1
|
Reusch JE, Begum N, Sussman KE, Draznin B. Regulation of GLUT-4 phosphorylation by intracellular calcium in adipocytes. Endocrinology 1991; 129:3269-73. [PMID: 1659526 DOI: 10.1210/endo-129-6-3269] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sustained elevations in cytosolic calcium concentrations ([Ca2+]i) have been shown to render insulin target cells resistant to insulin action. In this study we examined the mechanisms of the detrimental effect of high levels of [Ca2+]i on insulin-induced 2-deoxyglucose (2-DOG) uptake. To elevate [Ca2+]i, we incubated rat adipocytes with either 40 mM potassium (K+) or 20 ng/ml PTH for 1 h for in vitro experiments and injected rats with PTH (injections of 50 micrograms, ip, every hour for 3 h) for in vivo studies. Adipocytes with elevated [Ca2+]i demonstrated a 30% decrease in insulin-stimulated 2-DOG uptake. A calcium channel blocker (nitrendipine) and a cAMP antagonist (RpcAMP) each partially restored insulin-stimulated glucose transport, but together they completely restored 2-DOG uptake. Concomitantly, we found a significant increase in phosphorylation of GLUT-4 in adipocytes with elevated [Ca2+]i. This change in GLUT-4 phosphorylation was also attenuated by nitrendipine and RpcAMP. These observations confirm that elevated [Ca2+]i diminishes insulin-stimulated glucose transport and suggest that increased phosphorylation of GLUT-4 in adipocytes with high [Ca2+]i may alter its intrinsic activity.
Collapse
|
|
34 |
101 |
2
|
Cummings M, Merone L, Keeble C, Burland L, Grzelinski M, Sutton K, Begum N, Thacoor A, Green B, Sarveswaran J, Hutson R, Orsi NM. Preoperative neutrophil:lymphocyte and platelet:lymphocyte ratios predict endometrial cancer survival. Br J Cancer 2015; 113:311-20. [PMID: 26079303 PMCID: PMC4506386 DOI: 10.1038/bjc.2015.200] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/16/2015] [Accepted: 05/06/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Variations in systemic inflammatory response biomarker levels have been associated with adverse clinical outcome in various malignancies. This study determined the prognostic significance of preoperative neutrophil:lymphocyte (NLR), platelet:lymphocyte (PLR) and monocyte:lymphocyte (MLR) ratios in endometrial cancer. METHODS Clinicopathological and 5-year follow-up data were obtained for a retrospective series of surgically treated endometrial cancer patients (n=605). Prognostic significance was determined for overall (OS) and cancer-specific survival (CSS) using Cox proportional hazards models and Kaplan-Meier analysis. Receiver-operator characteristic and log-rank functions were used to optimise cut-offs. NLR, PLR and MLR associations with clinicopathological variables were determined using non-parametric tests. RESULTS Applying cut-offs of ⩾2.4 (NLR), ⩾240 (PLR) and ⩾0.19 (MLR), NLR and PLR (but not MLR) had independent prognostic significance. Combining NLR and PLR scores stratified patients into low (NLR-low and PLR-low), intermediate (NLR-high or PLR-high) and high risk (NLR-high and PLR-high) groups: multivariable hazard ratio (HR) 2.51; P<0.001 (OS); HR 2.26; P<0.01 (CSS) for high vs low risk patients. Increased NLR and PLR were most strongly associated with advanced stage (P<0.001), whereas increased MLR was strongly associated with older age (P<0.001). CONCLUSION Both NLR and PLR are independent prognostic indicators for endometrial cancer, which can be combined to provide additional patient stratification.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
98 |
3
|
Begum N, Leitner W, Reusch J, Sussman K, Draznin B. GLUT-4 phosphorylation and its intrinsic activity. Mechanism of Ca(2+)-induced inhibition of insulin-stimulated glucose transport. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53701-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
|
32 |
80 |
4
|
Begum N, Song Y, Rienzie J, Ragolia L. Vascular smooth muscle cell growth and insulin regulation of mitogen-activated protein kinase in hypertension. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C42-9. [PMID: 9688833 DOI: 10.1152/ajpcell.1998.275.1.c42] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hyperinsulinemia (HI) and insulin resistance (IR) are frequently associated with hypertension and atherosclerosis. However, the exact roles of HI and IR in the development of hypertension are unclear. Mitogen-activated protein kinases (MAPK) are well-characterized intracellular mediators of cell proliferation. In this study, we examined the contribution of MAPK pathway in insulin-stimulated mitogenesis using primary vascular smooth muscle cells (VSMCs) isolated from aortas of normotensive Wistar-Kyoto rats (WKY) and spontaneous hypertensive rats (SHR). VSMCs were grown to confluence in culture, serum starved, and examined for DNA synthesis (using [3H]thymidine (TDR), immunoprecipitated MAPK activity, and MAPK phosphatase (MKP-1) induction). Basal rate of TDR incorporation into DNA was twofold higher in SHR compared with WKY (P < 0.005). Insulin caused a dose-dependent increase in TDR incorporation (150% over basal levels with 100 nM in 12 h). Stimulation was sustained for 24 h with a decline toward basal in 36 h. Pretreatment with insulin-like growth factor I (IGF-I) receptor antibody did not abolish mitogenesis mediated by 10-100 nM insulin, suggesting that insulin effect is mediated via its own receptors. Insulin had a small mitogenic effect in WKY (33% over basal). Insulin-stimulated mitogenesis was accompanied by a dose-dependent increase in MAPK activity in SHR, with a peak activation (>2-fold over basal) between 5 and 10 min with 100 nM insulin. Insulin had very small effects on MAPK activity in WKY. In contrast, serum-stimulated MAPK activation was comparable in WKY and SHR. Pretreatment with MEK inhibitor, PD-98059, completely blocked insulin's effect on MAPK activation and mitogenesis. Inhibition of phosphatidylinositol 3-kinase with wortmannin also prevented insulin's effects on MAPK activation and mitogenesis. In WKY, insulin and IGF-I treatment resulted in a rapid induction of MKP-1, the dual-specificity MAPK phosphatase. In contrast, VSMCs from SHR were resistant to insulin with respect to MPK-1 expression. We conclude that insulin is mitogenic in SHR, and the effect appears to be mediated by sustained MAPK activation due to impaired insulin-mediated MKP-1 mRNA expression, which may act as an inhibitory feedback loop in attenuating MAPK signaling.
Collapse
|
|
27 |
74 |
5
|
Begum N, Ragolia L, Rienzie J, McCarthy M, Duddy N. Regulation of mitogen-activated protein kinase phosphatase-1 induction by insulin in vascular smooth muscle cells. Evaluation of the role of the nitric oxide signaling pathway and potential defects in hypertension. J Biol Chem 1998; 273:25164-70. [PMID: 9737976 DOI: 10.1074/jbc.273.39.25164] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we examined the regulation of mitogen-activated protein kinase phosphatase (MKP-1) expression by insulin in primary vascular smooth muscle cell cultures. Insulin caused a rapid time- and dose-dependent induction of MKP-1 mRNA and protein expression. Blockade of nitric-oxide synthase (NOS) with NG-monomethyl-L-arginine acetate, and cGMP with RpcGMP, completely inhibited MKP-1 expression. Insulin-mediated MKP-1 expression was preceded by inducible NOS (iNOS) induction and cGMP production. Blockade of phosphatidylinositol 3-kinase (PI3-kinase) signaling with wortmannin inhibited insulin-mediated iNOS protein induction, cGMP production, and MKP-1 expression. To evaluate potential interactions between NOS and the mitogen-activated protein kinase (MAPK) signaling pathways, we employed PD98059 and SB203580, two specific inhibitors of ERKs and p38 MAPK. These inhibitors abolished the effect of insulin on MKP-1 expression. Only PD98059 inhibited insulin-mediated iNOS protein induction. Vascular smooth muscle cells from spontaneous hypertensive rats exhibited a marked decrease in MKP-1 induction due to defects in insulin-induced iNOS expression because of reductions in PI3-kinase activity. Treatment with sodium nitroprusside and 8-bromo-cGMP restored MKP-1 mRNA expression to levels comparable with controls. We conclude that insulin-induced MKP-1 expression is mediated by PI3-kinase-initiated signals, leading to the induction of iNOS and elevated cGMP levels that stimulates MKP-1 expression.
Collapse
MESH Headings
- Androstadienes/pharmacology
- Animals
- Cell Cycle Proteins
- Cells, Cultured
- Cyclic GMP/metabolism
- Dual Specificity Phosphatase 1
- Enzyme Inhibitors/pharmacology
- Flavonoids/pharmacology
- Imidazoles/pharmacology
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/metabolism
- Insulin/pharmacology
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- Nitric Oxide Synthase/antagonists & inhibitors
- Nitric Oxide Synthase/metabolism
- Nitric Oxide Synthase Type II
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoprotein Phosphatases
- Protein Phosphatase 1
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/metabolism
- Pyridines/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Signal Transduction
- Wortmannin
Collapse
|
|
27 |
74 |
6
|
Begum N, Ragolia L. High glucose and insulin inhibit VSMC MKP-1 expression by blocking iNOS via p38 MAPK activation. Am J Physiol Cell Physiol 2000; 278:C81-91. [PMID: 10644515 DOI: 10.1152/ajpcell.2000.278.1.c81] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our laboratory has recently demonstrated a role for the phosphatidylinositol 3-kinase-mediated inducible NO synthase (iNOS) signaling pathway in acute regulation of insulin-induced mitogen-activated protein phosphatase-1 (MKP-1) expression in primary cultures of rat aortic vascular smooth muscle cells (VSMCs) (N. Begum, L. Ragolia, M. McCarthy, and N. Duddy. J. Biol. Chem. 273: 25164-25170, 1998). We now show that prolonged treatment of VSMCs with 100 nM insulin and high glucose (25 mM) for 12-24 h, to mimic hyperinsulinemia and hyperglycemia, completely blocked MKP-1 mRNA and protein expression in response to subsequent acute insulin treatment. To understand the mechanism of insulin resistance induced by high glucose and insulin, we studied the regulation of iNOS protein induction in these cells. Both high glucose and chronic insulin treatment caused a marked impairment of iNOS induction in response to acute insulin. Blocking of signaling via the p38 mitogen-activated protein kinase (MAPK) pathway by prior treatment for 1 h with SB-203580, a synthetic p38 MAPK inhibitor, completely prevented the inhibition of iNOS induced by high glucose and insulin and restored MKP-1 induction to levels observed with acute insulin treatment. In contrast, PD-98059, a MEK inhibitor, had no effect. Furthermore, high glucose and chronic insulin treatment caused sustained p38 MAPK activation. We conclude 1) that chronic insulin and high glucose-induced insulin resistance is accompanied by marked reductions in both iNOS and MKP-1 inductions due to p38 MAPK activation that leads to excessive cell growth and 2) that p38 MAPK/extracellular signal-regulated kinase pathways regulate iNOS induction, thereby controlling MKP-1 expression, which in turn inactivates MAPKs as a feedback mechanism and inhibits cell growth.
Collapse
MESH Headings
- Animals
- Aorta/cytology
- Cell Cycle Proteins
- Cell Division/drug effects
- Cell Division/physiology
- Cells, Cultured
- Dual Specificity Phosphatase 1
- Enzyme Activation/physiology
- Enzyme Inhibitors/pharmacology
- Extracellular Space/metabolism
- Flavonoids/pharmacology
- Gene Expression Regulation, Enzymologic/drug effects
- Glucose/pharmacology
- Hypoglycemic Agents/pharmacology
- Imidazoles/pharmacology
- Immediate-Early Proteins/genetics
- Insulin/pharmacology
- Insulin Resistance/physiology
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/physiology
- Male
- Mitogen-Activated Protein Kinase 1/antagonists & inhibitors
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinases/antagonists & inhibitors
- Mitogen-Activated Protein Kinases/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Nitric Oxide Synthase/antagonists & inhibitors
- Nitric Oxide Synthase/metabolism
- Nitric Oxide Synthase Type II
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoprotein Phosphatases
- Protein Phosphatase 1
- Protein Tyrosine Phosphatases/genetics
- Pyridines/pharmacology
- RNA, Messenger/analysis
- Rats
- Rats, Inbred WKY
- p38 Mitogen-Activated Protein Kinases
Collapse
|
|
25 |
72 |
7
|
Begum N, Ragolia L. cAMP counter-regulates insulin-mediated protein phosphatase-2A inactivation in rat skeletal muscle cells. J Biol Chem 1996; 271:31166-71. [PMID: 8940115 DOI: 10.1074/jbc.271.49.31166] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In this study, we examined the mechanism of recently reported inactivation of protein phosphatase-2A (PP-2A) by insulin (Srinivasan, M., and Begum, N. (1994) J. Biol. Chem. 269, 12514-12520) and its counter-regulation by cAMP agonists. Exposure of L6 myotubes to insulin resulted in a rapid inhibition of PP-2A that was accompanied by a 3-fold increase in the phosphotyrosine content of the immunoprecipitated PP-2A catalytic subunit. Pretreatment with (Sp)-cAMP, a cAMP agonist, completely blocked insulin-mediated inhibition of PP-2A activity and decreased the tyrosine phosphorylation of PP-2A catalytic subunit to control levels. To understand the mechanism of counter-regulation of PP-2A by (Sp)-cAMP, cells were pretreated with sodium orthovanadate, an inhibitor of phosphotyrosine phosphatases. Vanadate prevented the effect of (Sp)-cAMP on PP-2A activity and increased the phosphorylation status of PP-2A catalytic subunit to the level observed with insulin. Wortmannin, a phosphatidylinositol 3-kinase inhibitor, and rapamycin, an inhibitor of 70-kDa S6 kinase activation, prevented insulin-mediated inactivation of PP-2A, suggesting that these pathways may participate in insulin-mediated phosphorylation and inactivation of PP-2A. These results show that insulin signaling results in a rapid inactivation of PP-2A by increased tyrosine phosphorylation and cAMP agonists counter-regulate insulin's effect on PP-2A by decreasing phosphorylation, presumably via an activated phosphatase.
Collapse
|
|
29 |
71 |
8
|
Canfield AE, Doherty MJ, Wood AC, Farrington C, Ashton B, Begum N, Harvey B, Poole A, Grant ME, Boot-Handford RP. Role of pericytes in vascular calcification: a review. ZEITSCHRIFT FUR KARDIOLOGIE 2000; 89 Suppl 2:20-7. [PMID: 10769400 DOI: 10.1007/s003920070096] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pericytes are defined by their location in vivo; the pericyte partially surrounds the endothelial cell of the microvessel and shares a common basement membrane with it. As an integral part of the microvasculature, pericytes play a fundamental role in maintaining local and tissue homeostasis. Current evidence also suggests that pericytes function as progenitor cells capable of differentiating into a variety of different cell types including osteoblasts, chondrocytes and adipocytes. It is now apparent that cells resembling microvascular pericytes, and termed 'pericyte-like' cells, have a widespread distribution in vivo. Pericyte-like cells have been identified in the inner intima, the outer media, and in the vasa vasora of the adventitia of large, medium and small human arteries (1, 2). Moreover, recent studies have suggested that these cells may be responsible, at least in part, for mediating the calcification commonly associated with atherosclerosis (1, 3, 4). In this review, we a) examine the evidence that microvascular pericytes deposit a bone-like mineralised matrix in vitro, b) compare the morphological and biochemical properties of microvascular pericytes, calcifying vascular cells (CVCs) and 'classical' smooth muscle cells (SMCs) isolated from bovine aorta, c) demonstrate that microvascular pericytes deposit a well-organised matrix of bone, cartilage and fibrous tissue in vivo, and d) discuss recent studies designed to gain a better understanding of how pericyte differentiation is regulated.
Collapse
|
Review |
25 |
69 |
9
|
Sandu OA, Ragolia L, Begum N. Diabetes in the Goto-Kakizaki rat is accompanied by impaired insulin-mediated myosin-bound phosphatase activation and vascular smooth muscle cell relaxation. Diabetes 2000; 49:2178-89. [PMID: 11118023 DOI: 10.2337/diabetes.49.12.2178] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Our laboratory has demonstrated that insulin rapidly stimulates myosin-bound phosphatase (MBP) activity in vascular smooth muscle cells (VSMCs). In this study, we examined whether diabetes is accompanied by alterations in MBP activation and elucidated the components of the signaling pathway that mediate the effects of diabetes. VSMCs isolated from Goto-Kakizaki (GK) diabetic rats (a model for type 2 diabetes) exhibited marked impairment in MBP activation by insulin that was accompanied by failure of insulin to decrease the phosphorylation of a regulatory myosin-bound subunit (MBS) of MBP and inhibit Rho kinase activity resulting in increased myosin light-chain (MLC)20 phosphorylation and VSMC contraction. In VSMCs isolated from control rats, insulin inactivates Rho kinase and decreases MBS phosphorylation, leading to MBP activation. In addition to this pathway, insulin also appears to activate MBP by stimulating the phosphatidylinositol (PI) 3-kinase/nitric oxide (NO)/cGMP signaling pathway because treatment with the synthetic inhibitors of PI 3-kinase, NO synthase (NOS), and cGMP all blocked insulin's effect on MBP activation, whereas cGMP agonists and sodium nitroprusside (SNP) mimicked insulin's effect on MBP activation. VSMCs from diabetic GK rats exhibit reductions in insulin-mediated induction of inducible NOS protein expression and cGMP generation but normal MBP activation in response to SNP and cGMP agonist. This observation led us to examine the effect of diabetes on the activation status of the upstream insulin-signaling components. Although GK diabetes did not affect insulin-stimulated tyrosine phosphorylation of the insulin receptor or its content, insulin-stimulated insulin receptor substrate (IRS)-1 tyrosine phosphorylation was severely impaired. This was accompanied by marked reductions in IRS-1-associated PI 3-kinase activity. We conclude that insulin stimulates MBP via its regulatory subunit, MBS, by inactivating Rho kinase and stimulating NO/cGMP signaling via PI 3-kinase as part of a complex signaling network that controls MLC20 phosphorylation and VSMC contraction. Defective signaling via Rho kinase and the IRS-1/PI 3-kinase/NOS/cGMP pathway may mediate the inhibitory effects of hyperglycemia and diabetes on MBP activation in this experimental model.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Diabetes Mellitus, Type 2/enzymology
- Diabetes Mellitus, Type 2/physiopathology
- Enzyme Activation
- Insulin/pharmacology
- Insulin/physiology
- Insulin Receptor Substrate Proteins
- Isoenzymes/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myosin-Light-Chain Phosphatase
- Nitric Oxide Synthase/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoprotein Phosphatases/metabolism
- Phosphoproteins/metabolism
- Phosphorylation
- Precipitin Tests
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Rats
- Rats, Inbred Strains
- Receptor, Insulin/metabolism
- Reference Values
- Signal Transduction
- Tyrosine/metabolism
- Vasodilation
Collapse
|
|
25 |
68 |
10
|
Srinivasan M, Begum N. Regulation of protein phosphatase 1 and 2A activities by insulin during myogenesis in rat skeletal muscle cells in culture. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)99905-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
|
31 |
57 |
11
|
Dadke SS, Li HC, Kusari AB, Begum N, Kusari J. Elevated expression and activity of protein-tyrosine phosphatase 1B in skeletal muscle of insulin-resistant type II diabetic Goto-Kakizaki rats. Biochem Biophys Res Commun 2000; 274:583-9. [PMID: 10924321 DOI: 10.1006/bbrc.2000.3188] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the cellular mechanism(s) of insulin resistance associated with non-insulin dependent diabetes mellitus (NIDDM) using skeletal muscles isolated from non-obese, insulin resistant type II diabetic Goto-Kakizaki (GK) rats, a well known genetic rat model for type II diabetic humans. Relative to non-diabetic control rats (WKY), insulin-stimulated insulin receptor (IR) autophosphorylation and insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation were significantly inhibited in GK skeletal muscles. This may be due to increased dephosphorylation by a protein tyrosine phosphatase (PTPase). Therefore, we measured skeletal muscle total PTPase and PTPase 1B activities in the skeletal muscles isolated from control rats (WKY) and diabetic Goto-Kakizaki (GK) rats. PTPase activity was measured using a synthetic phosphopeptide, TRDIY(P)ETDY(P)Y(P)RK, as the substrate. Basal PTPase activity was 2-fold higher (P < 0.001) in skeletal muscle of GK rats when compared to WKY. Insulin infusion inhibited skeletal muscle PTPase activity in both control (26.20% of basal, P < 0.001) and GK (25.35% of basal, P < 0.001) rats. However, PTPase activity in skeletal muscle of insulin-stimulated GK rats was 200% higher than hormone-treated WKY controls (P < 0.001). Immunoprecipitation of PTPase 1B from skeletal muscle lysates and analysis of the enzyme activity in immunoprecipitates indicated that both basal and insulin-stimulated PTPase 1B activities were significantly higher (twofold, P < 0.001) in skeletal muscle of diabetic GK rats when compared to WKY controls. The increase in PTPase 1B activity in diabetic GK rats was associated with an increased expression of the PTPase 1B protein. We concluded that insulin resistance of GK rats is accompanied atleast by an abnormal regulation of PTPase 1B. Elevated PTPase 1B activity through enhanced tyrosine dephosphorylation of the insulin receptor and its substrates, may lead to impaired glucose tolerance and insulin resistance in GK rats.
Collapse
|
|
25 |
55 |
12
|
Roess AA, Winch PJ, Akhter A, Afroz D, Ali NA, Shah R, Begum N, Seraji HR, El Arifeen S, Darmstadt GL, Baqui AH. Household Animal and Human Medicine Use and Animal Husbandry Practices in Rural Bangladesh: Risk Factors for Emerging Zoonotic Disease and Antibiotic Resistance. Zoonoses Public Health 2015; 62:569-78. [PMID: 25787116 PMCID: PMC4575599 DOI: 10.1111/zph.12186] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Indexed: 11/27/2022]
Abstract
Animal antimicrobial use and husbandry practices increase risk of emerging zoonotic disease and antibiotic resistance. We surveyed 700 households to elicit information on human and animal medicine use and husbandry practices. Households that owned livestock (n = 265/459, 57.7%) reported using animal treatments 630 times during the previous 6 months; 57.6% obtained medicines, including antibiotics, from drug sellers. Government animal healthcare providers were rarely visited (9.7%), and respondents more often sought animal health care from pharmacies and village doctors (70.6% and 11.9%, respectively), citing the latter two as less costly and more successful based on past performance. Animal husbandry practices that could promote the transmission of microbes from animals to humans included the following: the proximity of chickens to humans (50.1% of households reported that the chickens slept in the bedroom); the shared use of natural bodies of water for human and animal bathing (78.3%); the use of livestock waste as fertilizer (60.9%); and gender roles that dictate that females are the primary caretakers of poultry and children (62.8%). In the absence of an effective animal healthcare system, villagers must depend on informal healthcare providers for treatment of their animals. Suboptimal use of antimicrobials coupled with unhygienic animal husbandry practices is an important risk factor for emerging zoonotic disease and resistant pathogens.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
46 |
13
|
Begum N, Ragolia L. Altered regulation of insulin signaling components in adipocytes of insulin-resistant type II diabetic Goto-Kakizaki rats. Metabolism 1998; 47:54-62. [PMID: 9440478 DOI: 10.1016/s0026-0495(98)90193-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We investigated the cellular mechanism(s) of insulin resistance associated with non-insulin-dependent diabetes mellitus (NIDDM) using adipocytes isolated from non-obese, insulin-resistant type II diabetic Goto-Kakizaki (GK) rats, a well-known genetic rat model for type II diabetic humans. In adipocytes isolated from control rats, insulin (5 nmol/L) stimulated particulate serine/threonine protein phosphatase-1 (PP-1) activity (56% increase over the basal value after 5 minutes). In contrast, adipocytes from diabetic GK rats exhibited a 32% decrease in basal (P < .05) and a 65% decrease in insulin-stimulated PP-1 activity compared with values in control Wistar rats. Conversely, cytosolic PP-2A activity was elevated in diabetic GK rats in the basal state (twofold increase v controls, P < .05). Insulin treatment resulted in a 50% to 60% inhibition in PP-2A activity in control rats, but failed to inhibit PP-2A activity in diabetic GK rat adipocytes. The defects in PP-1/PP-2A activation/inactivation were accompanied by inhibition of insulin's effect on mitogen-activated protein kinase (MAPK) activation. In addition, insulin-stimulated tyrosine phosphorylation of insulin receptor (IR) substrate-1 (IRS-1) was decreased more than 90% compared with control values, while a twofold increase in basal IRS-1 phosphorylation status was observed in diabetic GK rats. The abnormalities in IRS-1 phosphorylation were accompanied by a severe impairment of insulin-mediated targeting of the Grb2/Sos complex to the plasma membrane. We conclude that (1) a rapid activation of PP-1 along with concomitant inhibition of cytosolic PP-2A may be important in the mechanism of insulin action in a normal cell, and (2) the resistance to insulin in terms of glucose uptake and glycogen synthesis observed in diabetic GK rats is partly due to defective regulation of PP-1, PP-2A, and MAPK caused by multiple defects in the upstream insulin signaling components (IRS-1/phosphatidylinositol-3-kinase [PI3-kinase] and Grb2/Sos) that participate in insulin-mediated activation of PP-1 and inactivation of PP-2A.
Collapse
|
|
27 |
46 |
14
|
Sandu OA, Ito M, Begum N. Selected contribution: insulin utilizes NO/cGMP pathway to activate myosin phosphatase via Rho inhibition in vascular smooth muscle. J Appl Physiol (1985) 2001; 91:1475-82. [PMID: 11509551 DOI: 10.1152/jappl.2001.91.3.1475] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our laboratory has recently demonstrated that insulin induces relaxation of vascular smooth muscle cells (VSMCs) by activating myosin-bound phosphatase (MBP) and by inhibiting Rho kinase (Begum N, Duddy N, Sandu OA, Reinzie J, and Ragolia L. Mol Endocrinol 14: 1365-1376, 2000). In this study, we tested the hypothesis that insulin via the nitric oxide (NO)/cGMP pathway may inactivate Rho, resulting in a decrease in phosphorylation of the myosin-bound subunit (MBS(Thr695)) of MBP and in its activation. Treatment of confluent serum-starved VSMCs with insulin prevented thrombin-induced increases in membrane-associated RhoA, Rho kinase activation, and site-specific phosphorylation of MBS(Thr695) of MBP and caused MBP activation. Preexposure to N(G)-monomethyl-L-arginine, a NO synthase inhibitor, and R-p-8-(4-chlorophenylthio)cGMP, a cGMP antagonist, attenuated insulin's inhibitory effect on Rho translocation and restored thrombin-mediated Rho kinase activation and site-specific MBS(Thr695) phosphorylation, resulting in MBP inactivation. In contrast, 8-bromo-cGMP, a cGMP agonist, mimicked insulin's inhibitory effects by abolishing thrombin-mediated Rho signaling and promoted dephosphorylation of MBS(Thr695). Furthermore, expression of a dominant-negative RhoA decreased basal as well as thrombin-induced MBS(Thr695) phosphorylation and caused insulin activation of MBP. Collectively, these results indicate that insulin inhibits Rho signaling by decreasing RhoA translocation via the NO/cGMP signaling pathway to cause MBP activation via site-specific dephosphorylation of its regulatory subunit MBS.
Collapse
|
|
24 |
45 |
15
|
Bogaerts J, Ahmed J, Akhter N, Begum N, Rahman M, Nahar S, Van Ranst M, Verhaegen J. Sexually transmitted infections among married women in Dhaka, Bangladesh: unexpected high prevalence of herpes simplex type 2 infection. Sex Transm Infect 2001; 77:114-9. [PMID: 11287690 PMCID: PMC1744270 DOI: 10.1136/sti.77.2.114] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES To document the prevalence of reproductive tract infections (RTI) and sexually transmitted infections (STI) among women attending a basic healthcare clinic in Dhaka, Bangladesh, to identify risk factors associated with the diseases and to estimate the incidence of syphilis, hepatitis C (HCV), hepatitis B (HBV), and herpes simplex type 2 (HSV-2) infection. METHODS A cross sectional sample of 2335 consecutive women was examined during 1996-8. Women were interviewed about risk factors for RTI/STI and tested for Neisseria gonorrhoeae, Chlamydia trachomatis, Trichomonas vaginalis, Treponema pallidum, HIV, HCV, HBV, HSV-1 and HSV-2 infection as well as vaginal candidosis and bacterial vaginosis. Women with antibodies to T pallidum were retested at regular intervals. One year after ending the study seroconversion for syphilis, HBV, HCV, and HSV-2 infection was detected among women initially negative for the respective diseases. RESULTS The overall prevalence rate of N gonorrhoeae, C trachomatis, T vaginalis, and T pallidum infection was 0.5%, 1.9%, 2.0%, and 2.9% respectively. Overall, 35% of the women had antibodies to hepatitis B core antigen, 0.9% had HCV, and 12% HSV-2 infection. Risk factors for gonorrhoea/C trachomatis infection were a husband not living at home or suspected of being unfaithful. HSV-2 infection was associated with the same risk factors and with a polygamous marriage. The prevalence of HSV-2 infection among women "at risk" was 23%. HIV infection was not diagnosed. Repeated serological examination indicated that only 32% of women with serological evidence of syphilis had active disease. The seroincidences of HBV, HCV, and HSV-2 were 0.03, 0.007, and 0.009 per person year. Seroconversion for syphilis was not observed.
Collapse
|
research-article |
24 |
45 |
16
|
Begum N. Stimulation of protein phosphatase-1 activity by insulin in rat adipocytes. Evaluation of the role of mitogen-activated protein kinase pathway. J Biol Chem 1995; 270:709-14. [PMID: 7822300 DOI: 10.1074/jbc.270.2.709] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In this study, we examined the distribution of protein serine/threonine phosphatase-1 (PP-1) and analyzed the effect of insulin on PP-1 and its mechanism of activation in freshly isolated rat adipocytes. The adipocyte particulate fraction (PF) constituted approximately 80% of cellular PP-1 activity, while PP-2A was entirely cytosolic. Insulin rapidly stimulated PF PP-1 in a time- and dose-dependent manner (maximum stimulation at 5 min with 4 nM insulin). Immunoprecipitation of PF with an antibody against the site-1 sequence of rabbit skeletal muscle glycogen-associated PP-1 (PP-1G) subunit indicated that approximately 40% of adipocyte PP-1 activity was due to PP-1G form of the enzyme. Insulin stimulated PP-1G (120% over basal levels) without affecting the other forms of PP-1 in the PF. Insulin activation of PP-1 was accompanied by > 2-fold increase in the phosphorylation state of the 160-kDa regulatory subunit of PP-1. Stimulation of p21Ras/mitogen-activated protein kinase pathway (MAP) with GTP analogues also resulted in stimulation of PP-1 similar to insulin. The insulin effect on MAP kinase and PP-1 activation was blocked by a GTP antagonist, guanyl-5'-yl thiophosphate. The inhibitors of MAP kinase activation (viz. cAMP agonists, SpcAMP and ML-9) also blocked PP-1 stimulation by insulin. The time course of MAP kinase activation preceded the phosphorylation of PP-1 regulatory subunit and PP-1 activation. We conclude that insulin rapidly activates a membrane-associated PP-1 in adipocytes, which may be similar to rabbit skeletal muscle PP-1G, and the activation is mediated by p21Ras/MAP kinase pathway.
Collapse
|
|
30 |
38 |
17
|
Persson MSM, Begum N, Grainge MJ, Harman KE, Grindlay D, Gran S. The global incidence of bullous pemphigoid: a systematic review and meta-analysis. Br J Dermatol 2021; 186:414-425. [PMID: 34480482 DOI: 10.1111/bjd.20743] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Bullous pemphigoid (BP) is an autoimmune blistering disorder that mainly affects older people. Although the disease is associated with considerable morbidity and mortality, the burden of disease worldwide is unclear. OBJECTIVES The study aim is to pool the global incidence of BP and determine whether this varies according to geographic area, age group, setting and study quality. METHODS Ovid MEDLINE, Ovid Embase and grey literature were systematically searched on 7 April 2020. Two reviewers independently screened, extracted data and appraised each study's quality using the Joanna Briggs Institute critical appraisal tool. Two domains, indicative of selection and survey bias, were used to identify high-quality studies. The cumulative incidence was standardized to 1 year and pooled in a random-effects meta-analysis. Subgroup and sensitivity analyses were conducted. RESULTS Twenty-seven studies were identified, of which 23 provided cumulative incidence and four provided incidence rates. The cumulative incidence of BP was 8·2 [95% confidence interval (CI) 4·8-13.7] per million people whereas the incidence rate was 34·2 (95% CI 19·2-60·7) per million person-years. Of the continents that contributed more than one study, the cumulative incidence was 10·3 (95% CI 5·8-18·2) and 5·6 (95% CI 3·5-9·0) per million people in Europe and Asia, respectively. The incidence was highest in studies including adults only (n = 2), in population-based studies (n = 9) and in more recent years. The cumulative incidence was higher (13·3 per million people, 95% CI 6·0-29·5) when restricting the analysis to higher-quality studies (n = 11). High heterogeneity (I2 > 82%) was observed across all pooled estimates. CONCLUSIONS The incidence of BP varies globally, is generally low but appears to be increasing over time. The burden of disease is likely to be underestimated.
Collapse
|
Review |
4 |
36 |
18
|
Begum N, Ragolia L. Effect of tumor necrosis factor-alpha on insulin action in cultured rat skeletal muscle cells. Endocrinology 1996; 137:2441-6. [PMID: 8641197 DOI: 10.1210/endo.137.6.8641197] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this study, the acute effects of tumor necrosis factor (TNF)-alpha on insulin-stimulated glucose uptake, glycogen synthesis, and protein phosphatase-1 (PP-1) activation were examined in cultured rat skeletal muscle cell line, L6. Exposure of L6 cells to low concentrations of TNF-alpha (10 ng/ml for 60 min) inhibited basal and insulin stimulated 2-deoxyglucose uptake (40-50% decrease in basal and insulin stimulated glucose uptake respectively, when compared with controls, P < 0.05). The effect of TNF-alpha was more pronounced when the incubation period was extended to 6 and 12 h. TNF-alpha also blocked insulin activation of glycogen synthase (GS) and inhibited glycogen synthesis (measured as [14C]-glucose incorporated into glycogen). Because GS is activated by dephosphorylation via protein phosphatase-1 (PP-1), we examined the effect of TNF- alpha on PP-1 activation. As reported by us earlier (Srinivasan, M., and N. Begum, J Biol Chem 269:16662-16667, 1994), insulin rapidly stimulated PP-1 and concomitantly inhibited PP-2A activities in L6 cells. Pretreatment with TNF- alpha for 10-60 min blocked subsequent insulin-induced activation of PP-1. The impaired activation of PP-1 was accompanied by a reduction in insulin-stimulated phosphorylation of the regulatory subunit of PP-1. cAMP-Rp diastereomer, a cAMP antagonist failed to prevent the detrimental effects of TNF-alpha on PP-1. Cell permeable ceramide analogs, C2, C6, and Sphingomyelinase mimicked the effects of TNF-alpha on PP-1 inhibition. Furthermore, TNF-alpha treatment was accompanied by an increase in cellular ceramide levels, with concomitant reductions in sphingomyelin. We conclude that TNF-alpha blocks insulin-stimulated glycogen synthesis by inhibiting PP-1 activation via ceramide release.
Collapse
|
|
29 |
36 |
19
|
Begum N, Sussman K, Draznin B. Calcium-induced inhibition of phosphoserine phosphatase in insulin target cells is mediated by the phosphorylation and activation of inhibitor 1. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42648-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
|
33 |
35 |
20
|
Begum N, Ragolia L, Srinivasan M. Effect of tumor necrosis factor-alpha on insulin-stimulated mitogen-activated protein kinase cascade in cultured rat skeletal muscle cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 238:214-20. [PMID: 8665940 DOI: 10.1111/j.1432-1033.1996.0214q.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) is a proposed mediator of insulin resistance in obese/diabetic animals through its effects on tyrosine phosphorylation of the insulin receptor and its substrate, insulin receptor substrate-1. In this study, the acute effects of TNF-alpha on the mitogen-activated protein kinase (MAPK) signalling cascade were examined in cultured rat skeletal muscle cell line, L6. Insulin treatment of L6 cells resulted in a rapid increase in MAPK activity (> twofold in 5 min with 10 nM insulin). Prior treatment with TNF-alpha for 60 min blocked subsequent insulin-induced activation of MAPK in a dose- and time-dependent manner. Metabolic labelling studies with inorganic [32P]phosphate followed by immuno-precipitation of MAPK and its upstream activator, mitogen-activated protein kinase kinase, indicated decreased phosphorylation of MAPK and its kinase in response to insulin in cells exposed to TNF-alpha. This effect of TNF-alpha was not due to inhibition of insulin-stimulated p21ras-GTP loading or Raf-1 phosphorylation. Low concentrations (2 nM) of okadaic acid, a serine/threonine phosphatase inhibitor, prevented TNF-alpha-induced inhibition of MAPK and restored insulin's effect on MAPK activity, while orthovanadate (a tyrosine phosphatase inhibitor), inhibitor 2 (phosphatase-1 inhibitor) and FK506 (phosphatase-2B inhibitor) were ineffective. These results suggested an involvement of an okadaic-acid-sensitive serine/threonine phosphatase in TNF-alpha-induced blockade of insulin's effect on MAPK and/or its kinase. Therefore, we examined the effect of TNF-alpha on protein phosphatase-1 (PP-1) and protein phosphatase-2A (PP-2A) activities. As reported by us earlier, insulin rapidly stimulated PP-1 and concomitantly inhibited PP-2A activities in control cells. TNF-alpha treatment blocked insulin-induced activation of PP-1. In contrast to PP-1, TNF-alpha caused a 60% increase in PP-2A activity and insulin failed to prevent this TNF-alpha effect. The time course of PP-2A activation by TNF-alpha preceded the kinetics of inhibition of MAPK. Cell-permeable ceramide analogs mimicked the TNF-alpha effect on MAPK inhibition and PP-2A activation. We conclude that TNF-alpha abrogates the insulin effect on MAPK activation by increasing dephosphorylation of MAPK kinase via an activated phosphatase.
Collapse
|
|
29 |
35 |
21
|
Begum N, Sussman KE, Draznin B. Differential effects of diabetes on adipocyte and liver phosphotyrosine and phosphoserine phosphatase activities. Diabetes 1991; 40:1620-9. [PMID: 1661692 DOI: 10.2337/diab.40.12.1620] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We examined the activities of particulate and cytosolic phosphotyrosine phosphatase (PTPase) and phosphoserine phosphatase (PSPase) in adipocytes and livers of diabetic rats. PTPase activity was assessed with [32P]tyrosine-phosphorylated insulin receptor (IR), whereas PSPase activity was assayed with [32P]serine-phosphorylated glycogen synthase. Diabetes increased adipocyte particulate PTPase activity and enhanced IR dephosphorylation by 75% on the 2nd, 93% on the 14th, and 108% on the 30th day. In contrast, cytosolic PTPase activity decreased by 78% on the 14th and 45% on the 30th day (no change on the 2nd day). Similar changes were observed with PSPase (increased activity in particulate and decreased in cytosolic). Insulin therapy for 14 or 30 days restored PTPase and PSPase activities in both fractions. Vanadate, despite rapid normalization of glycemia, restored these activities only after 30 days of therapy. Diabetes-related changes in liver PTPase activity were observed on the 14th day only. At this time, it was increased in both particulate and cytosolic fractions. There was spontaneous normalization of the liver PTPase activity at 30 days of diabetes. In contrast, liver cytosolic PSPase activity was significantly inhibited and not normalized by the 30th day of disease without therapy. In summary, diabetes appears to induce tissue-specific changes in PTPase and PSPase activities resulting in significant alterations in dephosphorylation of IR and glycogen synthase. Moreover, there appears to be a differential regulation of PTPase and PSPase activities in diabetes, particularly in the liver.
Collapse
|
Comparative Study |
34 |
31 |
22
|
Begum N, Duddy N, Sandu O, Reinzie J, Ragolia L. Regulation of myosin-bound protein phosphatase by insulin in vascular smooth muscle cells: evaluation of the role of Rho kinase and phosphatidylinositol-3-kinase-dependent signaling pathways. Mol Endocrinol 2000; 14:1365-76. [PMID: 10976915 DOI: 10.1210/mend.14.9.0522] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In this study, we examined the molecular mechanism of myosin-bound protein phosphatase (MBP) regulation by insulin and evaluated the role of MBP in insulin-mediated vasorelaxation. Insulin rapidly stimulated MBP in confluent primary vascular smooth muscle cell (VSMC) cultures. In contrast, VSMCs isolated from diabetic and hypertensive rats exhibited impaired MBP activation by insulin. Insulin-mediated MBP activation was accompanied by a rapid time-dependent reduction in the phosphorylation state of the myosin-bound regulatory subunit (MBS) of MBP. The decrease observed in MBS phosphorylation was due to insulin-induced inhibition of Rho kinase activity. Insulin also prevented a thrombin-mediated increase in Rho kinase activation and abolished the thrombin-induced increase in MBS phosphorylation and MBP inactivation. These data are consistent with the notion that insulin inactivates Rho kinase and decreases MBS phosphorylation to activate MBP in VSMCs. Furthermore, treatment with synthetic inhibitors of phosphatidylinositol-3 kinase (PI3-kinase), nitric oxide synthase (NOS), and cyclic guanosine monophosphate (cGMP) all blocked insulin's effect on MBP activation. We conclude that insulin stimulates MBP via its regulatory subunit, MBS partly by inactivating Rho kinase and stimulating NO/cGMP signaling via PI3-kinase as part of a complex signaling network that controls 20-kDa myosin light chain (MLC20) phosphorylation and VSMC contraction.
Collapse
|
|
25 |
31 |
23
|
Rogers JP, Chesney E, Oliver D, Begum N, Saini A, Wang S, McGuire P, Fusar-Poli P, Lewis G, David AS. Suicide, self-harm and thoughts of suicide or self-harm in infectious disease epidemics: a systematic review and meta-analysis. Epidemiol Psychiatr Sci 2021; 30:e32. [PMID: 33902775 PMCID: PMC7610720 DOI: 10.1017/s2045796021000214] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 12/22/2022] Open
Abstract
AIMS Suicide accounts for 2.2% of all years of life lost worldwide. We aimed to establish whether infectious epidemics are associated with any changes in the incidence of suicide or the period prevalence of self-harm, or thoughts of suicide or self-harm, with a secondary objective of establishing the frequency of these outcomes. METHODS In this systematic review and meta-analysis, MEDLINE, Embase, PsycINFO and AMED were searched from inception to 9 September 2020. Studies of infectious epidemics reporting outcomes of (a) death by suicide, (b) self-harm or (c) thoughts of suicide or self-harm were identified. A random-effects model meta-analysis for the period prevalence of thoughts of suicide or self-harm was conducted. RESULTS In total, 1354 studies were screened with 57 meeting eligibility criteria, of which 7 described death by suicide, 9 by self-harm, and 45 thoughts of suicide or self-harm. The observation period ranged from 1910 to 2020 and included epidemics of Spanish Flu, severe acute respiratory syndrome, human monkeypox, Ebola virus disease and coronavirus disease 2019 (COVID-19). Regarding death by suicide, data with a clear longitudinal comparison group were available for only two epidemics: SARS in Hong Kong, finding an increase in suicides among the elderly, and COVID-19 in Japan, finding no change in suicides among children and adolescents. In terms of self-harm, five studies examined emergency department attendances in epidemic and non-epidemic periods, of which four found no difference and one showed a reduction during the epidemic. In studies of thoughts of suicide or self-harm, one large survey showed a substantial increase in period prevalence compared to non-epidemic periods, but smaller studies showed no difference. As a secondary objective, a meta-analysis of thoughts of suicide and self-harm found that the pooled prevalence was 8.0% overall (95% confidence interval (CI) 5.2-12.0%; 14 820 of 99 238 cases in 24 studies) over a time period of between seven days and six months. The quality assessment found 42 studies were of high quality, nine of moderate quality and six of high quality. CONCLUSIONS There is little robust evidence on the association of infectious epidemics with suicide, self-harm and thoughts of suicide or self-harm. There was an increase in suicides among the elderly in Hong Kong during SARS and no change in suicides among young people in Japan during COVID-19, but it is unclear how far these findings may be generalised. The development of up-to-date self-harm and suicide statistics to monitor the effect of the current pandemic is an urgent priority.
Collapse
|
Historical Article |
4 |
31 |
24
|
Begum N, Draznin B. Effect of streptozotocin-induced diabetes on GLUT-4 phosphorylation in rat adipocytes. J Clin Invest 1992; 90:1254-62. [PMID: 1328294 PMCID: PMC443167 DOI: 10.1172/jci115988] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have examined the regulation of GLUT-4 phosphorylation in adipocytes isolated from diabetic rats. Despite progressive (40-70%) reductions in GLUT-4 protein contents on the 2nd, 7th, and 14th day of diabetes, the phosphorylation of GLUT-4 was increased two- to fourfold. These alterations were accompanied by concomitant reductions (40-66%) in the insulin-stimulated 2-deoxyglucose transport. Insulin treatment of diabetic animals for 5 d restored glucose transport activity, GLUT-4 protein, and GLUT-4 phosphorylation to control levels whereas vanadate and phlorizin were ineffective. In control adipocytes, insulin promoted GLUT-4 translocation from the low density microsomal (LDM) pool to the plasma membranes (PM) and decreased the state of GLUT-4 phosphorylation. In adipocytes isolated from the diabetic rats, insulin failed to stimulate GLUT-4 translocation and to decrease GLUT-4 phosphorylation. To explore the mechanism of the diabetes-induced increases in the GLUT-4 phosphorylation, we investigated phosphoserine phosphatase (PSPase) activities using 32P-labeled GLUT-4 and phosphorylase "a" as substrates. Diabetes resulted in 50-60% increase in the particulate PSPase activity and concomitant reductions in cytosolic PSPase activities. Although reduced cytosolic PSPase activity correlated with an inadequate dephosphorylation of LDM GLUT-4, the existence of highly phosphorylated PM GLUT-4 in the presence of increased particulate PSPase activity required additional explanation. To address this problem, we used PM GLUT-4 from diabetic rats as a substrate of particulate PSPase. Highly active diabetic particulate PSPase, which dephosphorylated control GLUT-4 and phosphorylase a, failed to dephosphorylate PM GLUT-4 from diabetic rats. These data suggest that PM GLUT-4 from diabetic rats is unable to interact with PSPase or that its phosphorylation sites are not accessible to PSPase action. In summary, an induction of diabetes with streptozotocin resulted in significant increases in GLUT-4 phosphorylation. In contrast to normal cells, insulin failed to promote GLUT-4 recruitment to the plasma membranes and its dephosphorylation in diabetic adipocytes. At the same time, diabetes appears to induce redistribution of PSPases, resulting in lower cytosolic activity and higher particulate activity. It also appears that the existence of highly phosphorylated GLUT-4 in the plasma membranes of diabetic adipocytes resulted from its inability to interact with particulate PSPases.
Collapse
|
research-article |
33 |
31 |
25
|
Ragolia L, Cherpalis B, Srinivasan M, Begum N. Role of serine/threonine protein phosphatases in insulin regulation of Na+/K+-ATPase activity in cultured rat skeletal muscle cells. J Biol Chem 1997; 272:23653-8. [PMID: 9295306 DOI: 10.1074/jbc.272.38.23653] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In this study, we examined the potential role of serine/threonine protein phosphatase-1 (PP-1) and PP-2A in the mechanism of Na+/K+-ATPase activation by insulin in the rat skeletal muscle cell line L6. Incubation of L6 cells with insulin caused a time- and dose-dependent stimulation of ouabain-sensitive plasma membrane Na+/K+-ATPase activity. Pretreatment with okadaic acid (OA; 0.1-1 microM) or calyculin A (1 microM) blocked insulin's effect on Na+/K+-ATPase activation. Low concentrations of OA that specifically inhibit PP-2A were ineffective. Immunoprecipitation of the enzyme from 32P-labeled cells with an antibody directed against the alpha-1 subunit of the enzyme revealed a 60% decrease in 110-kDa protein phosphorylation in insulin-treated cells. The presence of calyculin A blocked insulin-mediated dephosphorylation of Na+/K+-ATPase, whereas low concentrations of OA were ineffective. To further confirm the role of PP-1, we used L6 cell lines that overexpress the glycogen/SR-associated regulatory subunit of PP-1, PP-1G. Overexpression of PP-1G resulted in a 3-fold increase in insulin-stimulated PP-1 catalytic activity. This was accompanied by a 30% increase in basal Na+/K+-ATPase activity and a >2-fold increase in insulin's effect on pump activity. Inhibition of phosphatidylinositol-3 kinase with wortmannin blocked insulin-stimulated PP-1 activation as well as the dephosphorylation and activation of Na+/K+-ATPase. We conclude that insulin regulates the activity of Na+/K+-ATPase by promoting dephosphorylation of the alpha subunit via an insulin-stimulated PP-1 and that phosphatidylinositol-3 kinase-generated signals may mediate insulin activation of PP-1 and Na+/K+-ATPase.
Collapse
|
|
28 |
30 |