1
|
Cannon SB, Mitra A, Baumgarten A, Young ND, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC PLANT BIOLOGY 2004; 4:10. [PMID: 15171794 PMCID: PMC446195 DOI: 10.1186/1471-2229-4-10] [Citation(s) in RCA: 1386] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2003] [Accepted: 06/01/2004] [Indexed: 05/17/2023]
Abstract
BACKGROUND Most genes in Arabidopsis thaliana are members of gene families. How do the members of gene families arise, and how are gene family copy numbers maintained? Some gene families may evolve primarily through tandem duplication and high rates of birth and death in clusters, and others through infrequent polyploidy or large-scale segmental duplications and subsequent losses. RESULTS Our approach to understanding the mechanisms of gene family evolution was to construct phylogenies for 50 large gene families in Arabidopsis thaliana, identify large internal segmental duplications in Arabidopsis, map gene duplications onto the segmental duplications, and use this information to identify which nodes in each phylogeny arose due to segmental or tandem duplication. Examples of six gene families exemplifying characteristic modes are described. Distributions of gene family sizes and patterns of duplication by genomic distance are also described in order to characterize patterns of local duplication and copy number for large gene families. Both gene family size and duplication by distance closely follow power-law distributions. CONCLUSIONS Combining information about genomic segmental duplications, gene family phylogenies, and gene positions provides a method to evaluate contributions of tandem duplication and segmental genome duplication in the generation and maintenance of gene families. These differences appear to correspond meaningfully to differences in functional roles of the members of the gene families.
Collapse
|
research-article |
21 |
1386 |
2
|
Young ND, Debellé F, Oldroyd GED, Geurts R, Cannon SB, Udvardi MK, Benedito VA, Mayer KFX, Gouzy J, Schoof H, Van de Peer Y, Proost S, Cook DR, Meyers BC, Spannagl M, Cheung F, De Mita S, Krishnakumar V, Gundlach H, Zhou S, Mudge J, Bharti AK, Murray JD, Naoumkina MA, Rosen B, Silverstein KAT, Tang H, Rombauts S, Zhao PX, Zhou P, Barbe V, Bardou P, Bechner M, Bellec A, Berger A, Bergès H, Bidwell S, Bisseling T, Choisne N, Couloux A, Denny R, Deshpande S, Dai X, Doyle JJ, Dudez AM, Farmer AD, Fouteau S, Franken C, Gibelin C, Gish J, Goldstein S, González AJ, Green PJ, Hallab A, Hartog M, Hua A, Humphray SJ, Jeong DH, Jing Y, Jöcker A, Kenton SM, Kim DJ, Klee K, Lai H, Lang C, Lin S, Macmil SL, Magdelenat G, Matthews L, McCorrison J, Monaghan EL, Mun JH, Najar FZ, Nicholson C, Noirot C, O'Bleness M, Paule CR, Poulain J, Prion F, Qin B, Qu C, Retzel EF, Riddle C, Sallet E, Samain S, Samson N, Sanders I, Saurat O, Scarpelli C, Schiex T, Segurens B, Severin AJ, Sherrier DJ, Shi R, Sims S, Singer SR, Sinharoy S, Sterck L, Viollet A, Wang BB, et alYoung ND, Debellé F, Oldroyd GED, Geurts R, Cannon SB, Udvardi MK, Benedito VA, Mayer KFX, Gouzy J, Schoof H, Van de Peer Y, Proost S, Cook DR, Meyers BC, Spannagl M, Cheung F, De Mita S, Krishnakumar V, Gundlach H, Zhou S, Mudge J, Bharti AK, Murray JD, Naoumkina MA, Rosen B, Silverstein KAT, Tang H, Rombauts S, Zhao PX, Zhou P, Barbe V, Bardou P, Bechner M, Bellec A, Berger A, Bergès H, Bidwell S, Bisseling T, Choisne N, Couloux A, Denny R, Deshpande S, Dai X, Doyle JJ, Dudez AM, Farmer AD, Fouteau S, Franken C, Gibelin C, Gish J, Goldstein S, González AJ, Green PJ, Hallab A, Hartog M, Hua A, Humphray SJ, Jeong DH, Jing Y, Jöcker A, Kenton SM, Kim DJ, Klee K, Lai H, Lang C, Lin S, Macmil SL, Magdelenat G, Matthews L, McCorrison J, Monaghan EL, Mun JH, Najar FZ, Nicholson C, Noirot C, O'Bleness M, Paule CR, Poulain J, Prion F, Qin B, Qu C, Retzel EF, Riddle C, Sallet E, Samain S, Samson N, Sanders I, Saurat O, Scarpelli C, Schiex T, Segurens B, Severin AJ, Sherrier DJ, Shi R, Sims S, Singer SR, Sinharoy S, Sterck L, Viollet A, Wang BB, Wang K, Wang M, Wang X, Warfsmann J, Weissenbach J, White DD, White JD, Wiley GB, Wincker P, Xing Y, Yang L, Yao Z, Ying F, Zhai J, Zhou L, Zuber A, Dénarié J, Dixon RA, May GD, Schwartz DC, Rogers J, Quétier F, Town CD, Roe BA. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 2011; 480:520-4. [PMID: 22089132 PMCID: PMC3272368 DOI: 10.1038/nature10625] [Show More Authors] [Citation(s) in RCA: 797] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 10/13/2011] [Indexed: 11/09/2022]
Abstract
Legumes (Fabaceae or Leguminosae) are unique among cultivated plants for their ability to carry out endosymbiotic nitrogen fixation with rhizobial bacteria, a process that takes place in a specialized structure known as the nodule. Legumes belong to one of the two main groups of eurosids, the Fabidae, which includes most species capable of endosymbiotic nitrogen fixation. Legumes comprise several evolutionary lineages derived from a common ancestor 60 million years ago (Myr ago). Papilionoids are the largest clade, dating nearly to the origin of legumes and containing most cultivated species. Medicago truncatula is a long-established model for the study of legume biology. Here we describe the draft sequence of the M. truncatula euchromatin based on a recently completed BAC assembly supplemented with Illumina shotgun sequence, together capturing ∼94% of all M. truncatula genes. A whole-genome duplication (WGD) approximately 58 Myr ago had a major role in shaping the M. truncatula genome and thereby contributed to the evolution of endosymbiotic nitrogen fixation. Subsequent to the WGD, the M. truncatula genome experienced higher levels of rearrangement than two other sequenced legumes, Glycine max and Lotus japonicus. M. truncatula is a close relative of alfalfa (Medicago sativa), a widely cultivated crop with limited genomics tools and complex autotetraploid genetics. As such, the M. truncatula genome sequence provides significant opportunities to expand alfalfa's genomic toolbox.
Collapse
|
research-article |
14 |
797 |
3
|
Dajani R, Fraser E, Roe SM, Young N, Good V, Dale TC, Pearl LH. Crystal structure of glycogen synthase kinase 3 beta: structural basis for phosphate-primed substrate specificity and autoinhibition. Cell 2001; 105:721-32. [PMID: 11440715 DOI: 10.1016/s0092-8674(01)00374-9] [Citation(s) in RCA: 523] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Glycogen synthase kinase 3 beta (GSK3 beta) plays a key role in insulin and Wnt signaling, phosphorylating downstream targets by default, and becoming inhibited following the extracellular signaling event. The crystal structure of human GSK3 beta shows a catalytically active conformation in the absence of activation-segment phosphorylation, with the sulphonate of a buffer molecule bridging the activation-segment and N-terminal domain in the same way as the phosphate group of the activation-segment phospho-Ser/Thr in other kinases. The location of this oxyanion binding site in the substrate binding cleft indicates direct coupling of P+4 phosphate-primed substrate binding and catalytic activation, explains the ability of GSK3 beta to processively hyperphosphorylate substrates with Ser/Thr pentad-repeats, and suggests a mechanism for autoinhibition in which the phosphorylated N terminus binds as a competitive pseudosubstrate with phospho-Ser 9 occupying the P+4 site.
Collapse
|
|
24 |
523 |
4
|
Whitley RJ, Hayden FG, Reisinger KS, Young N, Dutkowski R, Ipe D, Mills RG, Ward P. Oral oseltamivir treatment of influenza in children. Pediatr Infect Dis J 2001; 20:127-33. [PMID: 11224828 DOI: 10.1097/00006454-200102000-00002] [Citation(s) in RCA: 488] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Oral oseltamivir administration is effective treatment for influenza in adults. This study was conducted to determine the efficacy, safety and tolerability of oseltamivir in children with influenza. METHODS In this randomized, double blind, placebo-controlled study, children 1 through 12 years with fever [> or =100 degrees F (> or =38 degrees C)] and a history of cough or coryza <48 h duration received oseltamivir 2 mg/kg/dose or placebo twice daily for 5 days. The primary efficacy endpoint was the time to resolution of illness including mild/absent cough and coryza mild/absent, return to normal activity and euthermia. RESULTS Of 695 enrolled children 452 (65%) had influenza (placebo, n = 235; oseltamivir, n = 217). Among infected children the median duration of illness was reduced by 36 h (26%) in oseltamivir compared with placebo recipients (101 h; 95% confidence interval, 89 to 118 vs. 137 h; 95% confidence interval, 125 to 150; P < 0.0001). Oseltamivir treatment also reduced cough, coryza and duration of fever. New diagnoses of otitis media were reduced by 44% (12% vs. 21%). The incidence of physician-prescribed antibiotics was significantly lower in influenza-infected oseltamivir (68 of 217, 31%) than placebo (97 of 235, 41%; P = 0.03) recipients. Oseltamivir therapy was generally well-tolerated, although associated with an excess frequency of emesis (5.8%). Discontinuation because of adverse events was low in both groups (1.8% with oseltamivir vs. 1.1% with placebo). Oseltamivir treatment did not affect the influenza-specific antibody response. CONCLUSIONS Oral oseltamivir administration is an efficacious and well-tolerated therapy for influenza in children when given within 48 h of onset of illness.
Collapse
|
Clinical Trial |
24 |
488 |
5
|
Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 20:317-32. [PMID: 10571892 DOI: 10.1046/j.1365-313x.1999.t01-1-00606.x] [Citation(s) in RCA: 443] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The nucleotide binding site (NBS) is a characteristic domain of many plant resistance gene products. An increasing number of NBS-encoding sequences are being identified through gene cloning, PCR amplification with degenerate primers, and genome sequencing projects. The NBS domain was analyzed from 14 known plant resistance genes and more than 400 homologs, representing 26 genera of monocotyledonous, dicotyle-donous and one coniferous species. Two distinct groups of diverse sequences were identified, indicating divergence during evolution and an ancient origin for these sequences. One group was comprised of sequences encoding an N-terminal domain with Toll/Interleukin-1 receptor homology (TIR), including the known resistance genes, N, M, L6, RPP1 and RPP5. Surprisingly, this group was entirely absent from monocot species in searches of both random genomic sequences and large collections of ESTs. A second group contained monocot and dicot sequences, including the known resistance genes, RPS2, RPM1, I2, Mi, Dm3, Pi-B, Xa1, RPP8, RPS5 and Prf. Amino acid signatures in the conserved motifs comprising the NBS domain clearly distinguished these two groups. The Arabidopsis genome is estimated to contain approximately 200 genes that encode related NBS motifs; TIR sequences were more abundant and outnumber non-TIR sequences threefold. The Arabidopsis NBS sequences currently in the databases are located in approximately 21 genomic clusters and 14 isolated loci. NBS-encoding sequences may be more prevalent in rice. The wide distribution of these sequences in the plant kingdom and their prevalence in the Arabidopsis and rice genomes indicate that they are ancient, diverse and common in plants. Sequence inferences suggest that these genes encode a novel class of nucleotide-binding proteins.
Collapse
|
|
26 |
443 |
6
|
Zhu YL, Song QJ, Hyten DL, Van Tassell CP, Matukumalli LK, Grimm DR, Hyatt SM, Fickus EW, Young ND, Cregan PB. Single-nucleotide polymorphisms in soybean. Genetics 2003; 163:1123-34. [PMID: 12663549 PMCID: PMC1462490 DOI: 10.1093/genetics/163.3.1123] [Citation(s) in RCA: 328] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Single-nucleotide polymorphisms (SNPs) provide an abundant source of DNA polymorphisms in a number of eukaryotic species. Information on the frequency, nature, and distribution of SNPs in plant genomes is limited. Thus, our objectives were (1) to determine SNP frequency in coding and noncoding soybean (Glycine max L. Merr.) DNA sequence amplified from genomic DNA using PCR primers designed to complete genes, cDNAs, and random genomic sequence; (2) to characterize haplotype variation in these sequences; and (3) to provide initial estimates of linkage disequilibrium (LD) in soybean. Approximately 28.7 kbp of coding sequence, 37.9 kbp of noncoding perigenic DNA, and 9.7 kbp of random noncoding genomic DNA were sequenced in each of 25 diverse soybean genotypes. Over the >76 kbp, mean nucleotide diversity expressed as Watterson's theta was 0.00097. Nucleotide diversity was 0.00053 and 0.00111 in coding and in noncoding perigenic DNA, respectively, lower than estimates in the autogamous model species Arabidopsis thaliana. Haplotype analysis of SNP-containing fragments revealed a deficiency of haplotypes vs. the number that would be anticipated at linkage equilibrium. In 49 fragments with three or more SNPs, five haplotypes were present in one fragment while four or less were present in the remaining 48, thereby supporting the suggestion of relatively limited genetic variation in cultivated soybean. Squared allele-frequency correlations (r(2)) among haplotypes at 54 loci with two or more SNPs indicated low genome-wide LD. The low level of LD and the limited haplotype diversity suggested that the genome of any given soybean accession is a mosaic of three or four haplotypes. To facilitate SNP discovery and the development of a transcript map, subsets of four to six diverse genotypes, whose sequence analysis would permit the discovery of at least 75% of all SNPs present in the 25 genotypes as well as 90% of the common (frequency >0.10) SNPs, were identified.
Collapse
|
research-article |
22 |
328 |
7
|
Choi IY, Hyten DL, Matukumalli LK, Song Q, Chaky JM, Quigley CV, Chase K, Lark KG, Reiter RS, Yoon MS, Hwang EY, Yi SI, Young ND, Shoemaker RC, van Tassell CP, Specht JE, Cregan PB. A soybean transcript map: gene distribution, haplotype and single-nucleotide polymorphism analysis. Genetics 2007; 176:685-96. [PMID: 17339218 PMCID: PMC1893076 DOI: 10.1534/genetics.107.070821] [Citation(s) in RCA: 261] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 02/16/2007] [Indexed: 11/18/2022] Open
Abstract
The first genetic transcript map of the soybean genome was created by mapping one SNP in each of 1141 genes in one or more of three recombinant inbred line mapping populations, thus providing a picture of the distribution of genic sequences across the mapped portion of the genome. Single-nucleotide polymorphisms (SNPs) were discovered via the resequencing of sequence-tagged sites (STSs) developed from expressed sequence tag (EST) sequence. From an initial set of 9459 polymerase chain reaction primer sets designed to a diverse set of genes, 4240 STSs were amplified and sequenced in each of six diverse soybean genotypes. In the resulting 2.44 Mbp of aligned sequence, a total of 5551 SNPs were discovered, including 4712 single-base changes and 839 indels for an average nucleotide diversity of Theta= 0.000997. The analysis of the observed genetic distances between adjacent genes vs. the theoretical distribution based upon the assumption of a random distribution of genes across the 20 soybean linkage groups clearly indicated that genes were clustered. Of the 1141 genes, 291 mapped to 72 of the 112 gaps of 5-10 cM in the preexisting simple sequence repeat (SSR)-based map, while 111 genes mapped in 19 of the 26 gaps >10 cM. The addition of 1141 sequence-based genic markers to the soybean genome map will provide an important resource to soybean geneticists for quantitative trait locus discovery and map-based cloning, as well as to soybean breeders who increasingly depend upon marker-assisted selection in cultivar improvement.
Collapse
|
research-article |
18 |
261 |
8
|
Choi HK, Mun JH, Kim DJ, Zhu H, Baek JM, Mudge J, Roe B, Ellis N, Doyle J, Kiss GB, Young ND, Cook DR. Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci U S A 2004; 101:15289-94. [PMID: 15489274 PMCID: PMC524433 DOI: 10.1073/pnas.0402251101] [Citation(s) in RCA: 252] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 08/13/2004] [Indexed: 11/18/2022] Open
Abstract
Legumes are simultaneously one of the largest families of crop plants and a cornerstone in the biological nitrogen cycle. We combined molecular and phylogenetic analyses to evaluate genome conservation both within and between the two major clades of crop legumes. Genetic mapping of orthologous genes identifies broad conservation of genome macrostructure, especially within the galegoid legumes, while also highlighting inferred chromosomal rearrangements that may underlie the variation in chromosome number between these species. As a complement to comparative genetic mapping, we compared sequenced regions of the model legume Medicago truncatula with those of the diploid Lotus japonicus and the polyploid Glycine max. High conservation was observed between the genomes of M. truncatula and L. japonicus, whereas lower levels of conservation were evident between M. truncatula and G. max. In all cases, conserved genome microstructure was punctuated by significant structural divergence, including frequent insertion/deletion of individual genes or groups of genes and lineage-specific expansion/contraction of gene families. These results suggest that comparative mapping may have considerable utility for basic and applied research in the legumes, although its predictive value is likely to be tempered by phylogenetic distance and genome duplication.
Collapse
|
research-article |
21 |
252 |
9
|
Abstract
The B19 parvovirus is responsible for at least three human diseases. The virus was successfully propagated in suspension cultures of human erythroid bone marrow from patients with hemolytic anemias; release of newly synthesized virus into the supernatants of infected cultures was observed. This culture system allowed study at a molecular level of events associated with the B19 life cycle. The B19 parvovirus replicated through high molecular weight intermediate forms, linked through a terminal hairpin structure. B19 replication in vitro was highly dependent on the erythropoietic content of cultures and on addition of the hormone erythropoietin.
Collapse
|
|
39 |
227 |
10
|
Heisenberg CP, Houart C, Take-Uchi M, Rauch GJ, Young N, Coutinho P, Masai I, Caneparo L, Concha ML, Geisler R, Dale TC, Wilson SW, Stemple DL. A mutation in the Gsk3-binding domain of zebrafish Masterblind/Axin1 leads to a fate transformation of telencephalon and eyes to diencephalon. Genes Dev 2001; 15:1427-34. [PMID: 11390362 PMCID: PMC312705 DOI: 10.1101/gad.194301] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Zebrafish embryos homozygous for the masterblind (mbl) mutation exhibit a striking phenotype in which the eyes and telencephalon are reduced or absent and diencephalic fates expand to the front of the brain. Here we show that mbl(-/-) embryos carry an amino-acid change at a conserved site in the Wnt pathway scaffolding protein, Axin1. The amino-acid substitution present in the mbl allele abolishes the binding of Axin to Gsk3 and affects Tcf-dependent transcription. Therefore, Gsk3 activity may be decreased in mbl(-/-) embryos and in support of this possibility, overexpression of either wild-type Axin1 or Gsk3beta can restore eye and telencephalic fates to mbl(-/-) embryos. Our data reveal a crucial role for Axin1-dependent inhibition of the Wnt pathway in the early regional subdivision of the anterior neural plate into telencephalic, diencephalic, and eye-forming territories.
Collapse
|
research-article |
24 |
216 |
11
|
Shoemaker RC, Polzin K, Labate J, Specht J, Brummer EC, Olson T, Young N, Concibido V, Wilcox J, Tamulonis JP, Kochert G, Boerma HR. Genome duplication in soybean (Glycine subgenus soja). Genetics 1996; 144:329-38. [PMID: 8878696 PMCID: PMC1207505 DOI: 10.1093/genetics/144.1.329] [Citation(s) in RCA: 204] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Restriction fragment length polymorphism mapping data from nine populations (Glycine max x G. soja and G. max x G. max) of the Glycine subgenus soja genome led to the identification of many duplicated segments of the genome. Linkage groups contained up to 33 markers that were duplicated on other linkage groups. The size of homoeologous regions ranged from 1.5 to 106.4 cM, with an average size of 45.3 cM. We observed segments in the soybean genome that were present in as many as six copies with an average of 2.55 duplications per segment. The presence of nested duplications suggests that at least one of the original genomes may have undergone an additional round of tetraploidization. Tetraploidization, along with large internal duplications, accounts for the highly duplicated nature of the genome of the subgenus. Quantitative trait loci for seed protein and oil showed correspondence across homoeologous regions, suggesting that the genes or gene families contributing to seed composition have retained similar functions throughout the evolution of the chromosomes.
Collapse
|
research-article |
29 |
204 |
12
|
Young ND, Zamir D, Ganal MW, Tanksley SD. Use of isogenic lines and simultaneous probing to identify DNA markers tightly linked to the tm-2a gene in tomato. Genetics 1988; 120:579-85. [PMID: 17246482 PMCID: PMC1203534 DOI: 10.1093/genetics/120.2.579] [Citation(s) in RCA: 202] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
The Tm-2a gene of tomato confers resistance to the viral pathogen, tobacco mosaic virus. Like many economically important plant genes, Tm-2a has been characterized phenotypically and by classical linkage analysis, yet nothing is known about its gene product. We report here the isolation of two DNA clones which are very tightly linked to the Tm-2a gene. These clones were identified by testing 122 genomic clones as hybridization probes against Southern blots consisting of DNA from pairs of nearly isogenic lines with or without the Tm-2a gene. Screening such a large number of clones in a short period of time was facilitated by co-labeling and simultaneous probing of sets of up to 10 random genomic clones. Tightly linked clones were distinguished by the fact that they exhibited one or more restriction fragment length polymorphisms between the nearly isogenic lines. Tight linkage of the clones with Tm-2a was verified in a segregating F(2) population. Both mapped to the same locus 0.4 +/- 0.4 centimorgans away from Tm-2a and may provide starting points for a genomic ;;walk'' to this gene. Due to the availability of isogenic lines in many plant species, the strategy outlined in this paper should be widely applicable for selecting DNA clones tightly linked to genes of interest.
Collapse
|
|
37 |
202 |
13
|
Ameline-Torregrosa C, Wang BB, O'Bleness MS, Deshpande S, Zhu H, Roe B, Young ND, Cannon SB. Identification and characterization of nucleotide-binding site-leucine-rich repeat genes in the model plant Medicago truncatula. PLANT PHYSIOLOGY 2008; 146:5-21. [PMID: 17981990 PMCID: PMC2230567 DOI: 10.1104/pp.107.104588] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 10/19/2007] [Indexed: 05/18/2023]
Abstract
The nucleotide-binding site (NBS)-Leucine-rich repeat (LRR) gene family accounts for the largest number of known disease resistance genes, and is one of the largest gene families in plant genomes. We have identified 333 nonredundant NBS-LRRs in the current Medicago truncatula draft genome (Mt1.0), likely representing 400 to 500 NBS-LRRs in the full genome, or roughly 3 times the number present in Arabidopsis (Arabidopsis thaliana). Although many characteristics of the gene family are similar to those described on other plant genomes, several evolutionary features are particularly pronounced in M. truncatula, including a high degree of clustering, evidence of significant numbers of ectopic translocations from clusters to other parts of the genome, a small number of more evolutionarily stable NBS-LRRs, and numerous truncations and fusions leading to novel domain compositions. The gene family clearly has had a large impact on the structure of the genome, both through ectopic translocations (potentially, a means of seeding new NBS-LRR clusters), and through two extraordinarily large superclusters. Chromosome 6 encodes approximately 34% of all TIR-NBS-LRRs, while chromosome 3 encodes approximately 40% of all coiled-coil-NBS-LRRs. Almost all atypical domain combinations are in the TIR-NBS-LRR subfamily, with many occurring within one genomic cluster. This analysis shows the gene family not only is important functionally and agronomically, but also plays a structural role in the genome.
Collapse
|
research-article |
17 |
198 |
14
|
Olmstead RG, Depamphilis CW, Wolfe AD, Young ND, Elisons WJ, Reeves PA. Disintegration of the scrophulariaceae. AMERICAN JOURNAL OF BOTANY 2001. [PMID: 11222255 DOI: 10.2307/2657024] [Citation(s) in RCA: 197] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A molecular systematic study of Scrophulariaceae sensu lato using DNA sequences of three plastid genes (rbcL, ndhF, and rps2) revealed at least five distinct monophyletic groups. Thirty-nine genera representing 24 tribes of the Scrophulariaceae s.l. (sensu lato) were analyzed along with representatives of 15 other families of Lamiales. The Scrophulariaceae s.s. (sensu stricto) include part or all of tribes Aptosimeae, Hemimerideae, Leucophylleae, Manuleae, Selagineae, and Verbasceae (= Scrophularieae) and the conventional families Buddlejaceae and Myoporaceae. Veronicaceae includes all or part of tribes Angelonieae, Antirrhineae, Cheloneae, Digitaleae, and Gratioleae and the conventional families Callitrichaceae, Globulariaceae, Hippuridaceae, and Plantaginaceae. The Orobanchaceae include tribes Buchnereae, Rhinantheae, and the conventional Orobanchaceae. All sampled members of Orobanchaceae are parasitic, except Lindenbergia, which is sister to the rest of the family. Family Calceolariaceae Olmstead is newly erected herein to recognize the phylogenetic distinctiveness of tribe Calceolarieae. The Calceolariaceae are close to the base of the Lamiales. The Stilbaceae are expanded by the inclusion of Halleria. Mimulus does not belong in any of these five groups.
Collapse
|
|
24 |
197 |
15
|
Cannon SB, Sterck L, Rombauts S, Sato S, Cheung F, Gouzy J, Wang X, Mudge J, Vasdewani J, Schiex T, Spannagl M, Monaghan E, Nicholson C, Humphray SJ, Schoof H, Mayer KFX, Rogers J, Quétier F, Oldroyd GE, Debellé F, Cook DR, Retzel EF, Roe BA, Town CD, Tabata S, Van de Peer Y, Young ND. Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes. Proc Natl Acad Sci U S A 2006; 103:14959-64. [PMID: 17003129 PMCID: PMC1578499 DOI: 10.1073/pnas.0603228103] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Genome sequencing of the model legumes, Medicago truncatula and Lotus japonicus, provides an opportunity for large-scale sequence-based comparison of two genomes in the same plant family. Here we report synteny comparisons between these species, including details about chromosome relationships, large-scale synteny blocks, microsynteny within blocks, and genome regions lacking clear correspondence. The Lotus and Medicago genomes share a minimum of 10 large-scale synteny blocks, each with substantial collinearity and frequently extending the length of whole chromosome arms. The proportion of genes syntenic and collinear within each synteny block is relatively homogeneous. Medicago-Lotus comparisons also indicate similar and largely homogeneous gene densities, although gene-containing regions in Mt occupy 20-30% more space than Lj counterparts, primarily because of larger numbers of Mt retrotransposons. Because the interpretation of genome comparisons is complicated by large-scale genome duplications, we describe synteny, synonymous substitutions and phylogenetic analyses to identify and date a probable whole-genome duplication event. There is no direct evidence for any recent large-scale genome duplication in either Medicago or Lotus but instead a duplication predating speciation. Phylogenetic comparisons place this duplication within the Rosid I clade, clearly after the split between legumes and Salicaceae (poplar).
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
19 |
196 |
16
|
Young ND. QTL mapping and quantitative disease resistance in plants. ANNUAL REVIEW OF PHYTOPATHOLOGY 1996; 34:479-501. [PMID: 15012553 DOI: 10.1146/annurev.phyto.34.1.479] [Citation(s) in RCA: 188] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Quantitative trait locus (QTL) mapping is a highly effective approach for studying genetically complex forms of plant disease resistance. With QTL mapping, the roles of specific resistance loci can be described, race-specificity of partial resistance genes can be assessed, and interactions between resistance genes, plant development, and the environment can be analyzed. Outstanding examples include: quantitative resistance to the rice blast fungus, late blight of potato, gray leaf spot of maize, bacterial wilt of tomato, and the soybean cyst nematode. These studies provide insights into the number of quantitative resistance loci involved in complex disease resistance, epistatic and environmental interactions, race-specificity of partial resistance loci, interactions between pathogen biology, plant development and biochemistry, and the relationship between qualitative and quantitative loci. QTL mapping also provides a framework for marker-assisted selection of complex disease resistance characters and the positional cloning of partial resistance genes.
Collapse
|
|
29 |
188 |
17
|
Ozawa K, Ayub J, Hao YS, Kurtzman G, Shimada T, Young N. Novel transcription map for the B19 (human) pathogenic parvovirus. J Virol 1987; 61:2395-406. [PMID: 3599180 PMCID: PMC255655 DOI: 10.1128/jvi.61.8.2395-2406.1987] [Citation(s) in RCA: 173] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The B19 parvovirus, a small single-stranded DNA virus of 5.4 kilobases, is pathogenic in humans. B19 has remarkable specificity for erythroid progenitor cells and has been propagated in vitro only with human erythroid bone marrow. Replication of viral DNA and the viral protein products of B19 appear similar to those of other animal parvoviruses. However, B19 transcription had unusual features in comparison with that in other animal parvoviruses. At least nine overlapping poly(A)+ transcripts were identified in infected cells; all but one contained large introns. B19 differed from other parvoviruses in the initiation of all transcripts at a strong left side promoter (p6) and the absence of a functional internal promoter; the presence of short 5' leader sequences of about 60 bases and very large introns for RNAs encoded by the right side of the genome; two separate transcription termination sites, in contrast to cotermination at the far right side of the genome for other parvoviruses; the probable utilization by three transcripts of a variant polyadenylation signal (ATTAAA or AATAAC) in the middle of the genome; and the abundance of two unique transcripts from the middle of the genome which did not code for capsid proteins. The unusual transcription map of B19 suggests that regulation of the relative abundance of transcripts occurs by splicing and termination-polyadenylation events rather than by promoter strength. In combination with the published nucleotide sequence, the novel transcription map separated the pathogenic B19 virus at a molecular level from other animal parvoviruses and human adeno-associated virus.
Collapse
|
research-article |
38 |
173 |
18
|
Larkin JC, Young N, Prigge M, Marks MD. The control of trichome spacing and number in Arabidopsis. Development 1996; 122:997-1005. [PMID: 8631276 DOI: 10.1242/dev.122.3.997] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Arabidopsis trichomes are single-celled epidermal hairs that serve as a useful model for the study of plant cell differentiation. An examination of the distribution of trichomes early in their development revealed that developing trichomes occur adjacent to another trichome much less frequently than would be expected by chance. Clonal analysis of epidermal cell lineages ruled out a role for cell lineage in generating the observed minimum-distance spacing pattern. Taken together, these results are consistent with a role for lateral inhibition in the control of trichome development. We also report the identification of a new locus, Reduced Trichome Number (RTN), which affects the initiation of trichomes. This locus was initially detected by the reduced number of leaf trichomes on Landsberg erecta plants compared to that on Columbia plants. Quantitative Trait Locus mapping revealed that more than 73% of the variation in trichome number was due to a major locus near erecta on chromosome 2. The reduced number of trichomes conditioned by the Landsberg erecta allele of this locus appeared to be due to an early cessation of trichome initiation. The implications of these observations are discussed with regard to previously published models of trichome development.
Collapse
|
|
29 |
157 |
19
|
Fatokun CA, Menancio-Hautea DI, Danesh D, Young ND. Evidence for orthologous seed weight genes in cowpea and mung bean based on RFLP mapping. Genetics 1992; 132:841-6. [PMID: 1361476 PMCID: PMC1205219 DOI: 10.1093/genetics/132.3.841] [Citation(s) in RCA: 152] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
A well saturated genomic map is a necessity for a breeding program based on marker assisted selection. To this end, we are developing genomic maps for cowpea (Vigna unguiculata 2N = 22) and mung bean (Vigna radiata 2N = 22) based on restriction fragment length polymorphism (RFLP) markers. Using these maps, we have located major quantitative trait loci (QTLs) for seed weight in both species. Two unlinked genomic regions in cowpea contained QTLs accounting for 52.7% of the variation for seed weight. In mung bean there were four unlinked genomic regions accounting for 49.7% of the variation for seed weight. In both cowpea and mung bean the genomic region with the greatest effect on seed weight spanned the same RFLP markers in the same linkage order. This suggests that the QTLs in this genomic region have remained conserved through evolution. This inference is supported by the observation that a significant interaction (i.e., epistasis) was detected between the QTL(s) in the conserved region and an unlinked RFLP marker locus in both species.
Collapse
|
|
33 |
152 |
20
|
Kalish ML, Baldwin A, Raktham S, Wasi C, Luo CC, Schochetman G, Mastro TD, Young N, Vanichseni S, Rübsamen-Waigmann H. The evolving molecular epidemiology of HIV-1 envelope subtypes in injecting drug users in Bangkok, Thailand: implications for HIV vaccine trials. AIDS 1995; 9:851-7. [PMID: 7576318 DOI: 10.1097/00002030-199508000-00004] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To genetically characterize HIV-1 strains in injecting drug users (IDU) in Bangkok, Thailand in 1994, and compare these with strains found earlier in Thai IDU; such information is essential for HIV-1 vaccine development and evaluation. METHODS Peripheral blood mononuclear cells were collected from 84 IDU attending 14 drug treatment clinics in Bangkok in 1994. DNA was amplified using a nested polymerase chain reaction (PCR) procedure and sequenced directly (without cloning) from the PCR products. The V3 and flanking regions (345 nucleotides) of the env gene were analyzed using a neighbor-joining tree. RESULTS Only one (1%) strain was a typical subtype B virus, 69 (82%) were genetically distinct subtype B' viruses (Thai B), and 14 (17%) were subtype E strains (Thai A). Persons with recently acquired infection were more likely to have subtype E viruses (P < 0.001) than those in our 1991 survey, who were more likely to have subtype B' viruses. Pairwise intra-subtype differences within subtypes E and B' were 5.3 and 4.3%, respectively, compared with 3.4 and 3.5% among strains collected in 1991 in Thailand. CONCLUSION The genetic diversity within subtypes B' and E in Thailand and the proportion of new infections due to subtype E viruses among Bangkok IDU are increasing significantly. These data highlight the importance of monitoring the molecular epidemiology of HIV-1 in populations being considered for HIV-1 vaccine trials.
Collapse
|
|
30 |
139 |
21
|
Paranjpe M, Engel L, Young N, Liotta LA. Activation of human breast carcinoma collagenase through plasminogen activator. Life Sci 1980; 26:1223-31. [PMID: 6248707 DOI: 10.1016/0024-3205(80)90067-3] [Citation(s) in RCA: 127] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
|
45 |
127 |
22
|
Sugawara M, Epstein B, Badgley BD, Unno T, Xu L, Reese J, Gyaneshwar P, Denny R, Mudge J, Bharti AK, Farmer AD, May GD, Woodward JE, Médigue C, Vallenet D, Lajus A, Rouy Z, Martinez-Vaz B, Tiffin P, Young ND, Sadowsky MJ. Comparative genomics of the core and accessory genomes of 48 Sinorhizobium strains comprising five genospecies. Genome Biol 2013; 14:R17. [PMID: 23425606 PMCID: PMC4053727 DOI: 10.1186/gb-2013-14-2-r17] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 02/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The sinorhizobia are amongst the most well studied members of nitrogen-fixing root nodule bacteria and contribute substantial amounts of fixed nitrogen to the biosphere. While the alfalfa symbiont Sinorhizobium meliloti RM 1021 was one of the first rhizobial strains to be completely sequenced, little information is available about the genomes of this large and diverse species group. RESULTS Here we report the draft assembly and annotation of 48 strains of Sinorhizobium comprising five genospecies. While S. meliloti and S. medicae are taxonomically related, they displayed different nodulation patterns on diverse Medicago host plants, and have differences in gene content, including those involved in conjugation and organic sulfur utilization. Genes involved in Nod factor and polysaccharide biosynthesis, denitrification and type III, IV, and VI secretion systems also vary within and between species. Symbiotic phenotyping and mutational analyses indicated that some type IV secretion genes are symbiosis-related and involved in nitrogen fixation efficiency. Moreover, there is a correlation between the presence of type IV secretion systems, heme biosynthesis and microaerobic denitrification genes, and symbiotic efficiency. CONCLUSIONS Our results suggest that each Sinorhizobium strain uses a slightly different strategy to obtain maximum compatibility with a host plant. This large genome data set provides useful information to better understand the functional features of five Sinorhizobium species, especially compatibility in legume-Sinorhizobium interactions. The diversity of genes present in the accessory genomes of members of this genus indicates that each bacterium has adopted slightly different strategies to interact with diverse plant genera and soil environments.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
12 |
127 |
23
|
Young ND, Cannon SB, Sato S, Kim D, Cook DR, Town CD, Roe BA, Tabata S. Sequencing the genespaces of Medicago truncatula and Lotus japonicus. PLANT PHYSIOLOGY 2005; 137:1174-81. [PMID: 15824279 PMCID: PMC1088310 DOI: 10.1104/pp.104.057034] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 01/26/2005] [Accepted: 01/30/2005] [Indexed: 05/18/2023]
|
Comparative Study |
20 |
127 |
24
|
dePamphilis CW, Young ND, Wolfe AD. Evolution of plastid gene rps2 in a lineage of hemiparasitic and holoparasitic plants: many losses of photosynthesis and complex patterns of rate variation. Proc Natl Acad Sci U S A 1997; 94:7367-72. [PMID: 9207097 PMCID: PMC23827 DOI: 10.1073/pnas.94.14.7367] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The plastid genomes of some nonphotosynthetic parasitic plants have experienced an extreme reduction in gene content and an increase in evolutionary rate of remaining genes. Nothing is known of the dynamics of these events or whether either is a direct outcome of the loss of photosynthesis. The parasitic Scrophulariaceae and Orobanchaceae, representing a continuum of heterotrophic ability ranging from photosynthetic hemiparasites to nonphotosynthetic holoparasites, are used to investigate these issues. We present a phylogenetic hypothesis for parasitic Scrophulariaceae and Orobanchaceae based on sequences of the plastid gene rps2, encoding the S2 subunit of the plastid ribosome. Parasitic Scrophulariaceae and Orobanchaceae form a monophyletic group in which parasitism can be inferred to have evolved once. Holoparasitism has evolved independently at least five times, with certain holoparasitic lineages representing single species, genera, and collections of nonphotosynthetic genera. Evolutionary loss of the photosynthetic gene rbcL is limited to a subset of holoparasitic lineages, with several holoparasites retaining a full length rbcL sequence. In contrast, the translational gene rps2 is retained in all plants investigated but has experienced rate accelerations in several hemi- as well as holoparasitic lineages, suggesting that there may be substantial molecular evolutionary changes to the plastid genome of parasites before the loss of photosynthesis. Independent patterns of synonymous and nonsynonymous rate acceleration in rps2 point to distinct mechanisms underlying rate variation in different lineages. Parasitic Scrophulariaceae (including the traditional Orobanchaceae) provide a rich platform for the investigation of molecular evolutionary process, gene function, and the evolution of parasitism.
Collapse
|
research-article |
28 |
125 |
25
|
Gepts P, Beavis WD, Brummer EC, Shoemaker RC, Stalker HT, Weeden NF, Young ND. Legumes as a model plant family. Genomics for food and feed report of the Cross-Legume Advances Through Genomics Conference. PLANT PHYSIOLOGY 2005; 137:1228-35. [PMID: 15824285 PMCID: PMC1088316 DOI: 10.1104/pp.105.060871] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2005] [Revised: 02/24/2005] [Accepted: 02/28/2005] [Indexed: 05/18/2023]
|
Congress |
20 |
124 |