1
|
Shi CS, Nabar NR, Huang NN, Kehrl JH. SARS-Coronavirus Open Reading Frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes. Cell Death Discov 2019; 5:101. [PMID: 31231549 PMCID: PMC6549181 DOI: 10.1038/s41420-019-0181-7] [Citation(s) in RCA: 315] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/30/2019] [Accepted: 05/13/2019] [Indexed: 12/23/2022] Open
Abstract
The SARS (severe acute respiratory syndrome) outbreak was caused by a coronavirus (CoV) named the SARS-CoV. SARS pathology is propagated both by direct cytotoxic effects of the virus and aberrant activation of the innate immune response. Here, we identify several mechanisms by which a SARS-CoV open reading frame (ORF) activates intracellular stress pathways and targets the innate immune response. We show that ORF8b forms insoluble intracellular aggregates dependent on a valine at residue 77. Aggregated ORF8b induces endoplasmic reticulum (ER) stress, lysosomal damage, and subsequent activation of the master regulator of the autophagy and lysosome machinery, Transcription factor EB (TFEB). ORF8b causes cell death in epithelial cells, which is partially rescued by reducing its ability to aggregate. In macrophages, ORF8b robustly activates the NLRP3 inflammasome by providing a potent signal 2 required for activation. Mechanistically, ORF8b interacts directly with the Leucine Rich Repeat domain of NLRP3 and localizes with NLRP3 and ASC in cytosolic dot-like structures. ORF8b triggers cell death consistent with pyroptotic cell death in macrophages. While in those cells lacking NLRP3 accumulating ORF8b cytosolic aggregates cause ER stress, mitochondrial dysfunction, and caspase-independent cell death.
Collapse
|
Journal Article |
6 |
315 |
2
|
Yue Y, Nabar NR, Shi CS, Kamenyeva O, Xiao X, Hwang IY, Wang M, Kehrl JH. SARS-Coronavirus Open Reading Frame-3a drives multimodal necrotic cell death. Cell Death Dis 2018; 9:904. [PMID: 30185776 PMCID: PMC6125346 DOI: 10.1038/s41419-018-0917-y] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/29/2018] [Accepted: 07/22/2018] [Indexed: 02/05/2023]
Abstract
The molecular mechanisms underlying the severe lung pathology that occurs during SARS-CoV infections remain incompletely understood. The largest of the SARS-CoV accessory protein open reading frames (SARS 3a) oligomerizes, dynamically inserting into late endosomal, lysosomal, and trans-Golgi-network membranes. While previously implicated in a non-inflammatory apoptotic cell death pathway, here we extend the range of SARS 3a pathophysiologic targets by examining its effects on necrotic cell death pathways. We show that SARS 3a interacts with Receptor Interacting Protein 3 (Rip3), which augments the oligomerization of SARS 3a helping drive necrotic cell death. In addition, by inserting into lysosomal membranes SARS 3a triggers lysosomal damage and dysfunction. Consequently, Transcription Factor EB (TFEB) translocates to the nucleus increasing the transcription of autophagy- and lysosome-related genes. Finally, SARS 3a activates caspase-1 either directly or via an enhanced potassium efflux, which triggers NLRP3 inflammasome assembly. In summary, Rip3-mediated oligomerization of SARS 3a causes necrotic cell death, lysosomal damage, and caspase-1 activation—all likely contributing to the clinical manifestations of SARS-CoV infection.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
182 |
3
|
Harris J, Lang T, Thomas JP, Sukkar MB, Nabar NR, Kehrl JH. Autophagy and inflammasomes. Mol Immunol 2017; 86:10-15. [DOI: 10.1016/j.molimm.2017.02.013] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 02/16/2017] [Accepted: 02/19/2017] [Indexed: 12/25/2022]
|
|
8 |
176 |
4
|
Cao C, Li Y, Liu H, Bai G, Mayl J, Lin X, Sutherland K, Nabar N, Cai J. The Potential Therapeutic Effects of THC on Alzheimer's Disease. ACTA ACUST UNITED AC 2014; 42:973-84. [DOI: 10.3233/jad-140093] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
|
11 |
72 |
5
|
Zhao W, Shi CS, Harrison K, Hwang IY, Nabar NR, Wang M, Kehrl JH. AKT Regulates NLRP3 Inflammasome Activation by Phosphorylating NLRP3 Serine 5. THE JOURNAL OF IMMUNOLOGY 2020; 205:2255-2264. [PMID: 32929041 DOI: 10.4049/jimmunol.2000649] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/17/2020] [Indexed: 02/05/2023]
Abstract
The cytosolic pattern recognition receptor NLRP3 senses host-derived danger signals and certain microbe-derived products in both humans and rodents. NLRP3 activation assembles an inflammasome complex that contains the adapter proteins ASC and caspase-1, whose activation triggers the maturation and release of the proinflammatory cytokines IL-1β and IL-18. S5 phosphorylation of NLRP3 prevents its oligomerization and activation, whereas dephosphorylation of this residue by the phosphatase PP2A allows NLRP3 activation. However, the protein kinase that mediates NLRP3 S5 phosphorylation is unknown. In this study, we show that AKT associates with NLRP3 and phosphorylates it on S5, limiting NLRP3 oligomerization. This phosphorylation event also stabilizes NLRP3 by reducing its ubiquitination on lysine 496, which inhibits its proteasome-mediated degradation by the E3 ligase Trim31. Pharmacologic manipulation of AKT kinase activity reciprocally modulates NLRP3 inflammasome-mediated IL-1β production. Inhibition of AKT reduced IL-1β production following the i.p. injection of LPS into mice. We propose that AKT, Trim31, and PP2A together modulate NLRP3 protein levels and the tendency to oligomerize, thereby setting a tightly regulated threshold for NLRP3 activation.
Collapse
|
Research Support, N.I.H., Intramural |
5 |
52 |
6
|
Lai X, Wang J, Nabar NR, Pan S, Tang C, Huang Y, Hao M, Yang Z, Ma C, Zhang J, Chew H, He Z, Yang J, Su B, Zhang J, Liang J, Sneed KB, Zhou SF. Proteomic response to acupuncture treatment in spontaneously hypertensive rats. PLoS One 2012; 7:e44216. [PMID: 22984478 PMCID: PMC3440387 DOI: 10.1371/journal.pone.0044216] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/03/2012] [Indexed: 02/07/2023] Open
Abstract
Previous animal and clinical studies have shown that acupuncture is an effective alternative treatment in the management of hypertension, but the mechanism is unclear. This study investigated the proteomic response in the nervous system to treatment at the Taichong (LR3) acupoint in spontaneously hypertensive rats (SHRs). Unanesthetized rats were subject to 5-min daily acupuncture treatment for 7 days. Blood pressure was monitored over 7 days. After euthanasia on the 7th day, rat medullas were dissected, homogenized, and subject to 2D gel electrophoresis and MALDI-TOF analysis. The results indicate that blood pressure stabilized after the 5th day of acupuncture, and compared with non-acupoint treatment, Taichong-acupunctured rat’s systolic pressure was reduced significantly (P<0.01), though not enough to bring blood pressure down to normal levels. The different treatment groups also showed differential protein expression: the 2D images revealed 571±15 proteins in normal SD rats’ medulla, 576±31 proteins in SHR’s medulla, 597±44 proteins in medulla of SHR after acupuncturing Taichong, and 616±18 proteins in medulla of SHR after acupuncturing non-acupoint. In the medulla of Taichong group, compared with non-acupoint group, seven proteins were down-regulated: heat shock protein-90, synapsin-1, pyruvate kinase isozyme, NAD-dependent deacetylase sirtuin-2, protein kinase C inhibitor protein 1, ubiquitin hydrolase isozyme L1, and myelin basic protein. Six proteins were up-regulated: glutamate dehydrogenase 1, aldehyde dehydrogenase 2, glutathione S-transferase M5, Rho GDP dissociation inhibitor 1, DJ-1 protein and superoxide dismutase. The altered expression of several proteins by acupuncture has been confirmed by ELISA, Western blot and qRT-PCR assays. The results indicate an increase in antioxidant enzymes in the medulla of the SHRs subject to acupuncture, which may provide partial explanation for the antihypertensive effect of acupuncture. Further studies are warranted to investigate the role of oxidative stress modulation by acupuncture in the treatment of hypertension.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
36 |
7
|
Pan W, Yin W, Yang L, Xue L, Ren J, Wei W, Lu Q, Ding H, Liu Z, Nabar NR, Wang M, Hao L. Inhibition of Ctsk alleviates periodontitis and comorbid rheumatoid arthritis via downregulation of the TLR9 signalling pathway. J Clin Periodontol 2019; 46:286-296. [PMID: 30636333 DOI: 10.1111/jcpe.13060] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 11/27/2018] [Accepted: 01/04/2019] [Indexed: 02/05/2023]
Abstract
AIM In this study, we investigate the mechanistic link between rheumatoid arthritis (RA) and periodontitis to identify a novel target (cathepsin K; Ctsk) for the treatment of comorbid periodontitis and RA. METHODS An experimental model of periodontitis with arthritis was established in DBA/1 mice. We then tested the effect of BML-244, a specific inhibitor of Ctsk, by quantifying several inflammatory markers of TLR9 signalling both in vivo and in vitro. RESULTS Our results showed that periodontitis-rheumatoid arthritis comorbidity causes severer periodontal bone and joint cartilage destruction than either disease alone. Inhibition of Ctsk reduced infiltration by dendritic cells and T cells and inflammatory cytokine production; these improvements alleviated the hard-tissue erosion in periodontitis and RA as measured by bone erosion in periodontal lesions and cartilage destruction in knee joints. Inhibition of Ctsk also decreased the expression of TLR4 and TLR9 in vivo, whereas in vitro experiments indicated that Ctsk is involved specifically in the production of cytokines in response to TLR9 engagement. CONCLUSION Our data reveal that periodontitis and RA may have additive pathological effects through dysregulation of the TLR9 pathway and that Ctsk is a critical mediator of this pathway and contributes to the pathogenesis of RA and periodontitis.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
26 |
8
|
Nabar NR, Heijjer CN, Shi CS, Hwang IY, Ganesan S, Karlsson MCI, Kehrl JH. LRRK2 is required for CD38-mediated NAADP-Ca 2+ signaling and the downstream activation of TFEB (transcription factor EB) in immune cells. Autophagy 2021; 18:204-222. [PMID: 34313548 PMCID: PMC8865229 DOI: 10.1080/15548627.2021.1954779] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
CD38 is a cell surface receptor capable of generating calcium-mobilizing second messengers. It has been implicated in host defense and cancer biology, but signaling mechanisms downstream of CD38 remain unclear. Mutations in LRRK2 (leucine-rich repeat kinase 2) are the most common genetic cause of Parkinson disease; it is also a risk factor for Crohn disease, leprosy, and certain types of cancers. The pathogenesis of these diseases involves inflammation and macroautophagy/autophagy, processes both CD38 and LRRK2 are implicated in. Here, we mechanistically and functionally link CD38 and LRRK2 as upstream activators of TFEB (transcription factor EB), a host defense transcription factor and the master transcriptional regulator of the autophagy/lysosome machinery. In B-lymphocytes and macrophages, we show that CD38 and LRRK2 exist in a complex on the plasma membrane. Ligation of CD38 with the monoclonal antibody clone 90 results in internalization of the CD38-LRRK2 complex and its targeting to the endolysosomal system. This generates an NAADP-dependent calcium signal, which requires LRRK2 kinase activity, and results in the downstream activation of TFEB. lrrk2 KO macrophages accordingly have TFEB activation defects following CD38 or LPS stimulation and fail to switch to glycolytic metabolism after LPS treatment. In overexpression models, the pathogenic LRRK2G2019S mutant promotes hyperactivation of TFEB even in the absence of CD38, both by stabilizing TFEB and promoting its nuclear translocation via aberrant calcium signaling. In sum, we have identified a physiological CD38-LRRK2-TFEB signaling axis in immune cells. The common pathogenic mutant, LRRK2G2019S, appears to hijack this pathway. Abbreviations:ADPR: ADP-ribose; AMPK: AMP-activated protein kinase; BMDM: bone marrow-derived macrophage; cADPR: cyclic-ADP-ribose; COR: C-terminal of ROC; CTSD: cathepsin D; ECAR: extracellular acidification rate; EDTA: ethylenediaminetetraacetic acid; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; GPN: Gly-Phe β-naphthylamide; GSK3B/GSK3β: glycogen synthase kinase 3 beta; GTP: guanosine triphosphate; KD: knockdown; LAMP1: lysosomal-associated membrane protein 1; LRR: leucine rich repeat; LRRK2: leucine rich repeat kinase 2; mAb: monoclonal antibody; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MAPK/ERK: mitogen-activated protein kinase; MCOLN1: mucolipin 1; MFI: mean fluorescence intensity; mRNA: messenger RNA; MTOR: mechanistic target of rapamycin kinase; NAADP: nicotinic acid adenine dinucleotide phosphate; NAD: nicotinamide adenine dinucleotide; NADP: nicotinamide adenine dinucleotide phosphate; PD: Parkinson disease; PPP3CB: protein phosphatase 3, catalytic subunit, beta isoform; q-RT-PCR: quantitative reverse transcription polymerase chain reaction; ROC: Ras of complex; siRNA: small interfering RNA; SQSTM1/p62: sequestome 1; TFEB: transcription factor EB; TPCN: two pore channel; TRPM2: transient receptor potential cation channel, subfamily M, member 2; ZKSCAN3: zinc finger with KRAB and SCAN domains 3
Collapse
|
Journal Article |
4 |
24 |
9
|
Yue Y, Yang X, Zhang L, Xiao X, Nabar NR, Lin Y, Hao L, Zhang D, Huo J, Li J, Cai X, Wang M. Low-intensity pulsed ultrasound upregulates pro-myelination indicators of Schwann cells enhanced by co-culture with adipose-derived stem cells. Cell Prolif 2016; 49:720-728. [PMID: 27625295 PMCID: PMC6496622 DOI: 10.1111/cpr.12298] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/24/2016] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Peripheral nerve injuries are a common occurrence, resulting in considerable patient suffering; it also represents a major economic burden on society. To improve treatment options following peripheral nerve injuries, scientists aim to find a way to promote Schwann cell (SC) myelination to help nerves to carry out their functions effectively. In this study, we investigated myelination ability of SCs, regulated by co-culture with adipose-derived stem cells (ASCs) or low-intensity pulsed ultrasound (LIPUS), and synergistic effects of combined treatments. MATERIALS AND METHODS Schwann cells were co-cultured with or without ASCs, and either left untreated or treated with LIPUS for 10 min/d for 1, 4 or 7 days. Effects of LIPUS and ASC co-culture on pro-myelination indicators of SCs were analysed by real-time PCR (RT-PCR), Western blotting and immunofluorescence staining (IF). RESULTS Our results indicate that ASC-SC co-culture and LIPUS, together or individually, promoted mRNA levels of epidermal growth factor receptor 3 (EGFR3/ErbB3), neuregulin1 (NRG1), early growth response protein 2 (Egr2/Krox20) and myelin basic protein (MBP), with corresponding increases in protein levels of ErbB3, NRG1 and Krox20. Interestingly, combination of ASC-SC co-culture and LIPUS displayed the most remarkable effects. CONCLUSION We demonstrated that ASCs upregulated pro-myelination indicators of SCs by indirect contact (through co-culture) and that effects could be potentiated by LIPUS. We conclude that LIPUS, as a mechanical stress, may have potential in nerve regeneration with potential clinical relevance.
Collapse
|
research-article |
9 |
20 |
10
|
Vural A, Nabar NR, Hwang IY, Sohn S, Park C, Karlsson MCI, Blumer JB, Kehrl JH. Gα i2 Signaling Regulates Inflammasome Priming and Cytokine Production by Biasing Macrophage Phenotype Determination. THE JOURNAL OF IMMUNOLOGY 2019; 202:1510-1520. [PMID: 30683698 DOI: 10.4049/jimmunol.1801145] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022]
Abstract
Macrophages exist as innate immune subsets that exhibit phenotypic heterogeneity and functional plasticity. Their phenotypes are dictated by inputs from the tissue microenvironment. G-protein-coupled receptors are essential in transducing signals from the microenvironment, and heterotrimeric Gα signaling links these receptors to downstream effectors. Several Gαi-coupled G-protein-coupled receptors have been implicated in macrophage polarization. In this study, we use genetically modified mice to investigate the role of Gαi2 on inflammasome activity and macrophage polarization. We report that Gαi2 in murine bone marrow-derived macrophages (BMDMs) regulates IL-1β release after activation of the NLRP3, AIM2, and NLRC4 inflammasomes. We show this regulation stems from the biased polarity of Gαi2 deficient (Gnai2 -/-) and RGS-insensitive Gαi2 (Gnai2 G184S/G184S) BMDMs. We determined that although Gnai2 G184S/G184S BMDMs (excess Gαi2 signaling) have a tendency toward classically activated proinflammatory (M1) phenotype, Gnai2-/- BMDMs (Gαi2 deficient) are biased toward alternatively activated anti-inflammatory (M2) phenotype. Finally, we find that Gαi2-deficient macrophages have increased Akt activation and IFN-β production but defects in ERK1/2 and STAT3 activation after LPS stimulation. Gαi2-deficient macrophages also exhibit increased STAT6 activation after IL-4 stimulation. In summary, our data indicates that excess Gαi2 signaling promotes an M1 macrophage phenotype, whereas Gαi2 signaling deficiency promotes an M2 phenotype. Understanding Gαi2-mediated effects on macrophage polarization may bring to light insights regarding disease pathogenesis and the reprogramming of macrophages for the development of novel therapeutics.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
16 |
11
|
Wei M, Mo SL, Nabar NR, Chen Y, Zhang JJ, He QL, Zou XN, Liu XG, Sun LB, Zhou SF. Modification of rat model of sciatica induced by lumber disc herniation and the anti-inflammatory effect of osthole given by epidural catheterization. Pharmacology 2012; 90:251-63. [PMID: 23018204 DOI: 10.1159/000340023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 06/06/2012] [Indexed: 11/19/2022]
Abstract
One of the most treatable causes of lower back pain and associated sciatica is lumbar disc herniation (LDH), which is characterized by rupture of the hard outer wall (annulus fibrosis) in a lumbar intervertebral disc. In the current study, we aimed to: (1) develop and characterize a rat model of sciatica induced by LDH, while introducing a novel method of epidural catheterization; (2) use this model to evaluate the effect of osthole on pain due to LDH, and (3) gain insight into the mechanisms through which osthole affects sciatica induced by LDH. The results indicate that our newly developed rat model maintained mechanical allodynia for 28 days without reduction. Moreover, cyclooxygenase-2 (COX-2) and nitric oxide synthase (NOS) were overexpressed in the associated inflammatory response, which is consistent with clinical manifestations of the disease. We then used this model to study the effect and mechanisms through which osthole affected pain due to LDH. Our study suggests that osthole is capable of reversing hyperalgesia due to LDH, potentially through modulation of activity of COX-2 and NOS, two important proteins for the exacerbation of pain due to LDH. Finally, a molecular modeling simulation showed that osthole has unique binding capabilities to both NOS and COX-2. As the model-induced mechanical hyperalgesia response was consistent, and the position of the catheter tip and the extension/spreading of the drug in the epidural space were reliable, this study developed an improved model to study remedies for sciatic pain. Moreover, our studies demonstrate that osthole may be a feasible treatment for the reduction of pain due to hyperalgesia.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
12 |
12
|
Luo Z, Li J, Nabar NR, Lin X, Bai G, Cai J, Zhou SF, Cao C, Wang J. Efficacy of a therapeutic vaccine using mutated β-amyloid sensitized dendritic cells in Alzheimer's mice. J Neuroimmune Pharmacol 2012; 7:640-55. [PMID: 22684353 DOI: 10.1007/s11481-012-9371-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 04/17/2012] [Indexed: 01/12/2023]
Abstract
Despite FDA suspension of Elan's AN-1792 amyloid beta (Aβ) vaccine in phase IIb clinical trials, the implications of this study are the guiding principles for contemporary anti-Aβ immunotherapy against Alzheimer's disease (AD). AN-1792 showed promising results with regards to Aβ clearance and cognitive function improvement, but also exhibited an increased risk of Th1 mediated meningoencephalitis. As such, vaccine development has continued with an emphasis on eliciting a notable anti-Aβ antibody titer, while avoiding the unwanted Th1 pro-inflammatory response. Previously, we published the first report of an Aβ sensitized dendritic cell vaccine as a therapeutic treatment for AD in BALB/c mice. Our vaccine elicited an anti-Aβ titer, with indications that a Th1 response was not present. This study is the first to investigate the efficacy and safety of our dendritic cell vaccine for the prevention of AD in transgenic mouse models (PDAPP) for AD. We also used Immunohistochemistry to characterize the involvement of LXR, ABCA1, and CD45 in order to gain insight into the potential mechanisms through which this vaccine may provide benefit. The results indicate that (1) the use of mutant Aβ1-42 sensitized dendritic cell vaccine results in durable antibody production, (2) the vaccine provides significant benefits with regards to cognitive function without the global (Th1) inflammation seen in prior Aβ vaccines, (3) histological studies showed an overall decrease in Aβ burden, with an increase in LXR, ABCA1, and CD45, and (4) the beneficial results of our DC vaccine may be due to the LXR/ABCA1 pathway. In the future, mutant Aβ sensitized dendritic cell vaccines could be an efficacious and safe method for the prevention or treatment of AD that circumvents problems associated with traditional anti-Aβ vaccines.
Collapse
|
|
13 |
11 |
13
|
Li J, Xiao X, Wei W, Ding H, Yue Y, Tian Y, Nabar NR, Liu Z, Yang Z, Wang M. Inhibition of angiotensin II receptor I prevents inflammation and bone loss in periodontitis. J Periodontol 2018; 90:208-216. [PMID: 30066953 DOI: 10.1002/jper.17-0753] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/21/2018] [Accepted: 02/28/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Periodontal disease is characterized by alveolar bone destruction and degenerative lesions of the periodontal ligament (PDL); it is initiated by bacterial infection of the oral cavity, but the clinical effects are secondary to an aberrant host immune response. Primary hypertension (PH), which causes significant morbidity and mortality worldwide, has also been shown to be an inflammatory disease characterized by aberrant immune cell infiltration and activation. Clinical retrospective studies have shown a link between PH and periodontitis with PH exacerbating periodontitis and vice versa, but the pathophysiologic mechanisms responsible for this remain unknown. METHODS In this study, we investigate the underlying mechanisms behind PH exacerbation of periodontitis by using a bacteria-induced periodontitis model in normotensive and hypertensive (Nos3-/- ) mice treated with or without an Angiotensin II (Ang II) specific receptor 1 (AT1) antagonist, losartan. The histologic analyses including immunohistochemistry, immunofluorescence were carried out. The qRT-PCR and ELISAs were applied for the target gene and protein detection. RESULTS We find that PH worsens bone resorption and PDL destruction in periodontitis and that treatment with losartan, rescues this. We also show that PH increases dendritic cell (DC) and osteoclast (OC) infiltration in periodontitis, which is also dependent on Ang II. Finally, we show that PH augments the pro-inflammatory state in periodontitis infiltrating DCs in an Ang II-dependent manner and use in vitro studies to show that Ang II directly augments DC Toll-like receptor 4 (TLR4) signaling. CONCLUSION Our studies show a central role for Ang II as a pro-inflammatory Toll-like receptor mediator in the pathogenesis of PH-exacerbated periodontitis, indicating that Ang II may be a reasonable target in patients with PH and periodontitis comorbidity.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
11 |
14
|
Nabar NR, Yuan F, Lin X, Wang L, Bai G, Mayl J, Li Y, Zhou SF, Wang J, Cai J, Cao C. Cell therapy: a safe and efficacious therapeutic treatment for Alzheimer's disease in APP+PS1 mice. PLoS One 2012; 7:e49468. [PMID: 23226497 PMCID: PMC3513317 DOI: 10.1371/journal.pone.0049468] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 10/09/2012] [Indexed: 01/10/2023] Open
Abstract
Previously, our lab was the first to report the use of antigen-sensitized dendritic cells as a vaccine against Alzheimer's disease (AD). In preparation of this vaccine, we sensitized the isolated dendritic cells ex vivo with Aβ peptide, and administered these sensitized dendritic cells as a therapeutic agent. This form of cell therapy has had success in preventing and/or slowing the rate of cognitive decline when administered prior to the appearance of Aβ plaques in PDAPP mice, but has not been tested in 2 × Tg models. Herein, we test the efficacy and safety of this vaccine in halting and reversing Alzheimer's pathology in 9-month-old APP + PS1 mice. The results showed that administration of this vaccine elicits a long-lasting antibody titer, which correlated well with a reduction of Aβ burden upon histological analysis. Cognitive function in transgenic responders to the vaccine was rescued to levels similar to those found in non-transgenic mice, indicating that the vaccine is capable of providing therapeutic benefit in APP+PS1 mice when administered after the onset of AD pathology. The vaccine also shows indications of circumventing past safety problems observed in AD immunotherapy, as Th1 pro-inflammatory cytokines were not elevated after long-term vaccine administration. Moreover, microhemorrhaging and T-cell infiltration into the brain are not observed in any of the treated subjects. All in all, this vaccine has many advantages over contemporary vaccines against Alzheimer's disease, and may lead to a viable treatment for the disease in the future.
Collapse
|
research-article |
13 |
11 |
15
|
Nabar NR, Shi CS, Kehrl JH. Signaling by the Toll-Like Receptors Induces Autophagy Through Modification of Beclin 1. Immunology 2018. [DOI: 10.1016/b978-0-12-809819-6.00006-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
|
7 |
8 |
16
|
Pan W, Xiao X, Li J, Deng S, Shan Q, Yue Y, Tian Y, Nabar NR, Wang M, Hao L. The comparison of biocompatibility and osteoinductivity between multi-walled and single-walled carbon nanotube/PHBV composites. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:189. [PMID: 30535725 DOI: 10.1007/s10856-018-6197-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 11/25/2018] [Indexed: 02/05/2023]
Abstract
The applications of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) in tissue engineering have been widely studied. This study aimed to compare the biocompatibility and osteoinductivity of single-walled carbon nanotubes (SWCNTs)/PHBV composites with multi-walled CNTs (MWCNTs)/PHBV composites. CNTs were dispersed in PHBV by ultrasonication and composites were created using thermal injection moulding. In order to test their biocompatibility and osteoinductivity. Rat osteoblasts (rOBs) were then cultured and seeded on the composites. The composites were implanted in rat femoral bone defects. Our results showed that lower weight percentages of SWCNTs and MWCNTs (2-4%) improved both their mechanical and thermal decomposition properties. However, further reduction of rOBs cell death was observed in MWCNTs/PHBV. SWCNTs were shown to upregulate the expression of Runx-2 and Bmp-2 in early stage significantly, while MWCNTs showed a stronger long-term effect on Opn and Ocn. The in vivo result was that MWCNTs/PHBV composites induced intact rounding new bone, increased integration with new bone, and earlier completed bone remodeling when compared with SWCNTs. Immunohistochemistry also detected higher expression of RUNX-2 around MWCNTs/PHBV composites. In conclusion, there were no differences observed between SWCNTs and MWCNTs in the reinforcement of PHBV, while MWCNTs/PHBV composites showed better biocompatibility and osteoinductivity both in vitro and in vivo.
Collapse
|
Journal Article |
7 |
8 |
17
|
Fassihi SC, Nabar NR, Fassihi R. Novel approach for low-dose pulmonary delivery of hydroxychloroquine in COVID-19. Br J Pharmacol 2020; 177:4997-4998. [PMID: 32562278 PMCID: PMC7323163 DOI: 10.1111/bph.15167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/06/2020] [Accepted: 06/12/2020] [Indexed: 12/23/2022] Open
|
Letter |
5 |
7 |
18
|
Xiao X, Ren J, Chen J, Liu Z, Tian Y, Nabar NR, Wang M, Hao L. LOX-related collagen crosslink changes act as an initiator of bone fragility in a ZDF rats model. Biochem Biophys Res Commun 2018; 495:821-827. [DOI: 10.1016/j.bbrc.2017.11.082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/11/2017] [Indexed: 02/01/2023]
|
|
7 |
7 |
19
|
Abstract
IRGM is a risk factor for several inflammatory diseases, yet no direct link to immune regulation had been shown. In this issue of Molecular Cell, Mehto et al. (2019) report that IRGM limits NLRP3 inflammasome activation-by both direct inhibition of NLRP3/ASC oligomerization and selective autophagic destruction of NLRP3/ASC.
Collapse
|
Comment |
6 |
4 |
20
|
Shi CS, Nabar NR, Huang NN, Kehrl JH. SARS-Coronavirus Open Reading Frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes. Cell Death Dis 2019. [PMID: 31231549 DOI: 10.1038/s41420‐019‐0181‐7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The SARS (severe acute respiratory syndrome) outbreak was caused by a coronavirus (CoV) named the SARS-CoV. SARS pathology is propagated both by direct cytotoxic effects of the virus and aberrant activation of the innate immune response. Here, we identify several mechanisms by which a SARS-CoV open reading frame (ORF) activates intracellular stress pathways and targets the innate immune response. We show that ORF8b forms insoluble intracellular aggregates dependent on a valine at residue 77. Aggregated ORF8b induces endoplasmic reticulum (ER) stress, lysosomal damage, and subsequent activation of the master regulator of the autophagy and lysosome machinery, Transcription factor EB (TFEB). ORF8b causes cell death in epithelial cells, which is partially rescued by reducing its ability to aggregate. In macrophages, ORF8b robustly activates the NLRP3 inflammasome by providing a potent signal 2 required for activation. Mechanistically, ORF8b interacts directly with the Leucine Rich Repeat domain of NLRP3 and localizes with NLRP3 and ASC in cytosolic dot-like structures. ORF8b triggers cell death consistent with pyroptotic cell death in macrophages. While in those cells lacking NLRP3 accumulating ORF8b cytosolic aggregates cause ER stress, mitochondrial dysfunction, and caspase-independent cell death.
Collapse
|
|
6 |
3 |
21
|
Yue Y, Nabar NR, Shi CS, Kamenyeva O, Xiao X, Hwang IY, Wang M, Kehrl JH. SARS-Coronavirus Open Reading Frame-3a drives multimodal necrotic cell death. Cell Death Dis 2018. [PMID: 30185776 DOI: 10.1038/s41419‐018‐0917‐y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The molecular mechanisms underlying the severe lung pathology that occurs during SARS-CoV infections remain incompletely understood. The largest of the SARS-CoV accessory protein open reading frames (SARS 3a) oligomerizes, dynamically inserting into late endosomal, lysosomal, and trans-Golgi-network membranes. While previously implicated in a non-inflammatory apoptotic cell death pathway, here we extend the range of SARS 3a pathophysiologic targets by examining its effects on necrotic cell death pathways. We show that SARS 3a interacts with Receptor Interacting Protein 3 (Rip3), which augments the oligomerization of SARS 3a helping drive necrotic cell death. In addition, by inserting into lysosomal membranes SARS 3a triggers lysosomal damage and dysfunction. Consequently, Transcription Factor EB (TFEB) translocates to the nucleus increasing the transcription of autophagy- and lysosome-related genes. Finally, SARS 3a activates caspase-1 either directly or via an enhanced potassium efflux, which triggers NLRP3 inflammasome assembly. In summary, Rip3-mediated oligomerization of SARS 3a causes necrotic cell death, lysosomal damage, and caspase-1 activation-all likely contributing to the clinical manifestations of SARS-CoV infection.
Collapse
|
|
7 |
1 |
22
|
Nabar NR, Yuan F, Lin X, Wang L, Bai G, Mayl J, Li Y, Zhou SF, Wang J, Cai J, Cao C. Correction: Cell Therapy: A Safe and Efficacious Therapeutic Treatment for Alzheimer's Disease in APP+PS1 Mice. PLoS One 2024; 19:e0303619. [PMID: 38722875 PMCID: PMC11081276 DOI: 10.1371/journal.pone.0303619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0049468.].
Collapse
|
Published Erratum |
1 |
|
23
|
Nabar NR, Kehrl JH. The Transcription Factor EB Links Cellular Stress to the Immune Response
. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:301-315. [PMID: 28656016 PMCID: PMC5482306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The transcription factor EB (TFEB) is the master transcriptional regulator of autophagy and lysosome biogenesis. Recent advances have led to a paradigm shift in our understanding of lysosomes from a housekeeping cellular waste bin to a dynamically regulated pathway that is efficiently turned up or down based on cellular needs. TFEB coordinates the cellular response to nutrient deprivation and other forms of cell stress through the lysosome system, and regulates a myriad of cellular processes associated with this system including endocytosis, phagocytosis, autophagy, and lysosomal exocytosis. Autophagy and the endolysosomal system are critical to both the innate and adaptive arms of the immune system, with functions in effector cell priming and direct pathogen clearance. Recent studies have linked TFEB to the regulation of the immune response through the endolysosmal pathway and by direct transcriptional activation of immune related genes. In this review, we discuss the current understanding of TFEB's function and the molecular mechanisms behind TFEB activation. Finally, we discuss recent advances linking TFEB to the immune response that positions lysosomal signaling as a potential target for immune modulation.
Collapse
|
Review |
8 |
|
24
|
Martin DF, Nabar N. Studies on the removal of Lissamine Green B from clays and soil in comparison with contemporary approaches. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2012; 47:260-266. [PMID: 22242878 DOI: 10.1080/10934529.2011.640900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A combination of Fenton's reagent with electrochemistry has been demonstrated to be a efficient method for removing a dye (Lissamine Green B) from clays (kaolin, montmorillonite) and soil. The two-step approach described here involved quantitative extraction with hot water, followed by quantitative removal of the Lissamine Green dye by column chromatography using Octolig®. The advantage of this procedure is success without the need for Fenton reagents or electricity. A disadvantage is the process would not work with polycyclic hydrocarbons such as phenanthrene, though the electro-Fenton degradation does.
Collapse
|
|
13 |
|
25
|
Ho M, Paruzzo L, Minehart J, Nabar N, Noll JH, Luo T, Garfall A, Zanwar S. Extramedullary Multiple Myeloma: Challenges and Opportunities. Curr Oncol 2025; 32:182. [PMID: 40136386 PMCID: PMC11940950 DOI: 10.3390/curroncol32030182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/09/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025] Open
Abstract
Extramedullary multiple myeloma (EMM), defined in this review as soft tissue plasmacytomas resulting from hematogenous spread, is characterized by the ability of MM cells to proliferate outside of the bone marrow microenvironment. It is aggressive, often associated with high-risk cytogenetics and early relapse, and independently portends significantly shorter progression-free and overall survival, even in the era of highly effective immunotherapies. The molecular and microenvironmental factors underlying extramedullary MM dissemination continue to be studied to inform the development of better treatments. In this review, we discuss our current understanding of the biology of EMM, focusing on its distinct molecular and microenvironmental characteristics vis-à-vis MM. We also review the current treatment strategies, acknowledging the paucity of large, randomized studies specific to this population.
Collapse
|
Review |
1 |
|