1
|
Conrady CD, Zheng M, Mandal NA, van Rooijen N, Carr DJ. IFN-α-driven CCL2 production recruits inflammatory monocytes to infection site in mice. Mucosal Immunol 2013; 6:45-55. [PMID: 22692455 PMCID: PMC3449026 DOI: 10.1038/mi.2012.46] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Herpes simplex virus type 1 (HSV-1) is the leading cause of corneal blindness in the developed world due to reactivation of infectious virus and the subsequent immune response. The innate response that facilitates viral control in the cornea is currently unknown. In the present study using a mouse chimera model, we found that a bone marrow component is crucial in inhibiting viral replication and identified inflammatory monocytes (F4/80(+) Gr1(+)) as the responsible cell. CCL2 was critical for recruiting inflammatory monocytes, and a loss of this chemokine in CCL2(-/-) mice resulted in a loss of viral containment and inflammatory monocyte recruitment. To confirm these results, clodronate depletion of inflammatory monocytes resulted in elevated viral titers. Furthermore, siRNA targeting the innate sensor p204/IFI-16 resulted in a loss of CCL2 production. In conclusion, CCL2 expression driven by IFI-16 recognition of HSV-1 facilitates the recruitment of inflammatory monocytes into the cornea proper to control viral replication.
Collapse
|
research-article |
12 |
90 |
2
|
Mandal N, Su W, Haber R, Adhya S, Echols H. DNA looping in cellular repression of transcription of the galactose operon. Genes Dev 1990; 4:410-8. [PMID: 2186968 DOI: 10.1101/gad.4.3.410] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Communication between distant DNA sites is a central feature of many DNA transactions. Negative regulation of the galactose (gal) operon of Escherichia coli requires repressor binding to two operator sites located on opposite sides of the promoter. The proposed mechanism for regulation involves binding of the repressor to both operator sites, followed by a protein-protein association that loops the intervening promoter DNA (double occupancy plus association). To assess these requirements in vivo, we have previously converted gal operator sites to lac and shown that both operator sites must be occupied by the homologous repressor protein (Lac or Gal) for negative regulation of the gal operon. We have now addressed more directly the need for protein-protein association by the use of the converted operator sites and a mutant Lac repressor defective in association of the DNA-binding dimers. We have compared the biological and biochemical activity of two Lac repressors: the wild-type (tetramer) I+ form, in which the DNA-binding dimer units are tightly associated; and the mutant Iadi repressor, in which the dimer units do not associate effectively. The I+ repressor is an efficient negative regulator of the gal operon in vivo, but the Iadi mutant is an ineffective repressor. Purified I+ repressor efficiently forms DNA loops between operator sites that we have visualized by electron microscopy; the Iadi repressor fails to form DNA loops, although the protein binds effectively to both operator sites. From the clear correlation between looping in vitro and repression in vivo, we conclude that regulation of the gal operon depends on the association of repressor proteins bound to the two operator sites.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
|
35 |
71 |
3
|
Mandal N, Grambergs R, Mondal K, Basu SK, Tahia F, Dagogo-Jack S. Role of ceramides in the pathogenesis of diabetes mellitus and its complications. J Diabetes Complications 2021; 35:107734. [PMID: 33268241 PMCID: PMC8663915 DOI: 10.1016/j.jdiacomp.2020.107734] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus (DM) is a systemic metabolic disease that affects 463 million adults worldwide and is a leading cause of cardiovascular disease, blindness, nephropathy, peripheral neuropathy, and lower-limb amputation. Lipids have long been recognized as contributors to the pathogenesis and pathophysiology of DM and its complications, but recent discoveries have highlighted ceramides, a class of bioactive sphingolipids with cell signaling and second messenger capabilities, as particularly important contributors to insulin resistance and the underlying mechanisms of DM complications. Besides their association with insulin resistance and pathophysiology of type 2 diabetes, evidence is emerging that certain species of ceramides are mediators of cellular mechanisms involved in the initiation and progression of microvascular and macrovascular complications of DM. Advances in our understanding of these associations provide unique opportunities for exploring ceramide species as potential novel therapeutic targets and biomarkers. This review discusses the links between ceramides and the pathogenesis of DM and diabetic complications and identifies opportunities for novel discoveries and applications.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
55 |
4
|
Lee CP, Dyson MR, Mandal N, Varshney U, Bahramian B, RajBhandary UL. Striking effects of coupling mutations in the acceptor stem on recognition of tRNAs by Escherichia coli Met-tRNA synthetase and Met-tRNA transformylase. Proc Natl Acad Sci U S A 1992; 89:9262-6. [PMID: 1409632 PMCID: PMC50106 DOI: 10.1073/pnas.89.19.9262] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We measured kinetic parameters in vitro and directly analyzed aminoacylation and formylation levels in vivo to study recognition of Escherichia coli initiator tRNA mutants by E. coli Met-tRNA synthetase and Met-tRNA transformylase. We show that, in addition to the anticodon sequence, mutations in the "discriminator" base A73 also affect aminoacylation. An A73----U change has a small effect, but a change to G73 or C73 significantly lowers Vmax/Kappm for in vitro aminoacylation and leads to appreciable accumulation of uncharged tRNA in vivo. Significantly, coupling of the G73 mutation with G72, a neighboring-base mutation, results in a tRNA essentially uncharged in vivo. Coupling of C73 and U73 mutations with G72 does not have such an effect. Elements crucial for Met-tRNA transformylase recognition of tRNAs are located at the end of the acceptor stem. These elements include a weak base pair or a mismatch between nucleotides (nt) 1 and 72 and base pairs 2.71 and 3.70. The natures of nt 1 and 72 are less important than the fact that they do not form a strong Watson-Crick base pair. Interestingly, the negative effect of a C.G base pair between nt 1 and 72 is suppressed by mutation of the neighboring nucleotide A73 to either C73 or U73. The presence of C73 or U73 could destabilize the C1.G72 base pair at the end of an RNA helix. Thus, in some tRNAs, the discriminator base could affect stability of the base pair between nt 1 and 72 and thereby the structure of tRNA at the end of the acceptor stem.
Collapse
|
research-article |
33 |
48 |
5
|
Chen H, Chan AY, Stone DU, Mandal NA. Beyond the cherry-red spot: Ocular manifestations of sphingolipid-mediated neurodegenerative and inflammatory disorders. Surv Ophthalmol 2013; 59:64-76. [PMID: 24011710 DOI: 10.1016/j.survophthal.2013.02.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 02/06/2013] [Accepted: 02/12/2013] [Indexed: 01/05/2023]
Abstract
Sphingolipids are a ubiquitous membrane lipid present in every cell and found most abundantly in neural tissues. Disorders such as Tay-Sachs or Niemann-Pick disease are the most familiar examples of dysfunction in sphingolipid metabolism and are typically associated with neurodegeneration and ocular findings such as blindness. More recently, the role of bioactive sphingolipids has been established in a multitude of cellular events, including cell survival, growth, senescence and apoptosis, inflammation, and neovascularization. We discuss our current knowledge and understanding of sphingolipid metabolism and signaling in the pathogenesis of ocular diseases.
Collapse
|
Review |
12 |
46 |
6
|
Chen H, Tran JTA, Eckerd A, Huynh TP, Elliott MH, Brush RS, Mandal NA. Inhibition of de novo ceramide biosynthesis by FTY720 protects rat retina from light-induced degeneration. J Lipid Res 2013; 54:1616-1629. [PMID: 23468130 DOI: 10.1194/jlr.m035048] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Light-induced retinal degeneration (LIRD) in albino rats causes apoptotic photoreceptor cell death. Ceramide is a second messenger for apoptosis. We tested whether increases in ceramide mediate photoreceptor apoptosis in LIRD and if inhibition of ceramide synthesis protects the retina. Sprague-Dawley rats were exposed to 2,700 lux white light for 6 h, and the retinal levels of ceramide and its intermediary metabolites were measured by GC-MS or electrospray ionization tandem mass spectrometry. Enzymes of the de novo biosynthetic and sphingomyelinase pathways of ceramide generation were assayed, and gene expression was measured. The dosage and temporal effect of the ceramide synthase inhibitor FTY720 on the LIRD retina were measured by histological and functional analyses. Retinal ceramide levels increased coincident with the increase of dihydroceramide at various time points after light stress. Light stress in retina induces ceramide generation predominantly through the de novo pathway, which was prevented by systemic administration of FTY720 (10 mg/kg) leading to the protection of retinal structure and function. The neuroprotection of FTY720 was independent of its immunosuppressive action. We conclude that ceramide increase by de novo biosynthesis mediates photoreceptor apoptosis in the LIRD model and that inhibition of ceramide production protects the retina against light stress.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
46 |
7
|
Garanto A, Mandal NA, Egido-Gabás M, Marfany G, Fabriàs G, Anderson RE, Casas J, Gonzàlez-Duarte R. Specific sphingolipid content decrease in Cerkl knockdown mouse retinas. Exp Eye Res 2013; 110:96-106. [PMID: 23501591 DOI: 10.1016/j.exer.2013.03.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/19/2013] [Accepted: 03/04/2013] [Indexed: 01/12/2023]
Abstract
Sphingolipids (SPLs) are finely tuned structural compounds and bioactive molecules involved in membrane fluidity and cellular homeostasis. The core sphingolipid, ceramide (CER), and its derivatives, regulate several crucial processes in neuronal cells, among them cell differentiation, cell-cell interactions, membrane conductance, synaptic transmission, and apoptosis. Mutations in Ceramide Kinase-Like (CERKL) cause autosomal recessive Retinitis Pigmentosa and Cone Rod Dystrophy. The presence of a conserved lipid kinase domain and the overall similarity with CERK suggested that CERKL might play a role in the SPL metabolism as a CER kinase. Unfortunately, CERKL function and substrate(s), as well as its contribution to the retinal etiopathology, remain as yet unknown. In this work we aimed to characterize the mouse retinal sphingolipidome by UPLC-TOF to first, thoroughly investigate the SPL composition of the murine retina, compare it to our Cerkl -/- model, and finally assess new possible CERKL substrates by phosphorus quantification and protein-lipid overlay. Our results showed a consistent and notable decrease of the retinal SPL content (mainly ranging from 30% to 60%) in the Cerkl -/- compared to WT retinas, which was particularly evident in the glucosyl/galactosyl ceramide species (Glc/GalCer) whereas the phospholipids and neutral lipids remained unaltered. Moreover, evidence in favor of CERKL binding to GlcCer, GalCer and sphingomyelin has been gathered. Altogether, these results highlight the involvement of CERKL in the SPL metabolism, question its role as a kinase, and open new scenarios concerning its function.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
43 |
8
|
Simon MV, Basu SK, Qaladize B, Grambergs R, Rotstein NP, Mandal N. Sphingolipids as critical players in retinal physiology and pathology. J Lipid Res 2021; 62:100037. [PMID: 32948663 PMCID: PMC7933806 DOI: 10.1194/jlr.tr120000972] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/04/2020] [Indexed: 12/24/2022] Open
Abstract
Sphingolipids have emerged as bioactive lipids involved in the regulation of many physiological and pathological processes. In the retina, they have been established to participate in numerous processes, such as neuronal survival and death, proliferation and migration of neuronal and vascular cells, inflammation, and neovascularization. Dysregulation of sphingolipids is therefore crucial in the onset and progression of retinal diseases. This review examines the involvement of sphingolipids in retinal physiology and diseases. Ceramide (Cer) has emerged as a common mediator of inflammation and death of neuronal and retinal pigment epithelium cells in animal models of retinopathies such as glaucoma, age-related macular degeneration (AMD), and retinitis pigmentosa. Sphingosine-1-phosphate (S1P) has opposite roles, preventing photoreceptor and ganglion cell degeneration but also promoting inflammation, fibrosis, and neovascularization in AMD, glaucoma, and pro-fibrotic disorders. Alterations in Cer, S1P, and ceramide 1-phosphate may also contribute to uveitis. Notably, use of inhibitors that either prevent Cer increase or modulate S1P signaling, such as Myriocin, desipramine, and Fingolimod (FTY720), preserves neuronal viability and retinal function. These findings underscore the relevance of alterations in the sphingolipid metabolic network in the etiology of multiple retinopathies and highlight the potential of modulating their metabolism for the design of novel therapeutic approaches.
Collapse
|
Review |
4 |
41 |
9
|
Lee CP, Mandal N, Dyson MR, RajBhandary UL. The discriminator base influences tRNA structure at the end of the acceptor stem and possibly its interaction with proteins. Proc Natl Acad Sci U S A 1993; 90:7149-52. [PMID: 8346229 PMCID: PMC47093 DOI: 10.1073/pnas.90.15.7149] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
For many tRNAs, the discriminator base preceding the CCA sequence at the 3' end is important for aminoacylation. We show that the discriminator base influences the stability of the 1.72 base pair onto which it is stacked. Mutations of the discriminator base from adenosine to cytidine or uridine make the cytidine residue in the C1-G72 base pair of mutant Escherichia coli initiator tRNAs more reactive toward sodium bisulfite, the single-strand-specific reagent. The activity of the enzyme Met-tRNA transformylase toward these and other mutant initiator tRNAs is also consistent with destabilization of the 1.72 base pair in vitro and in vivo. By influencing the strength of the 1.72 base pair, the discriminator base could affect the energetic cost of opening the base pair and modulate the structure of the tRNA near the site of aminoacylation. For some aminoacyl-tRNA synthetases and other proteins that interact with tRNA, these factors could be important for specific recognition and/or formation of the transition state during catalysis.
Collapse
|
research-article |
32 |
39 |
10
|
Telem RS, Wani SH, Singh NB, Nandini R, Sadhukhan R, Bhattacharya S, Mandal N. Cisgenics - a sustainable approach for crop improvement. Curr Genomics 2014; 14:468-76. [PMID: 24396278 PMCID: PMC3867722 DOI: 10.2174/13892029113146660013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 08/28/2013] [Accepted: 08/30/2013] [Indexed: 11/22/2022] Open
Abstract
The implication of molecular biology in crop improvement is now more than three decades old. Not surprisingly, technology has moved on, and there are a number of new techniques that may or may not come under the genetically modified (GM) banner and, therefore, GM regulations. In cisgenic technology, cisgenes from crossable plants are used and it is a single procedure of gene introduction whereby the problem of linkage drag of other genes is overcome. The gene used in cisgenic approach is similar compared with classical breeding and cisgenic plant should be treated equally as classically bred plant and differently from transgenic plants. Therefore, it offers a sturdy reference to treat cisgenic plants similarly as classically bred plants, by exemption of cisgenesis from the current GMO legislations. This review covers the implications of cisgenesis towards the sustainable development in the genetic improvement of crops and considers the prospects for the technology.
Collapse
|
Journal Article |
11 |
37 |
11
|
Shendge AK, Chaudhuri D, Basu T, Mandal N. A natural flavonoid, apigenin isolated from Clerodendrum viscosum leaves, induces G2/M phase cell cycle arrest and apoptosis in MCF-7 cells through the regulation of p53 and caspase-cascade pathway. Clin Transl Oncol 2020; 23:718-730. [PMID: 32715386 DOI: 10.1007/s12094-020-02461-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND With 9.6 million deaths in 2018, cancer remains the second leading cause of death worldwide. Breast cancer is the most deadly type of cancer among females, with 55.2% of crude incidence rate and 16.6% of crude mortality rate. PURPOSE The present study was aimed to investigate the anti-breast cancer potential of natural dietary flavonoid, apigenin isolated from Clerodendrum viscosum leaves. METHODS Apigenin was evaluated for in-depth anticancer activity in MCF-7 cells using cell viability assay, cell cycle analysis, Annexin-V-FLUOS staining, ROS induction, morphological analysis, and western blot analysis. RESULTS Apigenin showed selective cytotoxicity on MCF-7 cells with an IC50-56.72 ± 2.35 µM, while negligible cytotoxicity was observed on WI-38 cells. Further, the flow cytometer-based analysis showed that apigenin halted MCF-7 cells in the G2/M phase arrest followed by dose-dependent apoptosis. Moreover, the FACS and confocal microscopy results confirmed the elevation of intracellular ROS and nuclear fragmentation in apigenin-treated MCF-7 cells. Western blots showed up-regulation of cell cycle regulatory proteins, increased p53 expression, Bax/Bcl-2 ratio, activation of caspases, and cleavage of PARP. Finally, apigenin treatment in the presence of Pifithrin-µ showed decreased apoptotic population and it was further confirmed through western blotting study. The results revealed the vital role of p53 in apigenin-induced apoptosis in MCF-7 cells. CONCLUSIONS In the present findings, treatment of apigenin-induced intracellular ROS in MCF-7 cells followed by induction of G2/M phase cell cycle arrest and further apoptosis through the regulation of p53 and caspase-cascade signaling pathway.
Collapse
|
Journal Article |
5 |
35 |
12
|
Stiles M, Qi H, Sun E, Tan J, Porter H, Allegood J, Chalfant CE, Yasumura D, Matthes MT, LaVail MM, Mandal NA. Sphingolipid profile alters in retinal dystrophic P23H-1 rats and systemic FTY720 can delay retinal degeneration. J Lipid Res 2016; 57:818-31. [PMID: 26947037 DOI: 10.1194/jlr.m063719] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Indexed: 12/28/2022] Open
Abstract
Retinal degeneration (RD) affects millions of people and is a major cause of ocular impairment and blindness. With a wide range of mutations and conditions leading to degeneration, targeting downstream processes is necessary for developing effective treatments. Ceramide and sphingosine-1-phosphate, a pair of bioactive sphingolipids, are involved in apoptosis and its prevention, respectively. Apoptotic cell death is a potential driver of RD, and in order to understand the mechanism of degeneration and potential treatments, we studied rhodopsin mutant RD model, P23H-1 rats. Investigating this genetic model of human RD allows us to investigate the association of sphingolipid metabolites with the degeneration of the retina in P23H-1 rats and the effects of a specific modulator of sphingolipid metabolism, FTY720. We found that P23H-1 rat retinas had altered sphingolipid profiles that, when treated with FTY720, were rebalanced closer to normal levels. FTY720-treated rats also showed protection from RD compared with their vehicle-treated littermates. Based on these data, we conclude that sphingolipid dysregulation plays a secondary role in retinal cell death, which may be common to many forms of RDs, and that the U.S. Food and Drug Administration-approved drug FTY720 or related compounds that modulate sphingolipid metabolism could potentially delay the cell death.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
35 |
13
|
Mandal N, RajBhandary UL. Escherichia coli B lacks one of the two initiator tRNA species present in E. coli K-12. J Bacteriol 1992; 174:7827-30. [PMID: 1447149 PMCID: PMC207499 DOI: 10.1128/jb.174.23.7827-7830.1992] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We show that the metY locus which specifies tRNA(2fMet) in Escherichia coli K-12 specifies tRNA(1fMet) in E. coli B. This conclusion is based on results of Southern blot analysis of E. coli B and K-12 DNAs and on polymerase chain reaction amplification, cloning, and sequencing of an approximately 200-bp region of DNA corresponding to the metY loci of E. coli B and E. coli K-12. We also show that the metY locus of E. coli B is transcriptionally active. E. coli strains transformed with the multicopy plasmid vector pUC19 carrying the metY locus of E. coli B overproduce tRNA(1fMet) in E. coli B and E. coli K-12 in contrast to strains transformed with pUC19 carrying the corresponding locus from E. coli K-12, which overproduce tRNA(2fMet).
Collapse
|
research-article |
33 |
33 |
14
|
Brenowitz M, Mandal N, Pickar A, Jamison E, Adhya S. DNA-binding properties of a lac repressor mutant incapable of forming tetramers. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(17)35313-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
|
34 |
30 |
15
|
Paranjpe V, Tan J, Nguyen J, Lee J, Allegood J, Galor A, Mandal N. Clinical signs of meibomian gland dysfunction (MGD) are associated with changes in meibum sphingolipid composition. Ocul Surf 2018; 17:318-326. [PMID: 30553001 DOI: 10.1016/j.jtos.2018.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/26/2018] [Accepted: 12/11/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE Sphingolipids (SPL) play roles in cell signaling, inflammation, and apoptosis. Changes in SPL composition have been reported in individuals with MGD, but associations between clinical signs of MGD and compositional changes in meibum SPLs have not been examined. METHODS Forty-three individuals underwent a tear film assessment. Groups were split into those with good or poor quality meibum. Meibum was collected then analyzed with liquid chromatography-mass spectroscopy to quantify SPL classes. Relative composition of SPL and major classes, Ceramide (Cer), Hexosyl-Ceramide (Hex-Cer), Sphingomyelin (SM), Sphingosine (Sph) and Sphingosine 1-phosphate (S1P) was calculated via mole percent. RESULTS 22 and 21 individuals were characterized with good and poor quality meibum, respectively. Individuals with poor quality were older (60 ± 8 vs 51 ± 16 years) and more likely to be male (90% vs 64%). Relative composition analysis revealed that individuals with poor meibum quality had SPL composed of less Cer (33.36% vs 49.49%, p < 0.01), Hex-Cer (4.88% vs 9.15%, p < 0.01), and S1P (0.16% vs 0.31%, p = 0.05), and more SM (58.67% vs 38.18%, p < 0.01) and Sph (2.92% vs 2.87%, p = 0.97) compared to individuals with good quality meibum. Assessment of the ratio of Cer (pro-apoptotic) to S1P (pro-survival) showed that individuals with poor meibum quality had a relative increase in Cer (495.23 vs 282.69, p = 0.07). CONCLUSION Meibum quality, a clinically graded marker of MGD, is associated with compositional changes in meibum sphingolipids. Further investigation of the structural and bioactive roles of sphingolipids in MGD may provide future targets for therapy.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
7 |
29 |
16
|
Chakraborty PK, Xiong X, Mustafi SB, Saha S, Dhanasekaran D, Mandal NA, McMeekin S, Bhattacharya R, Mukherjee P. Role of cystathionine beta synthase in lipid metabolism in ovarian cancer. Oncotarget 2015; 6:37367-84. [PMID: 26452259 PMCID: PMC4741935 DOI: 10.18632/oncotarget.5424] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/24/2015] [Indexed: 12/21/2022] Open
Abstract
Elevated lipid metabolism is implicated in poor survival in ovarian cancer (OC) and other cancers; however, current lipogenesis-targeting strategies lack cancer cell specificity. Here, we identify a novel role of cystathionine beta-synthase (CBS), a sulphur amino acid metabolizing enzyme highly expressed in several ovarian cancer cell lines, in driving deregulated lipid metabolism in OC. We examined the role of CBS in regulation of triglycerides, cholesterol and lipogenic enzymes via the lipogenic transcription factors SREBP1 and SREBP2. CBS silencing attenuated the expression of number of key enzymes involved in lipid synthesis (FASN and ACC1). Additionally CBS abrogates lipid uptake in OC cells. Gene silencing of CBS or SREBPs abrogated cellular migration and invasion in OC, while ectopic expression of SREBPs can rescue phenotypic effects of CBS silencing by restoring cell migration and invasion. Mechanistically, CBS represses SREBP1 and SREBP2 at the transcription levels by modulating the transcription factor Sp1. We further established the roles of both CBS and SREBPs in regulating ovarian tumor growth in vivo. In orthotopic tumor models, CBS or SREBP silencing resulted in reduced tumor cells proliferation, blood vessels formation and lipid content. Hence, cancer-selective disruption of the lipid metabolism pathway is possible by targeting CBS and, at least for OC, promises a profound benefit.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
29 |
17
|
Sugano E, Edwards G, Saha S, Wilmott LA, Grambergs RC, Mondal K, Qi H, Stiles M, Tomita H, Mandal N. Overexpression of acid ceramidase (ASAH1) protects retinal cells (ARPE19) from oxidative stress. J Lipid Res 2018; 60:30-43. [PMID: 30413652 DOI: 10.1194/jlr.m082198] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 10/26/2018] [Indexed: 01/08/2023] Open
Abstract
Over 11 million people in the United States alone have some form of age-related macular degeneration (AMD). Oxidative stress, cell death, and the degeneration of retinal pigment epithelial (RPE) cells contribute to AMD pathology. Recent evidence suggests that ceramide (Cer), a cellular sphingolipid mediator that acts as a second messenger to induce apoptosis, might play a role in RPE cell death. The lysosomal breakdown of Cer by acid ceramidase [N-acylsphingosine amidohydrolase (ASAH)1] into sphingosine (Sph) is the major source for Sph 1-phosphate production, which has an opposing role to Cer and provides cytoprotection. Here, we investigated the role of Cer in human RPE-derived ARPE19 cells under hydrogen peroxide-induced oxidative stress, and show that Cer and hexosyl-Cer levels increase in the oxidatively stressed ARPE19 cells, which can be prevented by overexpression of lysosomal ASAH1. This study demonstrates that oxidative stress generates sphingolipid death mediators in retinal cells and that induction of ASAH1 could rescue retinal cells from oxidative stress by hydrolyzing excess Cers.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
28 |
18
|
Wilmott LA, Grambergs RC, Allegood JC, Lyons TJ, Mandal N. Analysis of sphingolipid composition in human vitreous from control and diabetic individuals. J Diabetes Complications 2019; 33:195-201. [PMID: 30630661 PMCID: PMC6368445 DOI: 10.1016/j.jdiacomp.2018.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/08/2018] [Accepted: 12/07/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Sphingolipids have a fundamental role in many cellular processes, and they have been implicated in insulin resistance and Diabetes Mellitus (DM) and its complications, including diabetic retinopathy (DR). Little is known about how bioactive sphingolipids relate to retinopathies in human DM. In this study, we analyzed the sphingolipid composition of type 2 diabetic (T2DM) and non-diabetic human vitreous samples. METHODS We conducted an observational study on post-mortem human vitreous samples from non-diabetic (Controls; n = 4; age: 71.6 ± 11.0 years, mean ± SD) and type 2 diabetic (T2DM; n = 9; age: 67.0 ± 9.2 years) donors to identify changes in sphingolipid composition. Samples were analyzed by a triple quadrupole mass spectrometer and individual sphingolipid species were identified and quantified using established protocols. RESULTS The total quantity (pmol/mg) of ceramide (Cer), lactosylceramide (Lac-Cer), and sphingomyelin (SM) were increased in type 2 diabetic vitreous samples. Among individual species, we found a general trend of increase in the longer chain species of ceramides, hexosylceramides (Hex-Cer), Lac-Cer, and SM. CONCLUSIONS This study shows the presence of measurable levels of sphingolipids in human vitreous. The results indicate changes in sphingolipid composition in the vitreous due to type 2 diabetes, which could be connected to the disease pathologies of the retina, retinal vessels, vitreous and the surrounding tissues.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
25 |
19
|
Li X, Gu X, Boyce TM, Zheng M, Reagan AM, Qi H, Mandal N, Cohen AW, Callegan MC, Carr DJJ, Elliott MH. Caveolin-1 increases proinflammatory chemoattractants and blood-retinal barrier breakdown but decreases leukocyte recruitment in inflammation. Invest Ophthalmol Vis Sci 2014; 55:6224-34. [PMID: 25159208 DOI: 10.1167/iovs.14-14613] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Caveolin-1 (Cav-1), the signature protein of caveolae, modulates inflammatory responses, and innate immunity. However, Cav-1's role in retinal inflammation has not been rigorously tested. In this study, we examined the effect of Cav-1 ablation on the sensitivity of the retina to inflammation. METHODS Cav-1 knockout (KO) mice were challenged by intravitreal injection of lipopolysaccharide (LPS) and inflammatory cell recruitment was assessed by flow cytometry and immunohistochemistry. Leukostasis was assessed in retinal flatmounts after perfusion with FITC-labeled Concanavalin A (FITC-ConA). Chemoattractants were measured by multiplex immunoassays. Blood-retinal barrier (BRB) breakdown was assessed quantitatively by a FITC-dextran permeability assay. The ratio of extravascular to total immune cells was determined by CD45 immunohistochemistry of retinal flatmounts. RESULTS Inflammatory challenge resulted in significant blunting of proinflammatory cytokine (monocyte chemoattractant protein-1 [MCP-1/CCL2], CXCL1/KC, IL-6, and IL-1β) responses as well as reduced inflammatory BRB breakdown in Cav-1 KO retinas. Paradoxically, Cav-1 deficiency resulted in significantly increased recruitment of immune cells compared with controls as well as increased leukostasis. A similar ratio of extravascular/total leukocytes were found in Cav-1 KO and wild-type (WT) retinas suggesting that Cav-1 deficient leukocytes were as competent to extravasate as those from WT mice. We found increased levels of circulating immune cells in naïve (not challenged with LPS) Cav-1 KO mice compared with controls. CONCLUSIONS Caveolin-1 paradoxically modulates inflammatory signaling and leukocyte infiltration through distinct mechanisms. We hypothesize that Cav-1 expression may enhance inflammatory signaling while at the same time supporting the physical properties of the BRB.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
24 |
20
|
Qi H, Priyadarsini S, Nicholas SE, Sarker-Nag A, Allegood J, Chalfant CE, Mandal NA, Karamichos D. Analysis of sphingolipids in human corneal fibroblasts from normal and keratoconus patients. J Lipid Res 2017; 58:636-648. [PMID: 28188148 DOI: 10.1194/jlr.m067264] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 02/08/2017] [Indexed: 12/31/2022] Open
Abstract
The pathophysiology of human keratoconus (KC), a bilateral progressive corneal disease leading to protrusion of the cornea, stromal thinning, and scarring, is not well-understood. In this study, we investigated a novel sphingolipid (SPL) signaling pathway through which KC may be regulated. Using human corneal fibroblasts (HCFs) and human KC cells (HKCs), we examined the SPL pathway modulation. Both cell types were stimulated by the three transforming growth factor (TGF)-β isoforms: TGF-β1 (T1), TGF-β2 (T2), and TGF-β3 (T3). All samples were analyzed using lipidomics and real-time PCR. Our data showed that HKCs have increased levels of signaling SPLs, ceramide (Cer), and sphingosine 1-phosphate (S1P). Treatment with T1 reversed the increase in Cer in HKCs and treatment with T3 reversed the increase in S1P. S1P3 receptor mRNA levels were also significantly upregulated in HKCs, but were reduced to normal levels following T3 treatment. Furthermore, stimulation with Cer and S1P led to significant upregulation of fibrotic markers in HCFs, but not in HKCs. Additionally, stimulation with a Cer synthesis inhibitor (FTY720) led to significant downregulation of specific fibrotic markers in HKCs (TGF-β1, collagen type III, and α smooth muscle actin) without an effect on healthy HCFs, suggesting a causative role of Cer and S1P in fibrogenesis. Overall, this study suggests an association of the SPL signaling pathway in KC disease and its relation with the TGF-β pathway.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
22 |
21
|
Mandal NA, Tran JTA, Saadi A, Rahman AK, Huynh TP, Klein WH, Cho JH. Expression and localization of CERKL in the mammalian retina, its response to light-stress, and relationship with NeuroD1 gene. Exp Eye Res 2012; 106:24-33. [PMID: 23142158 DOI: 10.1016/j.exer.2012.10.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 10/25/2012] [Accepted: 10/26/2012] [Indexed: 01/30/2023]
Abstract
Mutations in the Ceramide kinase like (CERKL) gene are associated with retinitis pigmentosa (RP26) and cone-rod dystrophy. CERKL is homologous to Ceramide kinase (CERK), and its function is still unknown. The purpose of this study was to test the expression and distribution of this gene and its protein in rat and in mouse tissues, in light-stressed rat retinas and in the retinas of NeuroD1 knock-out mice to understand the role of CERKL in the retina. Expression of Cerkl and Cerk mRNA was determined by quantitative RT-PCR. Expression of the protein was determined by Western blotting with anti-CERKL antibody. Localization of the protein was determined by using immunofluorescence microscopy. With qRT-PCR, we revealed that the relative mRNA expression of Cerkl was the highest in the retina among all the rat tissue tested; it was >10-fold higher than in the brain. On the other hand, Cerk has ubiquitous expression and its relative abundance is >2 fold of Cerkl in the retina. Cerkl was expressed minimally in the developing mouse eyes and reached a peak at retinal maturity at 2 months. Western blots of retinal tissues revealed two major CERKL protein bands: 59 kDa (C1) and 37 kDa (C2). However, only C2 CERKL was found in the rat retinal rod outer segment (ROS) at level of that was not changed in light vs. dark adaptation. In the light-stressed retina, expression of Cerkl mRNA increased significantly, which was reflected in only on C2 CERKL protein. The CERKL protein localized prominently to the ganglion cells, inner nuclear layers (INL), retinal pigment epithelial (RPE) cells, and photoreceptor inner segments in the retinal sections. Nuclear localization of CERKL was not affected in RPE, INL and the ganglion cell layers in the light-stressed retina; however, the perinuclear and outer segment locations appear to be altered. In the NeuroD1 knock-out mouse retina, the expression of Cerkl mRNA and protein decreased and that decrease also pertains to C2 CERKL. In conclusion, the retina had the highest level of Cerkl mRNA and protein expression, which reached its maximum in the adult retina; CERKL localized to ROS and RPE cells and the light-adaptation did not change the level of CERKL in ROS; light-stress induced Cerkl expression in the retina; and its expression decreased in NeuroD1 knock-out retina. Thus, CERKL may be important for the stress responses and protection of photoreceptor cells.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
21 |
22
|
Kanan Y, Wicker LD, Al-Ubaidi MR, Mandal NA, Kasus-Jacobi A. Retinol dehydrogenases RDH11 and RDH12 in the mouse retina: expression levels during development and regulation by oxidative stress. Invest Ophthalmol Vis Sci 2008; 49:1071-8. [PMID: 18326732 DOI: 10.1167/iovs.07-1207] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE RDH11 and RDH12 are closely related retinol dehydrogenases expressed in the retina. RDH12 has been linked to the early-onset retinal dystrophy Leber congenital amaurosis, whereas RDH11 has not been associated with human disease. To understand their physiological roles, the authors investigated their expression during development and their regulation by light-induced oxidative stress in mouse retina. METHODS Quantitative RT-PCR and immunoblot analysis were used for quantification of RDH11 and RDH12 during development and oxidative stress. Expression during development was measured between embryonic day (E) 12 and postnatal day (P) 210 (7 months) in C57BL/6 mouse eyes. Expression during light-induced oxidative stress was measured between 2 and 24 hours of exposure to light in BALB/c mouse retina. RESULTS The RDH11 level was low and remarkably constant during development and oxidative stress. RDH12 expression started at P7 and increased until P30 to approximately sevenfold higher than RDH11. Oxidative stress induced by exposure to constant bright light led to a rapid and significant decrease of RDH12 protein. CONCLUSIONS The low and constant expression of RDH11 suggested a housekeeping function for this enzyme. The onset of RDH12 expression during the maturation of photoreceptor cells suggested a function related to the visual process. The light-induced rapid decrease of RDH12 protein, preceding the decrease of the mRNA, suggested a specific degradation of the protein rather than a regulation of gene expression.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
20 |
23
|
Porter H, Qi H, Prabhu N, Grambergs R, McRae J, Hopiavuori B, Mandal N. Characterizing Sphingosine Kinases and Sphingosine 1-Phosphate Receptors in the Mammalian Eye and Retina. Int J Mol Sci 2018; 19:ijms19123885. [PMID: 30563056 PMCID: PMC6321283 DOI: 10.3390/ijms19123885] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 11/27/2018] [Indexed: 12/20/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) signaling regulates numerous biological processes including neurogenesis, inflammation and neovascularization. However, little is known about the role of S1P signaling in the eye. In this study, we characterize two sphingosine kinases (SPHK1 and SPHK2), which phosphorylate sphingosine to S1P, and three S1P receptors (S1PR1, S1PR2 and S1PR3) in mouse and rat eyes. We evaluated sphingosine kinase and S1P receptor gene expression at the mRNA level in various rat tissues and rat retinas exposed to light-damage, whole mouse eyes, specific eye structures, and in developing retinas. Furthermore, we determined the localization of sphingosine kinases and S1P receptors in whole rat eyes by immunohistochemistry. Our results unveiled unique expression profiles for both sphingosine kinases and each receptor in ocular tissues. Furthermore, these kinases and S1P receptors are expressed in mammalian retinal cells and the expression of SPHK1, S1PR2 and S1PR3 increased immediately after light damage, which suggests a function in apoptosis and/or light stress responses in the eye. These findings have numerous implications for understanding the role of S1P signaling in the mechanisms of ocular diseases such as retinal inflammatory and degenerative diseases, neovascular eye diseases, glaucoma and corneal diseases.
Collapse
|
Journal Article |
7 |
17 |
24
|
Pandya HK, Robinson M, Mandal N, Shah VA. Hydroxychloroquine retinopathy: A review of imaging. Indian J Ophthalmol 2016; 63:570-4. [PMID: 26458473 PMCID: PMC4652246 DOI: 10.4103/0301-4738.167120] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Hydroxychloroquine (HCQ) retinopathy can result in permanent vision loss. In early stages of HCQ retinopathy, patients are usually asymptomatic with preservation of visual acuity. We aspire that our review, in conjunction with the American Academy of Ophthalmology screening guidelines, shall shed light on effective screening measures utilizing multimodal imaging techniques to detect early signs of HCQ retinopathy before advanced changes manifest clinically.
Collapse
|
Review |
9 |
17 |
25
|
Galor A, Sanchez V, Jensen A, Burton M, Maus K, Stephenson D, Chalfant C, Mandal N. Meibum sphingolipid composition is altered in individuals with meibomian gland dysfunction-a side by side comparison of Meibum and Tear Sphingolipids. Ocul Surf 2022; 23:87-95. [PMID: 34861426 PMCID: PMC8792295 DOI: 10.1016/j.jtos.2021.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 01/21/2023]
Abstract
PURPOSE Sphingolipids (SPL) play a role in cell signaling, inflammation, and apoptosis. The purpose of this study was to examine meibum and tear SPL composition in individuals with poor versus good meibum quality. METHODS Individuals were grouped by meibum quality (n = 25 with poor quality, case group and n = 25 with good quality, control group). Meibum and tears were analyzed with liquid chromatography-mass spectrometry (LC-MS) to quantify SPL classes. Semiquantitative and relative composition (mole percent) of SPL and major classes, Ceramide (Cer), Hexosyl-Ceramide (Hex-Cer), Sphingomyelin (SM), Sphingosine (Sph), and sphingosine 1-phosphate (S1P) were compared between groups. RESULTS Demographic characteristics were similar between the two groups. Overall, individuals with poor meibum quality had more SPL pmole in meibum and tears than controls. Relative composition analysis revealed that individuals with poor meibum quality had SPL composed of less Cer, Hex-Cer, and Sph and more SM compared to individuals with good quality meibum. This pattern was not reproduced in tears as individuals with poor meibum quality had SPL composed of a similar amount of Cer, but more Hex-Cer, Sph and SM compared to controls. In meibum, SPL pmole and relative composition most strongly correlated with MG metrics while in tears, SPL pmole and relative composition most strongly correlated with tear production. SPL in both compartments, specifically Cer pmole in meibum and S1P% in tears, correlated with DE symptoms. CONCLUSION SPL composition differs in meibum and tears in patients with poor vs good meibum quality. These findings may be translated into therapeutic targets for disease.
Collapse
|
research-article |
3 |
15 |