies of mandibular symphyseal form suggest that a prominent chin results from the complex spatial interaction between the symphysis and surrounding soft tissue and skeletal anatomy during development. While variation in chin prominence is clearly influenced by differential growth and spatial constraints, it is unclear to what degree these developmental dynamics influence the mechanical properties of the symphysis. That is, do ontogenetic changes in symphyseal shape result in increased symphyseal bending resistance? We examined ontogenetic changes in the mechanical properties and shape of the symphysis using subjects from a longitudinal cephalometric growth study with ages ranging from 3 to 20+ years. We first examined whether ontogenetic changes in symphyseal shape were correlated with symphyseal vertical bending and wishboning resistance using multivariate regression. Secondly, we examined ontogenetic scaling of bending resistance relative to bending moment arm lengths. An ontogenetic increase in chin prominence was associated with decreased vertical bending resistance, while wishboning resistance was uncorrelated with ontogenetic development of the chin. Relative to bending moment arm lengths, vertical bending resistance scaled with significant negative allometry whereas wishboning resistance scaled isometrically. These results suggest a complex interaction between symphyseal ontogeny and bending resistance, and indicate that ontogenetic increases in chin projection do not provide greater bending resistance to the mandibular symphysis.
Collapse
|
Journal Article |
10 |
12 |
19
|
Nicholas CL, Kadavy K, Holton NE, Marshall T, Richter A, Southard T. Childhood body mass index is associated with early dental development and eruption in a longitudinal sample from the Iowa Facial Growth Study. Am J Orthod Dentofacial Orthop 2018; 154:72-81. [DOI: 10.1016/j.ajodo.2017.10.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/01/2017] [Accepted: 10/01/2017] [Indexed: 10/28/2022]
|
|
7 |
12 |
20
|
Southard TE, Franciscus RG, Fridrich KL, Nieves MA, Keller JC, Holton NE, Krizan KE, Reimer SB, Marshall SD. Restricting facial bone growth with skeletal fixation: A preliminary study. Am J Orthod Dentofacial Orthop 2006; 130:218-23. [PMID: 16905067 DOI: 10.1016/j.ajodo.2005.11.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Conventional orthodontic treatment of vertical or anterior maxillary excess by growth modification can be problematic in children because of the high levels of patient compliance required. The purpose of this preliminary study was to investigate the use of rigid skeletal fixation to modify facial bone growth without compliance. METHODS Three 30-day old female pigs from the same litter were included in phase I. Pediatric miniplates were rigidly fixated with monocortical screws in the experimental pig to bridge the zygomaticomaxillary suture and both the frontonasal and nasomaxillary sutures, bilaterally. In the sham experimental pig, the same surgical protocol was followed, but miniplates were omitted (ie, screw placement only). In the control pig, surgery was not performed. All 3 pigs were housed and fed a normal diet under identical conditions postoperatively for 63 days; then they were killed, their right hemi-skulls were prepared for and underwent 3-dimensional coordinate landmark analysis, and en-bloc specimens from the zygomaticomaxillary, frontonasal, and nasomaxillary sutures of the left hemi-skulls underwent histologic analysis. Two 50-day-old female pigs from the same litter were used in phase II. The same experimental protocol was followed as before for the experimental pig and the sham experimental pig. Both pigs were fed a normal diet for 105 days; then they were killed, and their skulls were prepared for and underwent 3-dimensional coordinate landmark analysis. RESULTS Rigid plating restricted zygomaticolacrimal suture length, maxillary bone length, nasal bone length, midfacial breadth, and frontal bone length by an average of -14% to -15% (range, -4% to -36%). No growth differences were noted between the animals in maxillary height, mid-premaxillary length, bregma-lambda length, palatal lengths, or mandibular length. Also, plating the sutures produced a clear depressed concavity in the infraorbital region, altered the alignment of the infraorbital plane lateral to the concavity, inhibited the anterior migration of the maxillary tuberosity, and resulted in raised folding on the bony surface adjacent to the zygomaticomaxillary suture. CONCLUSIONS Rigidly fixating frontonasomaxillary and zygomaticomaxillary sutures inhibits growth of facial bones and might provide a means of restricting excess growth without having to rely on patient compliance. In addition, these altered growth patterns in the plated pig model produced similar and potentially homologous infraorbital features shared by living humans in comparison with ancestral fossil forms.
Collapse
|
|
19 |
11 |
21
|
Bilbo EE, Marshall SD, Southard KA, Allareddy V, Holton N, Thames AM, Otsby MS, Southard TE. Long-term skeletal effects of high-pull headgear followed by fixed appliances for the treatment of Class II malocclusions. Angle Orthod 2018; 88:530-537. [PMID: 29667470 DOI: 10.2319/091517-620.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES The long-term skeletal effects of Class II treatment in growing individuals using high-pull facebow headgear and fixed edgewise appliances have not been reported. The purpose of this study was to evaluate the long-term skeletal effects of treatment using high-pull headgear followed by fixed orthodontic appliances compared to an untreated control group. MATERIALS AND METHODS Changes in anteroposterior and vertical cephalometric measurements of 42 Class II subjects (n = 21, mean age = 10.7 years) before treatment, after headgear correction to Class I molar relationship, after treatment with fixed appliances, and after long-term retention (mean 4.1 years), were compared to similar changes in a matched control group (n = 21, mean age = 10.9 years) by multivariable linear regression models. RESULTS Compared to control, the study group displayed significant long-term horizontal restriction of A-point (SNA = -1.925°, P < .0001; FH-NA = -3.042°, P < .0001; linear measurement A-point to Vertical Reference = -3.859 mm, P < .0001) and reduction of the ANB angle (-1.767°, P < .0001), with no effect on mandibular horizontal growth or maxillary and mandibular vertical skeletal changes. A-point horizontal restriction and forward mandibular horizontal growth accompanied the study group correction to Class I molar, and these changes were stable long term. CONCLUSIONS One phase treatment for Class II malocclusion with high-pull headgear followed by fixed orthodontic appliances resulted in correction to Class I molar through restriction of horizontal maxillary growth with continued horizontal mandibular growth and vertical skeletal changes unaffected. The anteroposterior molar correction and skeletal effects of this treatment were stable long term.
Collapse
|
|
7 |
11 |
22
|
Weaver CA, Miller SF, da Fontoura CSG, Wehby GL, Amendt BA, Holton NE, Allareddy V, Southard TE, Moreno Uribe LM. Candidate gene analyses of 3-dimensional dentoalveolar phenotypes in subjects with malocclusion. Am J Orthod Dentofacial Orthop 2017; 151:539-558. [PMID: 28257739 DOI: 10.1016/j.ajodo.2016.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 08/01/2016] [Accepted: 08/01/2016] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Genetic studies of malocclusion etiology have identified 4 deleterious mutations in genes DUSP6,ARHGAP21, FGF23, and ADAMTS1 in familial Class III cases. Although these variants may have large impacts on Class III phenotypic expression, their low frequency (<1%) makes them unlikely to explain most malocclusions. Thus, much of the genetic variation underlying the dentofacial phenotypic variation associated with malocclusion remains unknown. In this study, we evaluated associations between common genetic variations in craniofacial candidate genes and 3-dimensional dentoalveolar phenotypes in patients with malocclusion. METHODS Pretreatment dental casts or cone-beam computed tomographic images from 300 healthy subjects were digitized with 48 landmarks. The 3-dimensional coordinate data were submitted to a geometric morphometric approach along with principal component analysis to generate continuous phenotypes including symmetric and asymmetric components of dentoalveolar shape variation, fluctuating asymmetry, and size. The subjects were genotyped for 222 single-nucleotide polymorphisms in 82 genes/loci, and phenotpye-genotype associations were tested via multivariate linear regression. RESULTS Principal component analysis of symmetric variation identified 4 components that explained 68% of the total variance and depicted anteroposterior, vertical, and transverse dentoalveolar discrepancies. Suggestive associations (P < 0.05) were identified with PITX2, SNAI3, 11q22.2-q22.3, 4p16.1, ISL1, and FGF8. Principal component analysis for asymmetric variations identified 4 components that explained 51% of the total variations and captured left-to-right discrepancies resulting in midline deviations, unilateral crossbites, and ectopic eruptions. Suggestive associations were found with TBX1AJUBA, SNAI3SATB2, TP63, and 1p22.1. Fluctuating asymmetry was associated with BMP3 and LATS1. Associations for SATB2 and BMP3 with asymmetric variations remained significant after the Bonferroni correction (P <0.00022). Suggestive associations were found for centroid size, a proxy for dentoalveolar size variation with 4p16.1 and SNAI1. CONCLUSIONS Specific genetic pathways associated with 3-dimensional dentoalveolar phenotypic variation in malocclusions were identified.
Collapse
|
Journal Article |
8 |
10 |
23
|
Holton NE, Franciscus RG, Ravosa MJ, Southard TE. Functional and morphological correlates of mandibular symphyseal form in a living human sample. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2013; 153:387-96. [PMID: 24264260 DOI: 10.1002/ajpa.22437] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 11/08/2013] [Accepted: 11/08/2013] [Indexed: 11/09/2022]
Abstract
Variation in recent human mandibular form is often thought to reflect differences in masticatory behavior associated with variation in food preparation and subsistence strategies. Nevertheless, while mandibular variation in some human comparisons appear to reflect differences in functional loading, other comparisons indicate that this relationship is not universal. This suggests that morphological variation in the mandible is influenced by other factors that may obscure the effects of loading on mandibular form. It is likely that highly strained mandibular regions, including the corpus, are influenced by well-established patterns of lower facial skeletal integration. As such, it is unclear to what degree mandibular form reflects localized stresses incurred during mastication vs. a larger set of correlated features that may influence bone distribution patterns. In this study, we examine the relationship between mandibular symphyseal bone distribution (i.e., second moments of area, cortical bone area) and masticatory force production (i.e., in vivo maximal bite force magnitude and estimated symphyseal bending forces) along with lower facial shape variation in a sample of n = 20 living human male subjects. Our results indicate that while some aspects of symphyseal form (e.g., wishboning resistance) are significantly correlated with estimates of symphyseal bending force magnitude, others (i.e., vertical bending resistance) are more closely tied to variation in lower facial shape. This suggests that while the symphysis reflects variation in some variables related to functional loading, the complex and multifactorial influences on symphyseal form underscores the importance of exercising caution when inferring function from the mandible especially in narrow taxonomic comparisons.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
12 |
8 |
24
|
Strassman A, Schnütgen F, Dai Q, Jones JC, Gomez AC, Pitstick L, Holton NE, Moskal R, Leslie ER, von Melchner H, Beier DR, Bjork BC. Generation of a multipurpose Prdm16 mouse allele by targeted gene trapping. Dis Model Mech 2017; 10:909-922. [PMID: 28424158 PMCID: PMC5536910 DOI: 10.1242/dmm.029561] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/18/2017] [Indexed: 12/17/2022] Open
Abstract
Gene trap mutagenesis is a powerful tool to create loss-of-function mutations in mice and other model organisms. Modifications of traditional gene trap cassettes, including addition of conditional features in the form of Flip-excision (FlEx) arrays to enable directional gene trap cassette inversions by Cre and Flpe site-specific recombinases, greatly enhanced their experimental potential. By taking advantage of these conditional gene trap cassettes, we developed a generic strategy for generating conditional mutations and validated this strategy in mice carrying a multipurpose allele of the Prdm16 transcription factor gene. We demonstrate that the gene trap insertion creates a null mutation replicating the Pierre Robin sequence-type cleft palate phenotype of other Prdm16 mutant mice. Consecutive breeding to Flpe and Emx1IREScre deleter mice spatially restricted Prdm16 loss to regions of the forebrain expressing the homeobox gene Emx1, demonstrating the utility of the technology for the analysis of tissue-specific gene functions. Summary: Described is the first targeting of an invertible gene trap to generate a conditional Prdm16 mouse allele and its use to assess phenotypic consequences of Prdm16 loss during craniofacial and brain development.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
7 |
25
|
Southard TE, Marshall SD, Allareddy V, Moreno Uribe LM, Holton NE. An evidence-based comparison of headgear and functional appliance therapy for the correction of Class II malocclusions. Semin Orthod 2013. [DOI: 10.1053/j.sodo.2013.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
|
12 |
6 |