1
|
Robinson CG, Samson PP, Moore KMS, Hugo GD, Knutson N, Mutic S, Goddu SM, Lang A, Cooper DH, Faddis M, Noheria A, Smith TW, Woodard PK, Gropler RJ, Hallahan DE, Rudy Y, Cuculich PS. Phase I/II Trial of Electrophysiology-Guided Noninvasive Cardiac Radioablation for Ventricular Tachycardia. Circulation 2019; 139:313-321. [PMID: 30586734 DOI: 10.1161/circulationaha.118.038261] [Citation(s) in RCA: 293] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Case studies have suggested the efficacy of catheter-free, electrophysiology-guided noninvasive cardiac radioablation for ventricular tachycardia (VT) using stereotactic body radiation therapy, although prospective data are lacking. METHODS We conducted a prospective phase I/II trial of noninvasive cardiac radioablation in adults with treatment-refractory episodes of VT or cardiomyopathy related to premature ventricular contractions (PVCs). Arrhythmogenic scar regions were targeted by combining noninvasive anatomic and electric cardiac imaging with a standard stereotactic body radiation therapy workflow followed by delivery of a single fraction of 25 Gy to the target. The primary safety end point was treatment-related serious adverse events in the first 90 days. The primary efficacy end point was any reduction in VT episodes (tracked by indwelling implantable cardioverter defibrillators) or any reduction in PVC burden (as measured by a 24-hour Holter monitor) comparing the 6 months before and after treatment (with a 6-week blanking window after treatment). Health-related quality of life was assessed using the Short Form-36 questionnaire. RESULTS Nineteen patients were enrolled (17 for VT, 2 for PVC cardiomyopathy). Median noninvasive ablation time was 15.3 minutes (range, 5.4-32.3). In the first 90 days, 2/19 patients (10.5%) developed a treatment-related serious adverse event. The median number of VT episodes was reduced from 119 (range, 4-292) to 3 (range, 0-31; P<0.001). Reduction was observed for both implantable cardioverter defibrillator shocks and antitachycardia pacing. VT episodes or PVC burden were reduced in 17/18 evaluable patients (94%). The frequency of VT episodes or PVC burden was reduced by 75% in 89% of patients. Overall survival was 89% at 6 months and 72% at 12 months. Use of dual antiarrhythmic medications decreased from 59% to 12% ( P=0.008). Quality of life improved in 5 of 9 Short Form-36 domains at 6 months. CONCLUSIONS Noninvasive electrophysiology-guided cardiac radioablation is associated with markedly reduced ventricular arrhythmia burden with modest short-term risks, reduction in antiarrhythmic drug use, and improvement in quality of life. CLINICAL TRIAL REGISTRATION URL: https://www.clinicaltrials.gov/ . Unique identifier: NCT02919618.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
293 |
2
|
Patterson GR, DeGarmo DS, Knutson N. Hyperactive and antisocial behaviors: comorbid or two points in the same process? Dev Psychopathol 2000; 12:91-106. [PMID: 10774598 DOI: 10.1017/s0954579400001061] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We hypothesized that hyperactivity defines the first stage and that antisocial problems define a second stage in a progression that leads eventually to early-onset delinquency. As expected, a structural equation model (SEM) showed that a latent construct for hyperactivity was significantly related to a latent construct for antisocial problems. We hypothesized that this path reflected a shared mechanism, disrupted parental discipline. A second SEM showed that the relation between hyperactivity and antisocial behavior really reflected a shared disruption in parental discipline. A third SEM showed that having antisocial parents was uniquely correlated with antisocial children but not with hyperactivity. A fourth SEM showed that early-onset delinquency was predicted by a latent construct for antisocial child; but when this was partialed out, the contribution for hyperactivity was nonsignificant.
Collapse
|
|
25 |
149 |
3
|
Pedersen NL, Miller BL, Wetherell JL, Vallo J, Toga AW, Knutson N, Mehringer CM, Small GW, Gatz M. Neuroimaging findings in twins discordant for Alzheimer's disease. Dement Geriatr Cogn Disord 1999; 10:51-8. [PMID: 9844037 DOI: 10.1159/000017097] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Data from computed tomography (CT) scans of 12 twin pairs in which one partner had Azheimer's disease (AD) and the other partner is cognitively intact were analyzed to study structural brain features associated with AD while controlling for familial factors. Visual ratings and analysis of quantified areas and volumes indicated that AD twins showed more dilation of temporal horns, lateral ventricles and third ventricle, and more atrophy of temporal lobes, particularly in the anterior temporal/perisylvian area, than their healthy cotwins. Demented twins did not have smaller intracranial areas or overall brain volumes than their intact partners. The apolipoprotein sigma-4 allele was associated with greater dilation of lateral ventricles and ventricular volume. Significant intrapair correlations were found for total intracranial area and volume, cerebellar area and white matter lesions.
Collapse
|
Clinical Trial |
26 |
88 |
4
|
Delaney B, Carlson T, Frazer S, Zheng T, Hess R, Ostergren K, Kierzek K, Haworth J, Knutson N, Junker K, Jonker D. Evaluation of the toxicity of concentrated barley beta-glucan in a 28-day feeding study in Wistar rats. Food Chem Toxicol 2003; 41:477-87. [PMID: 12615121 DOI: 10.1016/s0278-6915(02)00298-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Beta-glucans are water-soluble cell-wall polysaccharides consisting of (1-->3,1-->4)-linked beta-D-glucopyranosyl monomers that comprise a considerable proportion of soluble fiber from certain grains including oats and barley. Consumption of foods containing beta-glucan or beta-glucan-enriched fractions prepared from these grains lower serum cholesterol concentrations in humans and in animal models of hypercholesterolemia. The present study was conducted to evaluate the toxicity of beta-glucan-enriched soluble fiber from barley in Wistar rats on dietary administration at concentrations of 0.7, 3.5 and 7% beta-glucan for 28 days. There were no adverse effects on general condition and behavior, growth, feed and water consumption, feed conversion efficiency, red blood cell and clotting potential parameters, clinical chemistry values, and organ weights. Necropsy and histopathology findings revealed no treatment-related changes in any organ evaluated. A dose-dependent increase in full and empty cecum weight was observed. This is a common physiological response of rodents to high amounts of poorly digestible, fermentable carbohydrates, and was of no toxicological concern. The only finding of possible biological relevance was an increase in the number of circulating lymphocytes observed in males. However, the increase was not dose-dependent and was not observed in females. Results of this study demonstrated that consumption of concentrated barley beta-glucan was not associated with any obvious signs of toxicity in Wistar rats even following consumption of large quantities.
Collapse
|
|
22 |
41 |
5
|
Darafsheh A, Hao Y, Zwart T, Wagner M, Catanzano D, Williamson JF, Knutson N, Sun B, Mutic S, Zhao T. Feasibility of proton FLASH irradiation using a synchrocyclotron for preclinical studies. Med Phys 2020; 47:4348-4355. [DOI: 10.1002/mp.14253] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 11/12/2022] Open
|
|
5 |
35 |
6
|
Zhao T, Sun B, Grantham K, Rankine L, Cai B, Goddu SM, Santanam L, Knutson N, Zhang T, Reilly M, Bottani B, Bradley J, Mutic S, Klein EE. Commissioning and initial experience with the first clinical gantry-mounted proton therapy system. J Appl Clin Med Phys 2016; 17:24-40. [PMID: 27074470 PMCID: PMC5874960 DOI: 10.1120/jacmp.v17i2.5868] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/21/2015] [Accepted: 10/13/2015] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study is to describe the comprehensive commissioning process and initial clinical experience of the Mevion S250 proton therapy system, a gantry‐mounted, single‐room proton therapy platform clinically implemented in the S. Lee Kling Proton Therapy Center at Barnes‐Jewish Hospital in St. Louis, MO, USA. The Mevion S250 system integrates a compact synchrocyclotron with a C‐inner gantry, an image guidance system and a 6D robotic couch into a beam delivery platform. We present our commissioning process and initial clinical experience, including i) CT calibration; ii) beam data acquisition and machine characteristics; iii) dosimetric commissioning of the treatment planning system; iv) validation through the Imaging and Radiation Oncology Core credentialing process, including irradiations on the spine, prostate, brain, and lung phantoms; v) evaluation of localization accuracy of the image guidance system; and vi) initial clinical experience. Clinically, the system operates well and has provided an excellent platform for the treatment of diseases with protons. PACS number(s): 87.55.ne, 87.56.bd
Collapse
|
Journal Article |
9 |
28 |
7
|
Duriseti S, Kavanaugh J, Goddu S, Price A, Knutson N, Reynoso F, Michalski J, Mutic S, Robinson C, Spraker MB. Spatially fractionated stereotactic body radiation therapy (Lattice) for large tumors. Adv Radiat Oncol 2021; 6:100639. [PMID: 34195486 PMCID: PMC8233471 DOI: 10.1016/j.adro.2020.100639] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/22/2020] [Accepted: 12/02/2020] [Indexed: 12/31/2022] Open
Abstract
Purpose Stereotactic body radiation therapy (SBRT) has demonstrated clinical benefits for patients with metastatic and/or unresectable cancer. Technical considerations of treatment delivery and nearby organs at risk can limit the use of SBRT in large tumors or those in unfavorable locations. Spatially fractionated radiation therapy (SFRT) may address this limitation because this technique can deliver high-dose radiation to discrete subvolume vertices inside a tumor target while restricting the remainder of the target to a safer lower dose. Indeed, SFRT, such as GRID, has been used to treat large tumors with reported dramatic tumor response and minimal side effects. Lattice is a modern approach to SFRT delivered with arc-based therapy, which may allow for safe, high-quality SBRT for large and/or deep tumors. Methods and Materials Herein, we report the results of a dosimetry and quality assurance feasibility study of Lattice SBRT in 11 patients with 12 tumor targets, each ≥10 cm in an axial dimension. Prior computed tomography simulation scans were used to generate volumetric modulated arc therapy Lattice SBRT plans that were then delivered on clinically available Linacs. Quality assurance testing included external portal imaging device and ion chamber analyses. Results All generated plans met the standard SBRT dose constraints, such as those from the American Association of Physicists in Medicine Task Group 101. Additionally, we provide a step-by-step approach to generate and deliver Lattice SBRT plans using commercially available treatment technology. Conclusions Lattice SBRT is currently being tested in a prospective trial for patients with metastatic cancer who need palliation of large tumors (NCT04553471, NCT04133415).
Collapse
|
Journal Article |
4 |
21 |
8
|
Andruska N, Kennedy WR, Bonestroo L, Anderson R, Huang Y, Robinson CG, Abraham C, Tsien C, Knutson N, Rich KM, Spencer C, Huang J. Dosimetric predictors of symptomatic radiation necrosis after five-fraction radiosurgery for brain metastases. Radiother Oncol 2020; 156:181-187. [PMID: 33310010 DOI: 10.1016/j.radonc.2020.12.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/28/2020] [Accepted: 12/01/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND To identify factors predictive of developing symptomatic radiation necrosis (sRN) among patients with either intact or resected brain metastases undergoing five-fraction stereotactic radiosurgery (5fSRS). METHODS Multi-institutional retrospective review of 117 brain metastases from 83 patients treated with 5fSRS. The cumulative incidence of sRN and predictors of sRN were calculated using Gray's competing risks and Cox regression. RESULTS The median dose of 5fSRS was 30 Gy (range: 25-40), and 21 lesions (18%) had prior SRS. After a median follow-up of 10.3 months (range: 3-52), the cumulative sRN incidence was 15%, with a median time to sRN of 6.9 months (range: 1.8-31.7). sRN incidence was significantly higher among the lesions treated with prior SRS: hazard ratio (HR): 7.48 [95% confidence interval: 2.57-21.8]. Among lesions without prior SRS, higher volume of uninvolved brain receiving 25 Gy (BrainV25; HR: 1.07 [1.02-1.12]) and 30 Gy (BrainV30; HR: 1.07 [1.01-1.33]) were the most significant factors associated with sRN. Similar results were also observed among the patients with prior SRS. For lesions without prior SRS, BrainV25 > 16 cm3 (HR: 11.7 [1.47-93.3]) and BrainV30 > 10 cm3 (HR: 7.08 [1.52-33.0]) were associated with significantly higher risk of sRN. At two years, the sRN incidence was 21% if violating either dosimetric threshold and 2% if violating neither (p = .007). CONCLUSION BrainV25 and BrainV30 are significant dosimetric predictors of sRN of brain metastases treated with 5fSRS. In the absence of prior SRS, maintaining BrainV25Gy < 16 cm3 and BrainV30Gy < 10 cm3 may minimize sRN risk.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
18 |
9
|
Li HH, Xiao Z, Hansel R, Knutson N, Yang D. Performance of KCl:Eu2+ storage phosphor dosimeters for low-dose measurements. Phys Med Biol 2013; 58:4357-66. [PMID: 23735856 DOI: 10.1088/0031-9155/58/12/4357] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recent research has demonstrated that europium doped potassium chloride (KCl:Eu(2+)) storage phosphor material has the potential to become the physical foundation of a novel and reusable dosimetry system using either film-like devices or devices similar to thermoluminescent dosimeter chips. The purposes of this work are to quantify the performance of KCl:Eu(2+) prototype dosimeters for low-dose measurements and to demonstrate how it can be incorporated into clinical application for in vivo peripheral dose measurements. Pellet-style KCl:Eu(2+) dosimeters, 6 mm in diameter, and 1 mm thick, were fabricated in-house for this study. The dosimeters were read using a laboratory photostimulated luminescence detection system. KCl:Eu(2+) prototype storage phosphor dosimeter was capable of measuring a dose-to-water as low as 0.01 cGy from a 6 MV photon beam with a signal-to-noise ratio greater than 6. A pre-readout thermal annealing procedure enabled the dosimeter to be read within an hour post-irradiation. After receiving large accumulated doses (~10 kGy), the dosimeters retained linear response in the low-dose region with only a 20% loss of sensitivity comparing to a fresh sample (zero Gy history). The energy dependence encountered during low-dose peripheral measurements could be accounted for via a single point outside-field calibration per each beam quality. With further development the KCl:Eu(2+-)-based dosimeter could become a versatile and durable dosimetry tool with large dynamic range (sub-cGy to 100 Gy).
Collapse
|
Research Support, N.I.H., Extramural |
12 |
14 |
10
|
Markovina S, Weschenfelder DC, Gay H, McCandless A, Carey B, DeWees T, Knutson N, Michalski J. Low incidence of new biochemical hypogonadism after intensity modulated radiation therapy for prostate cancer. Pract Radiat Oncol 2014; 4:430-6. [DOI: 10.1016/j.prro.2014.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/10/2014] [Accepted: 02/12/2014] [Indexed: 11/30/2022]
|
|
11 |
13 |
11
|
Kim T, Ji Z, Lewis B, Laugeman E, Price A, Hao Y, Hugo G, Knutson N, Cai B, Kim H, Henke L. Visually guided respiratory motion management for Ethos adaptive radiotherapy. J Appl Clin Med Phys 2021; 23:e13441. [PMID: 34697865 PMCID: PMC8803298 DOI: 10.1002/acm2.13441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/31/2021] [Accepted: 09/17/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose Ethos adaptive radiotherapy (ART) is emerging with AI‐enhanced adaptive planning and high‐quality cone‐beam computed tomography (CBCT). Although a respiratory motion management solution is critical for reducing motion artifacts on abdominothoracic CBCT and improving tumor motion control during beam delivery, our institutional Ethos system has not incorporated a commercial solution. Here we developed an institutional visually guided respiratory motion management system to coach patients in regular breathing or breath hold during intrafractional CBCT scans and beam delivery with Ethos ART. Methods The institutional visual‐guidance respiratory motion management system has three components: (1) a respiratory motion detection system, (2) an in‐room display system, and (3) a respiratory motion trace management software. Each component has been developed and implemented in the clinical Ethos ART workflow. The applicability of the solution was demonstrated in installation, routine QA, and clinical workflow. Results An air pressure sensor has been utilized to detect patient respiratory motion in real time. Either a commercial or in‐house software handled respiratory motion trace display, collection and visualization for operators, and visual guidance for patients. An extended screen and a projector on an adjustable stand were installed as the in‐room visual guidance solution for the closed‐bore ring gantry medical linear accelerator utilized by Ethos. Consistent respiratory motion traces and organ positions on intrafractional CBCTs demonstrated the clinical suitability of the proposed solution in Ethos ART. Conclusion The study demonstrated the utilization of an institutional visually guided respiratory motion management system for Ethos ART. The proposed solution can be easily applied for Ethos ART and adapted for use with any closed bore‐type system, such as computed tomography and magnetic resonance imaging, through incorporation with appropriate respiratory motion sensors.
Collapse
|
|
4 |
10 |
12
|
Price A, Kim H, Henke LE, Knutson NC, Spraker MB, Michalski J, Hugo GD, Robinson CG, Green O. Implementing a Novel Remote Physician Treatment Coverage Practice for Adaptive Radiation Therapy During the Coronavirus Pandemic. Adv Radiat Oncol 2020; 5:737-742. [PMID: 32775784 PMCID: PMC7246005 DOI: 10.1016/j.adro.2020.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE The 2019 coronavirus disease pandemic has placed an increased importance on physical distancing to minimize the risk of transmission in radiation oncology departments. The pandemic has also increased the use of hypofractionated treatment schedules where magnetic resonance-guided online adaptive radiation therapy (ART) can aid in dose escalation. This specialized technique requires increased staffing in close proximity, and thus the need for novel coverage practices to increase physical distancing while still providing specialty care. METHODS AND MATERIALS A remote-physician ART coverage practice was developed and described using commercially available software products. Our remote-physician coverage practice provided control to the physician to contour and review of the images and plans. The time from completion of image registration to the beginning of treatment was recorded for 20 fractions before remote-physician ART coverage and 14 fractions after implementation of remote-physician ART coverage. Visual quality was calculated using cross-correlation between the treatment delivery and remote-physician computer screens. RESULTS For the 14 fractions after implementation, the average time from image registration to the beginning of treatment was 24.9 ± 6.1 minutes. In comparison, the 20 fractions analyzed without remote coverage had an average time of 29.2 ± 9.8 minutes. The correlation between the console and remote-physician screens was R = .95. CONCLUSIONS Our novel remote-physician ART coverage practice is secure, interactive, timely, and of high visual quality. When using remote physicians for ART, our department was able to increase physical distancing to lower the risk of virus transmission while providing specialty care to patients in need.
Collapse
|
research-article |
5 |
10 |
13
|
Knutson NC, Hawkins BJ, Bollinger D, Goddu SM, Kavanaugh JA, Santanam L, Mitchell TJ, Zoberi JE, Tsien C, Huang J, Robinson CG, Perkins SM, Dowling JL, Chicoine MR, Rich KM, Dunn GP, Mutic S. Characterization and validation of an intra-fraction motion management system for masked-based radiosurgery. J Appl Clin Med Phys 2019; 20:21-26. [PMID: 31055877 PMCID: PMC6522989 DOI: 10.1002/acm2.12573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/28/2019] [Accepted: 03/07/2019] [Indexed: 11/29/2022] Open
Abstract
Purpose Characterize the intra‐fraction motion management (IFMM) system found on the Gamma Knife Icon (GKI), including spatial accuracy, latency, temporal performance, and overall effect on delivered dose. Methods A phantom was constructed, consisting of a three‐axis translation mount, a remote motorized flipper, and a thermoplastic sphere surrounding a radiation detector. An infrared marker was placed on the translation mount secured to the flipper. The spatial accuracy of the IFMM was measured via the translation mount in all Cartesian planes. The detector was centered at the radiation focal point. A remote signal was used to move the marker out of the IFMM tolerance and pause the beam. A two‐channel electrometer was used to record the signals from the detector and the flipper when motion was signaled. These signals determined the latency and temporal performance of the GKI. Results The spatial accuracy of the IFMM was found to be <0.1 mm. The measured latency was <200 ms. The dose difference with five interruptions was <0.5%. Conclusion This work provides a quantitative characterization of the GKI IFMM system as required by the Nuclear Regulatory Commission. This provides a methodology for GKI users to satisfy these requirements using common laboratory equipment in lieu of a commercial solution.
Collapse
|
Validation Study |
6 |
8 |
14
|
Hao Y, Cai B, Green O, Knutson N, Yaddanapudi S, Zhao T, Rodriguez V, Schmidt M, Mutic S, Sun B. Technical Note: An alternative approach to verify 6FFF beam dosimetry for Ethos and MR Linac without using a 3D water tank. Med Phys 2021; 48:1533-1539. [PMID: 33547684 DOI: 10.1002/mp.14757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/17/2020] [Accepted: 01/29/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE The current approach to Linac beam dosimetry verification is typically performed utilizing a three-dimensional (3D) water tank system. The 3D beam scanning process is cumbersome, labor intensive, error-prone, and costly. This is especially challenging for the new Ethos system and MR Linacs with a ring gantry. This work proposes an alternative approach to verify 6FFF beam dosimetry for Ethos, ViewRay MRIdian® Linac, and other Linacs with 6FFF beam quality using two-dimensional (2D) ion chamber arrays. METHODS Percentage depth dose (PDD) and profiles of an Ethos, an MRIdian® Linac, and several Linacs with 6FFF beams were measured at the nominal beam current. The beam energy was detuned by changing the bending magnet current on one TrueBeam. PDDs and profiles were measured for detuned beam energies. The peak shape of the 6FFF profile was defined by a "slope" parameter and unflatness. Correlations between peak slope and unflatness metrics vs PDDs were used to evaluate the sensitivity of beam energy to beam profile changes at different field sizes and depths. RESULTS Strong correlations were found between peak slope and PDDs for all Linacs with 6FFF beam. The R-squared values in the linear regression fitting between PDD and peak slope and unflatness were 0.99 and 0.84, respectively. Both profile slope and unflatness were proportional to PDD at the 10 cm depth and the peak slope was 4.3 times more sensitive than PDD. We have identified that measurements with a shallow depth are preferred to quantify the beam energy consistency. CONCLUSIONS Our work shows the feasibility of verifying 6FFF beam quality of Ethos, MR Linac, and other Linacs by defining a profile slope measured from 2D ionization chambers array devices. This new approach provides a simplified method for performing a routine beam quality check without using a 3D water tank system while maximizing cost effectiveness and efficiency.
Collapse
|
Journal Article |
4 |
6 |
15
|
Giacobbi PR, Buman MP, Dzierzewski J, Aiken-Morgan AT, Roberts B, Marsiske M, Knutson N, Smith-McCrae C. Content and Perceived Utility of Mental Imagery by Older Adults in a Peer-Delivered Physical Activity Intervention. JOURNAL OF APPLIED SPORT PSYCHOLOGY 2014; 26:129-143. [PMID: 25067894 PMCID: PMC4106045 DOI: 10.1080/10413200.2013.803502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Imagery interventions intended to increase exercise behavior are rare. The Active Adult Mentoring Program (AAMP) was a randomized controlled trial with imagery content. The purposes of this study were to examine the content and perceived utility of mental imagery with 24 AAMP participants (Mage = 65.00, SD = 8.79 years). Digital recordings of AAMP sessions and post-intervention interviews were content-analyzed. Emergent themes included images of the physical activity context and negative impressions about imagery. Post-intervention interviews revealed that 13 participants reported positive experiences using mental imagery while 9 would not engage in further use. Important implications are discussed.
Collapse
|
research-article |
11 |
6 |
16
|
Knutson NC, Kavanaugh JA, Li HH, Zoberi JE, Zhao T, Green O, Rodriguez V, Sun B, Reynoso FJ, Price AT, Prusator MT, Kim T, Cai B, Hugo GD. Radiation oncology physics coverage during the COVID-19 pandemic: Successes and lessons learned. J Appl Clin Med Phys 2021; 22:4-7. [PMID: 33742538 PMCID: PMC7984470 DOI: 10.1002/acm2.13225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
Editorial |
4 |
5 |
17
|
Price A, Henke LE, Maraghechi B, Kim T, Spraker MB, Hugo GD, Robinson CG, Knutson NC. Implementation of a Novel Remote Physician Stereotactic Body Radiation Therapy Coverage Process during the Coronavirus Pandemic. Adv Radiat Oncol 2020; 5:690-696. [PMID: 32346656 PMCID: PMC7186133 DOI: 10.1016/j.adro.2020.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE During the coronavirus 2019 disease (COVID-19) pandemic, alternative methods of care are needed to reduce the relative risk of transmission in departments. Also needed is the ability to provide vital radiation oncological care if radiation oncologists (RO) are reallocated to other departments. We implemented a novel remote RO stereotactic body radiation therapy (SBRT) coverage practice, requiring it to be reliable, of high audio and visual quality, timely, and the same level of specialty care as our current in-person treatment coverage practice. METHODS AND MATERIALS All observed failure modes were recorded during implementation over the first 15 sequential fractions. The time from cone beam computed tomography to treatment was calculated before and after implementation to determine timeliness of remote coverage. Image quality metrics were calculated between the imaging console screen and the RO's shared screen. Comfort levels with audio and visual communication as well as overall comfort in comparison to in-person RO coverage was evaluated using Likert scale surveys after treatment. RESULTS Remote RO SBRT coverage was successfully implemented in 14 of 15 fractions with 3 observed process failures that were all corrected before treatment. Average times of pretreatment coverage before and after implementation were 8.74 and 8.51 minutes, respectively. The cross correlation between the imaging console screen and RO's shared screen was r = 0.96 and lag was 0.05 seconds. The average value for all survey questions was more than 4.5, approaching in-person RO coverage comfort levels. CONCLUSION Our novel method of remote RO SBRT coverage permits reduced personnel and patient interactions surrounding radiation therapy procedures. This may help to reduce transmission of COVID-19 in our department and provides a means for SBRT coverage if ROs are reallocated to other areas of the hospital for COVID-19 support.
Collapse
|
research-article |
5 |
4 |
18
|
Price AT, Knutson NC, Kim T, Green OL. Commissioning a secondary dose calculation software for a 0.35 T MR-linac. J Appl Clin Med Phys 2022; 23:e13452. [PMID: 35166011 PMCID: PMC8906210 DOI: 10.1002/acm2.13452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 08/09/2021] [Accepted: 08/28/2021] [Indexed: 11/09/2022] Open
Abstract
Secondary external dose calculations for a 0.35 T magnetic resonance image-guided radiation therapy (MRgRT) are needed within the radiation oncology community to follow safety standards set forth within the field. We evaluate the commercially available software, RadCalc, in its ability to accurately perform monitor unit dose calculations within a magnetic field. We also evaluate the potential effects of a 0.35 T magnetic field upon point dose calculations. Monitor unit calculations were evaluated with (wMag) and without (noMag) a magnetic field considerations in RadCalc for the ViewRay MRIdian. The magnetic field is indirectly accounted for by using asymmetric profiles for calculation. The introduction of double-stacked multi-leaf collimator leaves was also included in the monitor unit calculations and a single transmission value was determined. A suite of simple and complex geometries with a variety field arrangements were calculated for each method to demonstrate the effect of the 0.35 T magnetic field on monitor unit calculations. Finally, 25 patient-specific treatment plans were calculated using each method for comparison. All simple geometries calculated in RadCalc were within 2% of treatment planning system (TPS) values for both methods, except for a single noMag off-axis comparison. All complex muilt-leaf collimator (MLC) pattern calculations were within 5%. All complex phantom geometry calculations were within 5% except for a single field within a lung phantom at a distal point. For the patient calculations, the noMag method average percentage difference was 0.09 ± 2.5% and the wMag average percentage difference was 0.08 ± 2.5%. All results were within 5% for the wMag method. We performed monitor unit calculations for a 0.35 T MRgRT system using a commercially available secondary monitor unit dose calculation software and demonstrated minimal impact of the 0.35 T magnetic field on monitor unit dose calculations. This is the first investigation demonstrating successful calculations of dose using RadCalc in the low-field 0.35 T ViewRay MRIdian system.
Collapse
|
|
3 |
3 |
19
|
Prusator MT, Zhao T, Kavanaugh JA, Santanam L, Dise J, Goddu SM, Mitchell TJ, Zoberi JE, Kim T, Mutic S, Knutson NC. Evaluation of a new secondary dose calculation software for Gamma Knife radiosurgery. J Appl Clin Med Phys 2020; 21:95-102. [PMID: 31943756 PMCID: PMC6964756 DOI: 10.1002/acm2.12794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/15/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022] Open
Abstract
Current available secondary dose calculation software for Gamma Knife radiosurgery falls short in situations where the target is shallow in depth or when the patient is positioned with a gamma angle other than 90°. In this work, we evaluate a new secondary calculation software which utilizes an innovative method to handle nonstandard gamma angles and image thresholding to render the skull for dose calculation. 800 treatment targets previously treated with our GammaKnife Icon system were imported from our treatment planning system (GammaPlan 11.0.3) and a secondary dose calculation was conducted. The agreement between the new calculations and the TPS were recorded and compared to the original secondary dose calculation agreement with the TPS using a Wilcoxon Signed Rank Test. Further comparisons using a Mann‐Whitney test were made for targets treated at a 90° gamma angle against those treated with either a 70 or 110 gamma angle for both the new and commercial secondary dose calculation systems. Correlations between dose deviations from the treatment planning system against average target depth were evaluated using a Kendall’s Tau correlation test for both programs. The Wilcoxon Signed Rank Test indicated a significant difference in the agreement between the two secondary calculations and the TPS, with a P‐value < 0.0001. With respect to patients treated at nonstandard gamma angles, the new software was largely independent of patient setup, while the commercial software showed a significant dependence (P‐value < 0.0001). The new secondary dose calculation software showed a moderate correlation with calculation depth, while the commercial software showed a weak correlation (Tau = −.322 and Tau = −.217 respectively). Overall, the new secondary software has better agreement with the TPS than the commercially available secondary calculation software over a range of diverse treatment geometries.
Collapse
|
Journal Article |
5 |
3 |
20
|
Hao Y, Schmidt MC, Wu Y, Knutson NC. Portal dosimetry scripting application programming interface (PDSAPI) for Winston-Lutz test employing ceramic balls. J Appl Clin Med Phys 2020; 21:295-303. [PMID: 33098369 PMCID: PMC7700922 DOI: 10.1002/acm2.13043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT) treatments require a high degree of accuracy. Mechanical, imaging, and radiation isocenter coincidence is especially important. As a common method, the Winston-Lutz (WL) test plays an important role. However, weekly or daily WL test can be very time consuming. We developed novel methods using Portal Dosimetry Scripting Application Programming Interface (PDSAPI) to facilitate the test as well as documentation. METHODS Winston-Lutz PDSAPI was developed and tested on our routine weekly WL imaging. The results were compared against two commercially available software RIT (Radiological Imaging Technology, Colorado Springs, CO) and DoseLab (Varian Medical Systems, Inc. Palo Alto, CA). Two manual methods that served as ground truth were used to verify PDSAPI results. Twenty WL test image data sets (10 fields per tests, and 200 images in total) were analyzed by these five methods in this report. RESULTS More than 99.5% of WL PDSAPI 1D shifts agreed with each of four other methods within ±0.33 mm, which is roughly the pixel width of a-Si 1200 portal imager when source to imager distance (SID) is at 100 cm. 1D shifts agreement for ±0.22 mm and 0.11 mm were 96% and 63%, respectively. Same trend was observed for 2D displacement. CONCLUSIONS Winston-Lutz PDSAPI delivers similar accuracy as two commercial applications for WL test. This new application can save time spent transferring data and has the potential to implement daily WL test with reasonable test time. It also provides the data storage capability, and enables easy access to imaging and shift data.
Collapse
|
Journal Article |
5 |
3 |
21
|
Maraghechi B, Kim T, Mitchell TJ, Goddu SM, Dise J, Kavanaugh JA, Zoberi JE, Mutic S, Knutson NC. Filmless quality assurance of a Leksell Gamma Knife® Icon™. J Appl Clin Med Phys 2020; 22:59-67. [PMID: 33300664 PMCID: PMC7856498 DOI: 10.1002/acm2.13070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/18/2020] [Accepted: 09/20/2020] [Indexed: 11/05/2022] Open
Abstract
PURPOSE The annual quality assurance (QA) of Leksell Gamma Knife® (LGK) systems are typically performed using films. Film is a good candidate for small field dosimetry due to its high spatial resolution and availability. However, there are multiple challenges with using film; film does not provide real-time measurement and requires batch-specific calibration. Our findings show that active detector-based QA can simplify the procedure and save time without loss of accuracy. METHODS Annual QA tests for a LGK Icon™ system were performed using both film-based and filmless techniques. Output calibration, relative output factors (ROF), radiation profiles, sector uniformity/source counting, and verification of the unit center point (UCP) and radiation focal point (RFP) coincidence tests were performed. Radiochromic films, two ionization chambers, and a synthetic diamond detector were used for the measurements. Results were compared and verified with the treatment planning system (TPS). RESULTS The measured dose rate of the LGK Icon was within 0.4% of the TPS value set at the time of commissioning using an ionization chamber. ROF for the 8 and 4-mm collimators were found to be 0.3% and 1.8% different from TPS values using the MicroDiamond detector and 2.6% and 1.9% different for film, respectively. Excellent agreement was found between TPS and measured dose profiles using the MicroDiamond detector which was within 1%/1 mm vs 2%/1 mm for film. Sector uniformity was found to be within 1% for all eight sectors measured using an ionization chamber. Verification of UCP and RFP coincidence using the MicroDiamond detector and pinprick film test was within 0.3 mm at isocenter for both. CONCLUSION The annual QA of a LGK Icon was successfully performed by employing filmless techniques. Comparable results were obtained using radiochromic films. Utilizing active detectors instead of films simplifies the QA process and saves time without loss of accuracy.
Collapse
|
Journal Article |
5 |
2 |
22
|
Knutson NC, Schmidt MC, Belley MD, Nguyen NB, Li HH, Sajo E, Price MJ. Technical Note: Direct measurement of continuous TMR data with a 1D tank and automated couch movements. Med Phys 2017; 44:3861-3865. [DOI: 10.1002/mp.12289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 04/11/2017] [Accepted: 04/14/2017] [Indexed: 10/19/2022] Open
|
|
8 |
2 |
23
|
Price AT, Kang KH, Reynoso FJ, Laugeman E, Abraham CD, Huang J, Hilliard J, Knutson NC, Henke LE. In silico trial of simulation-free hippocampal-avoidance whole brain adaptive radiotherapy. Phys Imaging Radiat Oncol 2023; 28:100491. [PMID: 37772278 PMCID: PMC10523006 DOI: 10.1016/j.phro.2023.100491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/26/2023] [Accepted: 08/31/2023] [Indexed: 09/30/2023] Open
Abstract
Background and Purpose Hippocampal-avoidance whole brain radiotherapy (HA-WBRT) can be a time-consuming process compared to conventional whole brain techniques, thus potentially limiting widespread utilization. Therefore, we evaluated the in silico clinical feasibility, via dose-volume metrics and timing, by leveraging a computed tomography (CT)-based commercial adaptive radiotherapy (ART) platform and workflow in order to create and deliver patient-specific, simulation-free HA-WBRT. Materials and methods Ten patients previously treated for central nervous system cancers with cone-beam computed tomography (CBCT) imaging were included in this study. The CBCT was the adaptive image-of-the-day to simulate first fraction on-board imaging. Initial contours defined on the MRI were rigidly matched to the CBCT. Online ART was used to create treatment plans at first fraction. Dose-volume metrics of these simulation-free plans were compared to standard-workflow HA-WBRT plans on each patient CT simulation dataset. Timing data for the adaptive planning sessions were recorded. Results For all ten patients, simulation-free HA-WBRT plans were successfully created utilizing the online ART workflow and met all constraints. The median hippocampi D100% was 7.8 Gy (6.6-8.8 Gy) in the adaptive plan vs 8.1 Gy (7.7-8.4 Gy) in the standard workflow plan. All plans required adaptation at first fraction due to both a failing hippocampal constraint (6/10 adaptive fractions) and sub-optimal target coverage (6/10 adaptive fractions). Median time for the adaptive session was 45.2 min (34.0-53.8 min). Conclusions Simulation-free HA-WBRT, with commercially available systems, was clinically feasible via plan-quality metrics and timing, in silico.
Collapse
|
research-article |
2 |
2 |
24
|
Knutson NC, Schmidt MC, Reynoso FJ, Hao Y, Mazur TR, Laugeman E, Hugo G, Mutic S, Li HH, Ngwa W, Cai B, Sajo E. Automated and robust beam data validation of a preconfigured ring gantry linear accelerator using a 1D tank with synchronized beam delivery and couch motions. J Appl Clin Med Phys 2020; 21:200-207. [PMID: 32614511 PMCID: PMC7484825 DOI: 10.1002/acm2.12946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/25/2020] [Accepted: 05/12/2020] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To develop an efficient and automated methodology for beam data validation for a preconfigured ring gantry linear accelerator using scripting and a one-dimensional (1D) tank with automated couch motions. MATERIALS AND METHODS Using an application programming interface, a program was developed to allow the user to choose a set of beam data to validate with measurement. Once selected the program generates a set of instructions for radiation delivery with synchronized couch motions for the linear accelerator in the form of an extensible markup language (XML) file to be delivered on the ring gantry linear accelerator. The user then delivers these beams while measuring with the 1D tank and data logging electrometer. The program also automatically calculates this set of beams on the measurement geometry within the treatment planning system (TPS) and extracts the corresponding calculated dosimetric data for comparison to measurement. Once completed the program then returns a comparison of the measurement to the predicted result from the TPS to the user and prints a report. In this work lateral, longitudinal, and diagonal profiles were taken for fields sizes of 6 × 6, 8 × 8, 10 × 10, 20 × 20, and 28 × 28 cm2 at depths of 1.3, 5, 10, 20, and 30 cm. Depth dose profiles were taken for all field sizes. RESULTS Using this methodology, the TPS was validated to agree with measurement. All compared points yielded a gamma value less than 1 for a 1.5%/1.5 mm criteria (100% passing rate). Off axis profiles had >98.5% of data points producing a gamma value <1 with a 1%/1 mm criteria. All depth profiles produced 100% of data points with a gamma value <1 with a 1%/1 mm criteria. All data points measured were within 1.5% or 2 mm distance to agreement. CONCLUSIONS This methodology allows for an increase in automation in the beam data validation process. Leveraging the application program interface allows the user to use a single system to create the measurement files, predict the result, and then compare to actual measurement increasing efficiency and reducing the chance for user input errors.
Collapse
|
Journal Article |
5 |
2 |
25
|
Kennedy WR, DeWees TA, Acharya S, Mahmood M, Knutson NC, Goddu SM, Kavanaugh JA, Mitchell TJ, Rich KM, Kim AH, Leuthardt EC, Dowling JL, Dunn GP, Chicoine MR, Perkins SM, Huang J, Tsien CI, Robinson CG, Abraham CD. Internal dose escalation associated with increased local control for melanoma brain metastases treated with stereotactic radiosurgery. J Neurosurg 2021; 135:855-861. [PMID: 33307528 DOI: 10.3171/2020.7.jns192210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 07/09/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The internal high-dose volume varies widely for a given prescribed dose during stereotactic radiosurgery (SRS) to treat brain metastases (BMs). This may be altered during treatment planning, and the authors have previously shown that this improves local control (LC) for non-small cell lung cancer BMs without increasing toxicity. Here, they seek to identify potentially actionable dosimetric predictors of LC after SRS for melanoma BM. METHODS The records of patients with unresected melanoma BM treated with single-fraction Gamma Knife RS between 2006 and 2017 were reviewed. LC was assessed on a per-lesion basis, defined as stability or a decrease in lesion size. Outcome-oriented approaches were utilized to determine optimal dichotomization for dosimetric variables relative to LC. Univariable and multivariable Cox regression analysis was implemented to evaluate the impact of collected parameters on LC. RESULTS Two hundred eighty-seven melanoma BMs in 79 patients were identified. The median age was 56 years (range 31-86 years). The median follow-up was 7.6 months (range 0.5-81.6 months), and the median survival was 9.3 months (range 1.3-81.6 months). Lesions were optimally stratified by volume receiving at least 30 Gy (V30) greater than or equal to versus less than 25%. V30 was ≥ and < 25% in 147 and 140 lesions, respectively. For all patients, 1-year LC was 83% versus 66% for V30 ≥ and < 25%, respectively (p = 0.001). Stratifying by volume, lesions 2 cm or less (n = 215) had 1-year LC of 82% versus 70% (p = 0.013) for V30 ≥ and < 25%, respectively. Lesions > 2 to 3 cm (n = 32) had 1-year LC of 100% versus 43% (p = 0.214) for V30 ≥ and < 25%, respectively. V30 was still predictive of LC even after controlling for the use of immunotherapy and targeted therapy. Radionecrosis occurred in 2.8% of lesions and was not significantly associated with V30. CONCLUSIONS For a given prescription dose, an increased internal high-dose volume, as indicated by measures such as V30 ≥ 25%, is associated with improved LC but not increased toxicity in single-fraction SRS for melanoma BM. Internal dose escalation is an independent predictor of improved LC even in patients receiving immunotherapy and/or targeted therapy. This represents a dosimetric parameter that is actionable at the time of treatment planning and warrants further evaluation.
Collapse
|
|
4 |
2 |