1
|
Cheng T, Rodrigues N, Shen H, Yang Y, Dombkowski D, Sykes M, Scadden DT. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 2000; 287:1804-8. [PMID: 10710306 DOI: 10.1126/science.287.5459.1804] [Citation(s) in RCA: 1004] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Relative quiescence is a defining characteristic of hematopoietic stem cells, while their progeny have dramatic proliferative ability and inexorably move toward terminal differentiation. The quiescence of stem cells has been conjectured to be of critical biologic importance in protecting the stem cell compartment, which we directly assessed using mice engineered to be deficient in the G1 checkpoint regulator, cyclin-dependent kinase inhibitor, p21cip1/waf1 (p21). In the absence of p21, hematopoietic stem cell proliferation and absolute number were increased under normal homeostatic conditions. Exposing the animals to cell cycle-specific myelotoxic injury resulted in premature death due to hematopoietic cell depletion. Further, self-renewal of primitive cells was impaired in serially transplanted bone marrow from p21-/- mice, leading to hematopoietic failure. Therefore, p21 is the molecular switch governing the entry of stem cells into the cell cycle, and in its absence, increased cell cycling leads to stem cell exhaustion. Under conditions of stress, restricted cell cycling is crucial to prevent premature stem cell depletion and hematopoietic death.
Collapse
|
|
25 |
1004 |
2
|
Rodrigues NR, Rowan A, Smith ME, Kerr IB, Bodmer WF, Gannon JV, Lane DP. p53 mutations in colorectal cancer. Proc Natl Acad Sci U S A 1990; 87:7555-9. [PMID: 1699228 PMCID: PMC54786 DOI: 10.1073/pnas.87.19.7555] [Citation(s) in RCA: 709] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Immunohistological staining of primary colorectal carcinomas with antibodies specific to p53 demonstrated gross overexpression of the protein in approximately 50% of the malignant tumors examined. Benign adenomas were all negative for p53 overexpression. To determine the molecular basis for this overexpression we examined p53 protein expression in 10 colorectal cancer cell lines. Six of the cell lines expressed high levels of p53 in ELISA, cell-staining, and immunoprecipitation studies. Direct sequencing and chemical-mismatch-cleavage analysis of p53 cDNA by using the polymerase chain reaction in these cell lines showed that all cell lines that expressed high levels of p53 were synthesizing mRNAs that encoded mutant p53 proteins. In two of those four cell lines where p53 expression was lower, point mutations were still detected. Thus, we conclude that overexpression of p53 is synonymous with mutation, but some mutations would not be detected by a simple immunohistochemical analysis. Mutation of the p53 gene is one of the commonest genetic changes in the development of human colorectal cancer.
Collapse
|
research-article |
35 |
709 |
3
|
Cotton RG, Rodrigues NR, Campbell RD. Reactivity of cytosine and thymine in single-base-pair mismatches with hydroxylamine and osmium tetroxide and its application to the study of mutations. Proc Natl Acad Sci U S A 1988; 85:4397-401. [PMID: 3260032 PMCID: PMC280436 DOI: 10.1073/pnas.85.12.4397] [Citation(s) in RCA: 461] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The chemical reactivity of thymine (T), when mismatched with the bases cytosine, guanine, and thymine, and of cytosine (C), when mismatched with thymine, adenine, and cytosine, has been examined. Heteroduplex DNAs containing such mismatched base pairs were first incubated with osmium tetroxide (for T and C mismatches) or hydroxylamine (for C mismatches) and then incubated with piperidine to cleave the DNA at the modified mismatched base. This cleavage was studied with an internally labeled strand containing the mismatched T or C, such that DNA cleavage and thus reactivity could be detected by gel electrophoresis. Cleavage at a total of 13 T and 21 C mismatches isolated (by at least three properly paired bases on both sides) single-base-pair mismatches was identified. All T or C mismatches studied were cleaved. By using end-labeled DNA probes containing T or C single-base-pair mismatches and conditions for limited cleavage, we were able to show that cleavage was at the base predicted by sequence analysis and that mismatches in a length of DNA could be readily detected by such an approach. This procedure may enable detection of all single-base-pair mismatches by use of sense and antisense probes and thus may be used to identify the mutated base and its position in a heteroduplex.
Collapse
|
|
37 |
461 |
4
|
Muda M, Theodosiou A, Rodrigues N, Boschert U, Camps M, Gillieron C, Davies K, Ashworth A, Arkinstall S. The dual specificity phosphatases M3/6 and MKP-3 are highly selective for inactivation of distinct mitogen-activated protein kinases. J Biol Chem 1996; 271:27205-8. [PMID: 8910287 DOI: 10.1074/jbc.271.44.27205] [Citation(s) in RCA: 323] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The mitogen-activated protein (MAP) kinase family includes extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase/stress-activated protein kinase (JNK/SAPK) and p38/RK/CSBP (p38) as structurally and functionally distinct enzyme classes. Here we describe two new dual specificity phosphatases of the CL100/MKP-1 family that are selective for inactivating ERK or JNK/SAPK and p38 MAP kinases when expressed in COS-7 cells. M3/6 is the first phosphatase of this family to display highly specific inactivation of JNK/SAPK and p38 MAP kinases. Although stress-induced activation of p54 SAPKbeta, p46 SAPKgamma (JNK1) or p38 MAP kinases is abolished upon co-transfection with increasing amounts of M3/6 plasmid, epidermal growth factor-stimulated ERK1 is remarkably insensitive even to the highest levels of M3/6 expression obtained. In contrast to M3/6, the dual specificity phosphatase MKP-3 is selective for inactivation of ERK family MAP kinases. Low level expression of MKP-3 blocks totally epidermal growth factor-stimulated ERK1, whereas stress-induced activation of p54 SAPKbeta and p38 MAP kinases is inhibited only partially under identical conditions. Selective regulation by M3/6 and MKP-3 was also observed upon chronic MAP kinase activation by constitutive p21(ras) GTPases. Hence, although M3/6 expression effectively blocked p54 SAPKbeta activation by p21(rac) (G12V), ERK1 activated by p21(ras) (G12V) was insensitive to this phosphatase. ERK1 activation by oncogenic p21(ras) was, however, blocked totally by co-expression of MKP-3. This is the first report demonstrating reciprocally selective inhibition of different MAP kinases by two distinct dual specificity phosphatases.
Collapse
|
|
29 |
323 |
5
|
Cheng T, Rodrigues N, Dombkowski D, Stier S, Scadden DT. Stem cell repopulation efficiency but not pool size is governed by p27(kip1). Nat Med 2000; 6:1235-40. [PMID: 11062534 DOI: 10.1038/81335] [Citation(s) in RCA: 279] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sustained blood cell production requires preservation of a quiescent, multipotential stem cell pool that intermittently gives rise to progenitors with robust proliferative potential. The ability of cells to shift from a highly constrained to a vigorously active proliferative state is critical for maintaining stem cells while providing the responsiveness necessary for host defense. The cyclin-dependent kinase inhibitor (CDKI), p21(cip1/waf1) (p21) dominates stem cell kinetics. Here we report that another CDKI, p27(kip1) (p27), does not affect stem cell number, cell cycling, or self-renewal, but markedly alters progenitor proliferation and pool size. Therefore, distinct CDKIs govern the highly divergent stem and progenitor cell populations. When competitively transplanted, p27-deficient stem cells generate progenitors that eventually dominate blood cell production. Modulating p27 expression in a small number of stem cells may translate into effects on the majority of mature cells, thereby providing a strategy for potentiating the impact of transduced cells in stem cell gene therapy.
Collapse
|
|
25 |
279 |
6
|
Ghosh S, Palmer SM, Rodrigues NR, Cordell HJ, Hearne CM, Cornall RJ, Prins JB, McShane P, Lathrop GM, Peterson LB. Polygenic control of autoimmune diabetes in nonobese diabetic mice. Nat Genet 1993; 4:404-9. [PMID: 8401590 DOI: 10.1038/ng0893-404] [Citation(s) in RCA: 239] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Partial exclusion mapping of the nonobese (NOD) diabetic mouse genome has shown linkage of diabetes to at least five different chromosomes. We have now excluded almost all of the genome for the presence of susceptibility genes with fully recessive effects and have obtained evidence of linkage of ten distinct loci to diabetes or the prediabetic lesion, insulitis, indicative of a polygenic mode of inheritance. The relative importance of these loci and their interactions have been assessed using a new application of multiple polychotomous regression methods. A candidate disease gene, interleukin-2 (Il-2), which is closely linked to insulitis and diabetes, is shown to have a different sequence in NOD, including an insertion and a deletion of tandem repeat sequences which encode amino acid repeats in the mature protein.
Collapse
|
|
32 |
239 |
7
|
Rodrigues NR, Owen N, Talbot K, Ignatius J, Dubowitz V, Davies KE. Deletions in the survival motor neuron gene on 5q13 in autosomal recessive spinal muscular atrophy. Hum Mol Genet 1995; 4:631-4. [PMID: 7633412 DOI: 10.1093/hmg/4.4.631] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Autosomal recessive spinal muscular atrophy is a motor neuron disease which affects about 1 in 10,000 births. Recent evidence shows that the candidate region contains multiple copies of genes and pseudogenes and is characterised by genome instability. We have analysed the frequency of deletions in a recently characterised candidate survival motor neuron (SMN) gene. Our data confirm previous analyses and show that this gene is disrupted by deletion in SMA patients. The same deletion frequency is observed in the milder variants of the disease as in patients with the severe form. In addition, we observed one case of a new mutation in a family previously thought not to be segregating for a chromosome 5 linked form of SMA. This assay is a very good diagnostic for SMA although no direct correlation between phenotype and genotype is apparent and carrier status cannot be determined. The implications for the identification of the gene or genes causing the disease are discussed.
Collapse
|
|
30 |
152 |
8
|
Muda M, Theodosiou A, Gillieron C, Smith A, Chabert C, Camps M, Boschert U, Rodrigues N, Davies K, Ashworth A, Arkinstall S. The mitogen-activated protein kinase phosphatase-3 N-terminal noncatalytic region is responsible for tight substrate binding and enzymatic specificity. J Biol Chem 1998; 273:9323-9. [PMID: 9535927 DOI: 10.1074/jbc.273.15.9323] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have reported recently that the dual specificity mitogen-activated protein kinase phosphatase-3 (MKP-3) elicits highly selective inactivation of the extracellular signal-regulated kinase (ERK) class of mitogen-activated protein (MAP) kinases (Muda, M., Theodosiou, A., Rodrigues, N., Boschert, U., Camps, M., Gillieron, C., Davies, K., Ashworth, A., and Arkinstall, S. (1996) J. Biol. Chem. 271, 27205-27208). We now show that MKP-3 enzymatic specificity is paralleled by tight binding to both ERK1 and ERK2 while, in contrast, little or no interaction with either c-Jun N-terminal kinase/stress activated protein kinase (JNK/SAPK) or p38 MAP kinases was detected. Further study revealed that the N-terminal noncatalytic domain of MKP-3 (MKP-3DeltaC) binds both ERK1 and ERK2, while the C-terminal MKP-3 catalytic core (MKP-3DeltaN) fails to precipitate either of these MAP kinases. A chimera consisting of the N-terminal half of MKP-3 with the C-terminal catalytic core of M3-6 also bound tightly to ERK1 but not to JNK3/SAPKbeta. Consistent with a role for N-terminal binding in determining MKP-3 specificity, at least 10-fold higher concentrations of purified MKP-3DeltaN than full-length MKP-3 is required to inhibit ERK2 activity. In contrast, both MKP-3DeltaN and full-length MKP-3 inactivate JNK/SAPK and p38 MAP kinases at similarly high concentrations. Also, a chimera of the M3-6 N terminus with the MKP-3 catalytic core which fails to bind ERK elicits non selective inactivation of ERK1 and JNK3/SAPKbeta. Together, these observations suggest that the physiological specificity of MKP-3 for inactivation of ERK family MAP kinases reflects tight substrate binding by its N-terminal domain.
Collapse
|
|
27 |
126 |
9
|
Rodrigues N, Gonçalves G, Pereira-da-Silva S, Malfeito-Ferreira M, Loureiro V. Development and use of a new medium to detect yeasts of the genera Dekkera/Brettanomyces. J Appl Microbiol 2001; 90:588-99. [PMID: 11309071 DOI: 10.1046/j.1365-2672.2001.01275.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS The objectives of this work were to develop a selective and/or differential medium able to efficiently recover Dekkera/Brettanomyces sp. from wine-related environments and to determine the relationship between these yeasts and the 4-ethylphenol content in a wide range of wines. METHODS AND RESULTS The selectivity of the developed medium was provided by the addition of ethanol, as single carbon source, and cycloheximide. The inclusion of bromocresol green evidenced acid-producing strains. The inclusion of p-coumaric acid, substrate for the production of 4-ethylphenol, enabled the differentiation by smell of Dekkera/Brettanomyces sp. from all other yeast species growing in the medium. The medium was used either by plating after membrane filtration or by the Most Probable Number (MPN) technique. In 29 white and 88 red randomly collected wines, these yeasts were found only in red wines at levels up to 2500 MPN ml-1, but constituted less than 1% of the total microbial flora. In red wines, 84% showed detectable amounts of 4-ethylphenol up to 4430 microg l-1 while 28% of the white wines showed detectable levels up to 403 microg l-1. CONCLUSION The use of the medium proposed in this work evidenced the presence of low relative populations of Dekkera/Brettanomyces sp. even in wines contaminated by fast-growing yeasts and moulds. SIGNIFICANCE AND IMPACT OF THE STUDY Further ecological studies on Dekkera/Brettanomyces sp. should take into account the use of highly specific culture media in order to establish their true occurrence in nature.
Collapse
|
|
24 |
122 |
10
|
Rodrigues NR, Dunham I, Yu CY, Carroll MC, Porter RR, Campbell RD. Molecular characterization of the HLA-linked steroid 21-hydroxylase B gene from an individual with congenital adrenal hyperplasia. EMBO J 1987; 6:1653-61. [PMID: 3038528 PMCID: PMC553538 DOI: 10.1002/j.1460-2075.1987.tb02414.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
21-Hydroxylase deficiency which causes congenital adrenal hyperplasia is one of the most common defects of adrenal steroidogenesis. There are two 21-hydroxylase genes in man, A and B, and these have been mapped to the HLA class III region. Only the 21-hydroxylase B gene is thought to be active. To understand the molecular basis of congenital adrenal hyperplasia in a patient with the salt-wasting form of the disease, we cloned and characterized his single 21-hydroxylase B gene. The nucleotide sequence of this gene and a 21-hydroxylase B gene from a normal individual have been determined. Comparison of the two sequences has revealed 11 nucleotide alterations, of which two are in the 5' flanking region, four are in introns, one is in the 3' untranslated region and four are in exons. Two of the differences in exons cause codon changes, with Ser-269 and Asn-494 in the normal 21-hydroxylase B gene being converted to Thr and Ser, respectively. These amino acid substitutions may give an insight into those residues necessary for 21-hydroxylase enzymatic activity. We have also confirmed that the 21-hydroxylase A gene is a pseudogene due to three deleterious mutations in the exons. In addition, comparison of the 21-hydroxylase B gene sequence with other published sequences indicates that this microsomal cytochrome P-450 may be polymorphic.
Collapse
|
|
38 |
110 |
11
|
McAleer MA, Reifsnyder P, Palmer SM, Prochazka M, Love JM, Copeman JB, Powell EE, Rodrigues NR, Prins JB, Serreze DV. Crosses of NOD mice with the related NON strain. A polygenic model for IDDM. Diabetes 1995; 44:1186-95. [PMID: 7556956 DOI: 10.2337/diab.44.10.1186] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chromosome locations of non-major histocompatibility complex (MHC) genes contributing to insulin-dependent diabetes mellitus (IDDM) in mice have been determined by outcrossing NOD mice to other inbred strains congenic for the NOD MHC haplotype (H2g7). At least nine non-MHC IDDM susceptibility genes (Idd) were previously identified at first backcross (BC1) after outcross of NOD to C57BL/10.H2g7 congenic mice (B10.H2g7). We investigated whether the same set of Idd loci segregated with IDDM susceptibility after outcross of NOD to NON.H2g7 congenic mice. Since the outcrosses to NON.H2g7 and B10.H2g7 were performed in the same vivarium, direct comparisons were made of the chromosomal locations and relative strengths of Idd alleles in diabetic progeny from the two different outcrosses. In comparison with the NOD x B10.H2g7 outcross, the NOD x NON.H2g7 outcross produced significantly higher IDDM frequencies in F1, F2, and BC1 generations. The high F2 diabetes frequency allowed evaluation of the effects of homozygous expression of both the susceptibility and the resistance allele at Idd loci. This analysis demonstrated that no single non-MHC Idd locus was essential for the onset of diabetes in this cross. After outcross to NON.H2g7, Idd4 (chromosome [Chr] 11), Idd5 (Chr 1), and Idd8 (Chr 14) did not segregate with IDDM in either the BC1 or the F2 generation. Diabetogenic NOD-derived alleles at Idd2 (Chr 9), Idd3 (Chr 3), and Idd10 (Chr 3) were segregating in the BC1. An NON-derived allele contributing to susceptibility on Chr 7 (Idd7) was also detected. Dominant traits, detectable only in the F2 cross, were encoded by Chr 4 (Idd9) and two newly mapped loci on Chr 13 (Idd14) and 5 (Idd15). A third dominant trait was encoded by Chr 6 (possibly Idd6), but here, in contrast to Idd9, Idd14, and Idd15, the NON allele was diabetogenic. Stepwise logistic regression analysis of the BC1 and F2 data confirmed that the ability to identify certainty of the non-MHC Idd loci was contingent on the extent of homozygosity for NOD background genes. This study shows that the diabetogenic phenotype can be achieved through the actions of variable combinations of MHC-unlinked genes and a diabetogenic MHC haplotype.
Collapse
|
Comparative Study |
30 |
99 |
12
|
Talbot K, Ponting CP, Theodosiou AM, Rodrigues NR, Surtees R, Mountford R, Davies KE. Missense mutation clustering in the survival motor neuron gene: a role for a conserved tyrosine and glycine rich region of the protein in RNA metabolism? Hum Mol Genet 1997; 6:497-500. [PMID: 9147655 DOI: 10.1093/hmg/6.3.497] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Survival Motor Neuron (SMN) gene shows deletions in the majority of patients with Spinal Muscular Atrophy (SMA), a disease of motor neuron degeneration. To date only two missense mutations have been reported in SMN in patients with SMA. The fact that no SMN-homologues have been forthcoming from data-base searching has resulted in a lack of hypotheses concerning the structural and functional consequences of these mutations. Recently SMN has been shown to interact with heterogeneous nuclear ribonucleoproteins (hnRNPs) suggesting a role in mRNA metabolism. We describe a novel missense mutation and the subsequent identification of a triplicated tyrosine-glycine (Y-G) peptide sequence at the C-terminal of SMN which encompasses each of the three predicted amino acid sequence substitutions. We have identified apparent orthologues of SMN in Caenorhabditis elegans and Schizosaccharomyces pombe. These sequences retain the highly conserved Y-G motif and provide additional support for a role of SMN in mRNA metabolism.
Collapse
|
|
28 |
97 |
13
|
Bain SC, Prins JB, Hearne CM, Rodrigues NR, Rowe BR, Pritchard LE, Ritchie RJ, Hall JR, Undlien DE, Ronningen KS. Insulin gene region-encoded susceptibility to type 1 diabetes is not restricted to HLA-DR4-positive individuals. Nat Genet 1994; 2:212-5. [PMID: 1345171 DOI: 10.1038/ng1192-212] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Type 1 or insulin-dependent diabetes mellitus (IDDM) is an autoimmune disease of the insulin-producing pancreatic beta-cells which is determined by both genetic and environmental factors. The major histocompatibility complex and the insulin gene region (INS) on human chromosomes 6p and 11p, respectively, contain susceptibility genes. Using a mostly French data set, evidence for linkage of INS to IDDM was recently obtained but only in male meioses (suggesting involvement of maternal imprinting) and only in HLA-DR4-positive diabetics. In contrast, we find evidence for linkage in both male and female meioses and that the effect of the susceptibility gene(s) in the INS region is not dependent on the presence of HLA-DR4.
Collapse
|
Research Support, Non-U.S. Gov't |
31 |
92 |
14
|
Prins JB, Todd JA, Rodrigues NR, Ghosh S, Hogarth PM, Wicker LS, Gaffney E, Podolin PL, Fischer PA, Sirotina A. Linkage on chromosome 3 of autoimmune diabetes and defective Fc receptor for IgG in NOD mice. Science 1993; 260:695-8. [PMID: 8480181 DOI: 10.1126/science.8480181] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A congenic, non-obese diabetic (NOD) mouse strain that contains a segment of chromosome 3 from the diabetes-resistant mouse strain B6.PL-Thy-1a was less susceptible to diabetes than NOD mice. A fully penetrant immunological defect also mapped to this segment, which encodes the high-affinity Fc receptor for immunoglobulin G (IgG), Fc gamma RI. The NOD Fcgr1 allele, which results in a deletion of the cytoplasmic tail, caused a 73 percent reduction in the turnover of cell surface receptor-antibody complexes. The development of congenic strains and the characterization of Mendelian traits that are specific to the disease phenotype demonstrate the feasibility of dissecting the pathophysiology of complex, non-Mendelian diseases.
Collapse
|
|
32 |
87 |
15
|
Paulsen M, Davies KR, Bowden LM, Villar AJ, Franck O, Fuermann M, Dean WL, Moore TF, Rodrigues N, Davies KE, Hu RJ, Feinberg AP, Maher ER, Reik W, Walter J. Syntenic organization of the mouse distal chromosome 7 imprinting cluster and the Beckwith-Wiedemann syndrome region in chromosome 11p15.5. Hum Mol Genet 1998; 7:1149-59. [PMID: 9618174 DOI: 10.1093/hmg/7.7.1149] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In human and mouse, most imprinted genes are arranged in chromosomal clusters. Their linked organization suggests co-ordinated mechanisms controlling imprinting and gene expression. The identification of local and regional elements responsible for the epigenetic control of imprinted gene expression will be important in understanding the molecular basis of diseases associated with imprinting such as Beckwith-Wiedemann syndrome. We have established a complete contig of clones along the murine imprinting cluster on distal chromosome 7 syntenic with the human imprinting region at 11p15.5 associated with Beckwith-Wiedemann syndrome. The cluster comprises approximately 1 Mb of DNA, contains at least eight imprinted genes and is demarcated by the two maternally expressed genes Tssc3 (Ipl) and H19 which are directly flanked by the non-imprinted genes Nap1l4 (Nap2) and Rpl23l (L23mrp), respectively. We also localized Kcnq1 (Kvlqt1) and Cd81 (Tapa-1) between Cdkn1c (p57(Kip2)) and Mash2. The mouse Kcnq1 gene is maternally expressed in most fetal but biallelically transcribed in most neonatal tissues, suggesting relaxation of imprinting during development. Our findings indicate conserved control mechanisms between mouse and human, but also reveal some structural and functional differences. Our study opens the way for a systematic analysis of the cluster by genetic manipulation in the mouse which will lead to animal models of Beckwith-Wiedemann syndrome and childhood tumours.
Collapse
|
|
27 |
82 |
16
|
Burton EA, Tinsley JM, Holzfeind PJ, Rodrigues NR, Davies KE. A second promoter provides an alternative target for therapeutic up-regulation of utrophin in Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 1999; 96:14025-30. [PMID: 10570192 PMCID: PMC24184 DOI: 10.1073/pnas.96.24.14025] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an inherited muscle-wasting disease caused by the absence of a muscle cytoskeletal protein, dystrophin. We have previously shown that utrophin, the autosomal homologue of dystrophin, is able to compensate for the absence of dystrophin in a mouse model of DMD; we have therefore undertaken a detailed study of the transcriptional regulation of utrophin to identify means of effecting its up-regulation in DMD muscle. We have previously isolated a promoter element lying within the CpG island at the 5' end of the gene and have shown it to be synaptically regulated in vivo. In this paper, we show that there is an alternative promoter lying within the large second intron of the utrophin gene, 50 kb 3' to exon 2. The promoter is highly regulated and drives transcription of a widely expressed unique first exon that splices into a common full-length mRNA at exon 3. The two utrophin promoters are independently regulated, and we predict that they respond to discrete sets of cellular signals. These findings significantly contribute to understanding the molecular physiology of utrophin expression and are important because the promoter reported here provides an alternative target for transcriptional activation of utrophin in DMD muscle. This promoter does not contain synaptic regulatory elements and might, therefore, be a more suitable target for pharmacological manipulation than the previously described promoter.
Collapse
|
research-article |
26 |
82 |
17
|
Taylor JE, Thomas NH, Lewis CM, Abbs SJ, Rodrigues NR, Davies KE, Mathew CG. Correlation of SMNt and SMNc gene copy number with age of onset and survival in spinal muscular atrophy. Eur J Hum Genet 1998; 6:467-74. [PMID: 9801871 DOI: 10.1038/sj.ejhg.5200210] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Childhood-onset autosomal recessive spinal muscular atrophy (SMA) is associated with absence of the telomeric survival motor neuron gene (SMNt) in most patients, and deletion of the neuronal apoptosis inhibitory protein (NAIP) gene in the majority of severely affected patients. Analysis of SMNt has been complicated by the existence of a centromeric copy, SMNc, which is almost identical to SMNt but which can be distinguished from it by restriction enzyme analysis. In this study 143 SMA patients have been genotyped for the presence or absence of the SMNt, SMNc and NAIP genes, and the data correlated with quantifiable clinical variables. Although a significant correlation was observed between the presence or absence of the NAIP gene and the severity of the clinical phenotype in SMA patients generally, there was no difference in age of onset or survival in type I patients with the NAIP+ or NAIP- genotype. Fluorimetric PCR analysis of SMNc gene dosage in 57 patients homozygous for the absence of the SMNt gene but in whom the NAIP gene was present showed a highly significant correlation between SMNc copy number and SMA subtype, and between SMNc copy number and both age of onset and length of survival. The data provide strong statistical support for the emerging consensus that the clinical phenotype in SMA is directed primarily by the level of functional SMN protein. The lower SMNc copy number in type I patients in whom the NAIP gene is present suggests that the SMNt gene is removed by deletion in the majority of such patients, rather than by gene conversion as is the case in SMA types II and III.
Collapse
|
|
27 |
72 |
18
|
Cheng T, Shen H, Rodrigues N, Stier S, Scadden DT. Transforming growth factor beta 1 mediates cell-cycle arrest of primitive hematopoietic cells independent of p21(Cip1/Waf1) or p27(Kip1). Blood 2001; 98:3643-9. [PMID: 11739168 DOI: 10.1182/blood.v98.13.3643] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The regulation of stem cell proliferation is a poorly understood process balancing rapid, massive blood cell production in times of stress with maintenance of a multipotent stem cell pool over decades of life. Transforming growth factor beta 1 (TGF-beta 1) has pleiotropic effects on hematopoietic cells, including the inhibition of primitive cell proliferation. It was recently demonstrated that the cyclin-dependent kinase inhibitors, p21(Cip1/Waf1) (p21) and p27(Kip1) (p27), can inhibit the proliferation of hematopoietic stem cells and progenitor cells, respectively. The relation of TGF-beta 1 stimulation to p21 and p27 was examined using a fine-mapping approach to gene expression in individual cells. Abundant TGF-beta 1 expression and p21 expression were documented in quiescent, cytokine-resistant hematopoietic stem cells and in terminally differentiated mature blood cells, but not in proliferating progenitor cell populations. TGF-beta 1 receptor (T beta R II) was expressed ubiquitously without apparent modulation. Cell- cycle-synchronized 32D cells exposed to TGF-beta 1 demonstrated a marked antiproliferative effect of TGF-beta 1, yet neither the level of p21 mRNA nor the protein level of either p21 or p27 was altered. To corroborate these observations in primary cells, bone marrow mononuclear cells derived from mice engineered to be deficient in p21 or p27 were assessed. Progenitor and primitive cell function was inhibited by TGF-beta 1 equivalently in -/- and +/+ littermate controls. These data indicate that TGF-beta 1 exerts its inhibition on cell cycling independent of p21 and p27 in hematopoietic cells. TGF-beta 1 and p21 or p27 participate in independent pathways of stem cell regulation, suggesting that targeting each may provide complementary strategies for enhancing stem or progenitor cell expansion and gene transduction.
Collapse
|
|
24 |
62 |
19
|
Rodrigues NR, Owen N, Talbot K, Patel S, Muntoni F, Ignatius J, Dubowitz V, Davies KE. Gene deletions in spinal muscular atrophy. J Med Genet 1996; 33:93-6. [PMID: 8929942 PMCID: PMC1051831 DOI: 10.1136/jmg.33.2.93] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Two candidate genes (NAIP and SMN) have recently been reported for childhood onset spinal muscular atrophy (SMA). Although affected subjects show deletions of these genes, these deletions can lead to either a very mild or a severe phenotype. We have analysed a large number of clinically well defined patients, carriers, and normal controls to assess the frequency and extent of deletions encompassing both of these genes. A genotype analysis indicates that more extensive deletions are seen in the severe form of SMA than in the milder forms. In addition, 1 center dot 9% of phenotypically normal carriers are deleted for the NAIP gene; no carriers were deleted for the SMN gene. Our data suggest that deletions in both of these genes, using the currently available assays, are associated with both a severe and very mild phenotype.
Collapse
|
research-article |
29 |
54 |
20
|
Brelsford A, Rodrigues N, Perrin N. High-density linkage maps fail to detect any genetic component to sex determination in a Rana temporaria family. J Evol Biol 2015; 29:220-5. [PMID: 26404414 DOI: 10.1111/jeb.12747] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/25/2015] [Accepted: 08/31/2015] [Indexed: 01/16/2023]
Abstract
Sex chromosome differentiation in Rana temporaria varies strikingly among populations or families: whereas some males display well-differentiated Y haplotypes at microsatellite markers on linkage group 2 (LG2), others are genetically undistinguishable from females. We analysed with RADseq markers one family from a Swiss lowland population with no differentiated sex chromosomes, and where sibship analyses had failed to detect any association between the phenotypic sex of progeny and parental haplotypes. Offspring were reared in a common tank in outdoor conditions and sexed at the froglet stage. We could map a total of 2177 SNPs (1123 in the mother, 1054 in the father), recovering in both adults 13 linkage groups (= chromosome pairs) that were strongly syntenic to Xenopus tropicalis despite > 200 My divergence. Sexes differed strikingly in the localization of crossovers, which were uniformly distributed in the female but limited to chromosome ends in the male. None of the 2177 markers showed significant association with offspring sex. Considering the very high power of our analysis, we conclude that sex determination was not genetic in this family; which factors determined sex remain to be investigated.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
45 |
21
|
Theodosiou AM, Rodrigues NR, Nesbit MA, Ambrose HJ, Paterson H, McLellan-Arnold E, Boyd Y, Leversha MA, Owen N, Blake DJ, Ashworth A, Davies KE. A member of the MAP kinase phosphatase gene family in mouse containing a complex trinucleotide repeat in the coding region. Hum Mol Genet 1996; 5:675-84. [PMID: 8733137 DOI: 10.1093/hmg/5.5.675] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have identified a novel mouse gene encoding a protein that shows high homology to the dual-specificity tyrosine/threonine phosphatase family of proteins. The gene encodes a 5 kb transcript which is expressed predominantly in brain and lung and contains a translated complex trinucleotide repeat within the coding region. Using interspecific mouse backcross analysis, the gene has been localised to distal mouse chromosome 7. In human, homologous sequences are located in the syntenic region on distal chromosome 11p as well as to chromosome 10q11.2 and 10q22. The presence of a CG-rich trinucleotide repeat in the coding region provides a target for mutation which might result in loss of function or altered properties of this phosphatase.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Brain Chemistry
- Chromosomes, Human, Pair 10
- Chromosomes, Human, Pair 11
- DNA, Complementary/chemistry
- Humans
- In Situ Hybridization, Fluorescence
- Mice
- Microinjections
- Molecular Sequence Data
- Open Reading Frames
- Protein Biosynthesis
- Protein Tyrosine Phosphatases/genetics
- RNA, Messenger/metabolism
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Signal Transduction/genetics
- Subcellular Fractions/chemistry
- Transcription, Genetic
- Transfection
- Trinucleotide Repeats
Collapse
|
Comparative Study |
29 |
40 |
22
|
Rodrigues NR, Macedo GE, Martins IK, Gomes KK, de Carvalho NR, Posser T, Franco JL. Short-term sleep deprivation with exposure to nocturnal light alters mitochondrial bioenergetics in Drosophila. Free Radic Biol Med 2018; 120:395-406. [PMID: 29655867 DOI: 10.1016/j.freeradbiomed.2018.04.549] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/26/2018] [Accepted: 04/11/2018] [Indexed: 02/07/2023]
Abstract
Many studies have shown the effects of sleep deprivation in several aspects of health and disease. However, little is known about how mitochondrial bioenergetics function is affected under this condition. To clarify this, we developed a simple model of short-term sleep deprivation, in which fruit-flies were submitted to a nocturnal light condition and then mitochondrial parameters were assessed by high resolution respirometry (HRR). Exposure of flies to constant light was able to alter sleep patterns, causing locomotor deficits, increasing ROS production and lipid peroxidation, affecting mitochondrial activity, antioxidant defense enzymes and caspase activity. HRR analysis showed that sleep deprivation affected mitochondrial bioenergetics capacity, decreasing respiration at oxidative phosphorylation (OXPHOS) and electron transport system (ETS). In addition, the expression of genes involved in the response to oxidative stress and apoptosis were increased. Thus, our results suggest a connection between sleep deprivation and oxidative stress, pointing to mitochondria as a possible target of this relationship.
Collapse
|
|
7 |
35 |
23
|
Rodrigues N, Betto-Colliard C, Jourdan-Pineau H, Perrin N. Within-population polymorphism of sex-determination systems in the common frog (Rana temporaria). J Evol Biol 2013; 26:1569-77. [PMID: 23711162 DOI: 10.1111/jeb.12163] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/07/2013] [Accepted: 03/15/2013] [Indexed: 11/30/2022]
Abstract
In sharp contrast with birds and mammals, the sex chromosomes of ectothermic vertebrates are often undifferentiated, for reasons that remain debated. A linkage map was recently published for Rana temporaria (Linnaeus, 1758) from Fennoscandia (Eastern European lineage), with a proposed sex-determining role for linkage group 2 (LG2). We analysed linkage patterns in lowland and highland populations from Switzerland (Western European lineage), with special focus on LG2. Sibship analyses showed large differences from the Fennoscandian map in terms of recombination rates and loci order, pointing to large-scale inversions or translocations. All linkage groups displayed extreme heterochiasmy (total map length was 12.2 cM in males, versus 869.8 cM in females). Sex determination was polymorphic within populations: a majority of families (with equal sex ratios) showed a strong correlation between offspring phenotypic sex and LG2 paternal haplotypes, whereas other families (some of which with female-biased sex ratios) did not show any correlation. The factors determining sex in the latter could not be identified. This coexistence of several sex-determination systems should induce frequent recombination of X and Y haplotypes, even in the absence of male recombination. Accordingly, we found no sex differences in allelic frequencies on LG2 markers among wild-caught male and female adults, except in one high-altitude population, where nonrecombinant Y haplotypes suggest sex to be entirely determined by LG2. Multifactorial sex determination certainly contributes to the lack of sex-chromosome differentiation in amphibians.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
33 |
24
|
Rodrigues NR, Cornall RJ, Chandler P, Simpson E, Wicker LS, Peterson LB, Todd JA. Mapping of an insulin-dependent diabetes locus, Idd9, in NOD mice to chromosome 4. Mamm Genome 1994; 5:167-70. [PMID: 8199406 DOI: 10.1007/bf00352349] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
|
31 |
32 |
25
|
Lavoie JP, Bullone M, Rodrigues N, Germim P, Albrecht B, von Salis-Soglio M. Effect of different doses of inhaled ciclesonide on lung function, clinical signs related to airflow limitation and serum cortisol levels in horses with experimentally induced mild to severe airway obstruction. Equine Vet J 2019; 51:779-786. [PMID: 30854685 PMCID: PMC7379559 DOI: 10.1111/evj.13093] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 03/02/2019] [Indexed: 12/20/2022]
Abstract
Background Inhaled corticosteroids are effective for the treatment of equine asthma but they induce cortisol suppression with potential side effects. Objectives To study the efficacy of ciclesonide, an inhaled corticosteroid with an improved safety profile, on lung function, clinical signs related to airway obstruction, and serum cortisol levels in asthmatic horses exposed to a mouldy hay challenge. Study design Cross‐over placebo controlled, blinded, randomised experiment. Methods Sixteen horses were enrolled in three subsequent dose‐titration studies (8 horses/study) to investigate the effects of inhaled ciclesonide administered for 2 weeks at doses ranging from 450 to 2700 μg twice daily or 3712.5 μg once daily. Systemic dexamethasone (0.066 mg/kg per os) was our positive control. A placebo group was also studied. Lung function and clinical scores were blindly performed before and after 7 and 14 days of treatment. Serum cortisol was measured before and after 3, 5, 7, 10, 14 days of treatment as well as 3 and 7 days post treatment. Results After 7 days, dexamethasone induced a significant reduction in pulmonary resistance (from 2.5 ± 0.6 at day 0 to 1.1 ± 0.7 cm H2O/L/s), pulmonary elastance (5.0 ± 2.6 to 1.2 ± 1.0 cm H2O/L), and of the weighted clinical score (14.8 ± 4.7 to 8.0 ± 4.4). Similarly, ciclesonide 1687.5 μg twice daily significantly improved pulmonary resistance (2.7 ± 1.1 to 1.6 ± 0.8 cm H2O/L/s), pulmonary elastance (5.2 ± 3.1 to 2.2 ± 1.3 cm H2O/L), and weighted clinical score (13 ± 2.9 to 10.8 ± 4.2). Serum cortisol suppression (<50 nmol/L) systematically occurred with dexamethasone from day 3 of treatment up to day 3 post treatment, but not with ciclesonide at any tested doses. Placebo did not exert any significant beneficial effect. Main limitations Experimentally induced asthma exacerbations in horses might respond differently to treatment than naturally occurring exacerbations. Conclusions Inhaled ciclesonide is an effective treatment for horses with equine asthma. Serum cortisol was unaffected by treatment.
Collapse
|
Journal Article |
6 |
29 |