1
|
Pilkington SM, Crowhurst R, Hilario E, Nardozza S, Fraser L, Peng Y, Gunaseelan K, Simpson R, Tahir J, Deroles SC, Templeton K, Luo Z, Davy M, Cheng C, McNeilage M, Scaglione D, Liu Y, Zhang Q, Datson P, De Silva N, Gardiner SE, Bassett H, Chagné D, McCallum J, Dzierzon H, Deng C, Wang YY, Barron L, Manako K, Bowen J, Foster TM, Erridge ZA, Tiffin H, Waite CN, Davies KM, Grierson EP, Laing WA, Kirk R, Chen X, Wood M, Montefiori M, Brummell DA, Schwinn KE, Catanach A, Fullerton C, Li D, Meiyalaghan S, Nieuwenhuizen N, Read N, Prakash R, Hunter D, Zhang H, McKenzie M, Knäbel M, Harris A, Allan AC, Gleave A, Chen A, Janssen BJ, Plunkett B, Ampomah-Dwamena C, Voogd C, Leif D, Lafferty D, Souleyre EJF, Varkonyi-Gasic E, Gambi F, Hanley J, Yao JL, Cheung J, David KM, Warren B, Marsh K, Snowden KC, Lin-Wang K, Brian L, Martinez-Sanchez M, Wang M, Ileperuma N, Macnee N, Campin R, McAtee P, Drummond RSM, Espley RV, Ireland HS, Wu R, Atkinson RG, Karunairetnam S, Bulley S, Chunkath S, Hanley Z, Storey R, Thrimawithana AH, Thomson S, David C, Testolin R, Huang H, Hellens RP, Schaffer RJ. A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants. BMC Genomics 2018; 19:257. [PMID: 29661190 PMCID: PMC5902842 DOI: 10.1186/s12864-018-4656-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 04/10/2018] [Indexed: 11/29/2022] Open
Abstract
Background Most published genome sequences are drafts, and most are dominated by computational gene prediction. Draft genomes typically incorporate considerable sequence data that are not assigned to chromosomes, and predicted genes without quality confidence measures. The current Actinidia chinensis (kiwifruit) ‘Hongyang’ draft genome has 164 Mb of sequences unassigned to pseudo-chromosomes, and omissions have been identified in the gene models. Results A second genome of an A. chinensis (genotype Red5) was fully sequenced. This new sequence resulted in a 554.0 Mb assembly with all but 6 Mb assigned to pseudo-chromosomes. Pseudo-chromosomal comparisons showed a considerable number of translocation events have occurred following a whole genome duplication (WGD) event some consistent with centromeric Robertsonian-like translocations. RNA sequencing data from 12 tissues and ab initio analysis informed a genome-wide manual annotation, using the WebApollo tool. In total, 33,044 gene loci represented by 33,123 isoforms were identified, named and tagged for quality of evidential support. Of these 3114 (9.4%) were identical to a protein within ‘Hongyang’ The Kiwifruit Information Resource (KIR v2). Some proportion of the differences will be varietal polymorphisms. However, as most computationally predicted Red5 models required manual re-annotation this proportion is expected to be small. The quality of the new gene models was tested by fully sequencing 550 cloned ‘Hort16A’ cDNAs and comparing with the predicted protein models for Red5 and both the original ‘Hongyang’ assembly and the revised annotation from KIR v2. Only 48.9% and 63.5% of the cDNAs had a match with 90% identity or better to the original and revised ‘Hongyang’ annotation, respectively, compared with 90.9% to the Red5 models. Conclusions Our study highlights the need to take a cautious approach to draft genomes and computationally predicted genes. Our use of the manual annotation tool WebApollo facilitated manual checking and correction of gene models enabling improvement of computational prediction. This utility was especially relevant for certain types of gene families such as the EXPANSIN like genes. Finally, this high quality gene set will supply the kiwifruit and general plant community with a new tool for genomics and other comparative analysis. Electronic supplementary material The online version of this article (10.1186/s12864-018-4656-3) contains supplementary material, which is available to authorized users.
Collapse
|
Journal Article |
7 |
122 |
2
|
Ireland HS, Yao JL, Tomes S, Sutherland PW, Nieuwenhuizen N, Gunaseelan K, Winz RA, David KM, Schaffer RJ. Apple SEPALLATA1/2-like genes control fruit flesh development and ripening. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:1044-56. [PMID: 23236986 DOI: 10.1111/tpj.12094] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/29/2012] [Accepted: 12/10/2012] [Indexed: 05/19/2023]
Abstract
Flowering plants utilize different floral structures to develop flesh tissue in fruits. Here we show that suppression of the homeologous SEPALLATA1/2-like genes MADS8 and MADS9 in the fleshy fruit apple (Malus x domestica) leads to sepaloid petals and greatly reduced fruit flesh. Immunolabelling of cell-wall epitopes and differential staining showed that the developing hypanthium (from which the apple flesh develops) of MADS8/9-suppressed apple flowers lacks a tissue layer, and the remaining flesh tissue of fully developed apples has considerably smaller cells. From these observations, it is proposed that MADS8 and MADS9 control the development of discrete zones within the hypanthium tissue, and therefore fruit flesh, and also act as foundations for development of different floral organs. At fruit maturity, the MADS8/9-suppressed apples do not ripen in terms of both developmentally controlled ripening characters, such as starch degradation, and ethylene-modulated ripening traits. Transient assays suggest that, like the RIN gene in tomato, the MADS9 gene acts as a transcriptional activator of the ethylene biosynthesis enzyme, 1-aminocyclopropane-1-carboxylate (ACC) synthase 1. The existence of a single class of genes that regulate both flesh formation and ripening provides an evolutionary tool for controlling two critical aspects of fleshy fruit development.
Collapse
|
|
12 |
75 |
3
|
Andre CM, Legay S, Deleruelle A, Nieuwenhuizen N, Punter M, Brendolise C, Cooney JM, Lateur M, Hausman J, Larondelle Y, Laing WA. Multifunctional oxidosqualene cyclases and cytochrome P450 involved in the biosynthesis of apple fruit triterpenic acids. THE NEW PHYTOLOGIST 2016; 211:1279-94. [PMID: 27214242 PMCID: PMC5089662 DOI: 10.1111/nph.13996] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/29/2016] [Indexed: 05/20/2023]
Abstract
Apple (Malus × domestica) accumulates bioactive ursane-, oleanane-, and lupane-type triterpenes in its fruit cuticle, but their biosynthetic pathway is still poorly understood. We used a homology-based approach to identify and functionally characterize two new oxidosqualene cyclases (MdOSC4 and MdOSC5) and one cytochrome P450 (CYP716A175). The gene expression patterns of these enzymes and of previously described oxidosqualene cyclases were further studied in 20 apple cultivars with contrasting triterpene profiles. MdOSC4 encodes a multifunctional oxidosqualene cyclase producing an oleanane-type triterpene, putatively identified as germanicol, as well as β-amyrin and lupeol, in the proportion 82 : 14 : 4. MdOSC5 cyclizes 2,3-oxidosqualene into lupeol and β-amyrin at a ratio of 95 : 5. CYP716A175 catalyses the C-28 oxidation of α-amyrin, β-amyrin, lupeol and germanicol, producing ursolic acid, oleanolic acid, betulinic acid, and putatively morolic acid. The gene expression of MdOSC1 was linked to the concentrations of ursolic and oleanolic acid, whereas the expression of MdOSC5 was correlated with the concentrations of betulinic acid and its caffeate derivatives. Two new multifuntional triterpene synthases as well as a multifunctional triterpene C-28 oxidase were identified in Malus × domestica. This study also suggests that MdOSC1 and MdOSC5 are key genes in apple fruit triterpene biosynthesis.
Collapse
|
research-article |
9 |
64 |
4
|
Nieuwenhuizen N, Herbert DR, Brombacher F, Lopata AL. Differential requirements for interleukin (IL)-4 and IL-13 in protein contact dermatitis induced by Anisakis. Allergy 2009; 64:1309-18. [PMID: 19254288 DOI: 10.1111/j.1398-9995.2009.02002.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Exposure to antigens of the fish parasite Anisakis is associated with the development of protein contact dermatitis in seafood-processing workers. Understanding the basic mechanisms controlling allergic sensitization through the skin is critical for designing therapies that will prevent the progression of allergic disease. OBJECTIVE To investigate the roles of interleukin (IL)-4, IL-13 and the IL-4Ralpha in both local skin pathology and systemic sensitization following epicutaneous exposure to Anisakis proteins. METHODS BALB/c wild-type (WT) mice and mice deficient in IL-4, IL-13 or IL-4 and IL-13, as well as mice with cell-specific impairment of IL-4Ralpha expression, were sensitized to Anisakis antigen by repeated epicutaneous application of Anisakis extract. Following this sensitization, skin pathology was recorded and systemic responses were investigated. Intravenous challenge with Anisakis extract was performed to test for the development of biologically relevant systemic sensitization. RESULTS In WT mice, epicutaneous sensitization with Anisakis larval antigens induced localized inflammation, epidermal hyperplasia, production of T(H)2 cytokines, antigen-specific IgE and IgG1. Intravenous challenge of sensitized mice resulted in anaphylactic shock. Interestingly, IL-13 deficient mice failed to develop epidermal hyperplasia and inflammation, whilst anaphylaxis was reduced only in strains deficient either in IL-4 only, or deficient in IL-4 and IL-13 concurrently, as well as in mice deficient in IL-4Ralpha or with impaired IL-4Ralpha expression on CD4(+) T cells. CONCLUSIONS Interleukin-13 plays a central role in protein contact dermatitis associated with repeated epicutaneous exposure to Anisakis extract, whereas IL-4 drives systemic sensitization and resultant anaphylactic shock.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
18 |
5
|
Brian L, Warren B, McAtee P, Rodrigues J, Nieuwenhuizen N, Pasha A, David KM, Richardson A, Provart NJ, Allan AC, Varkonyi-Gasic E, Schaffer RJ. A gene expression atlas for kiwifruit (Actinidia chinensis) and network analysis of transcription factors. BMC PLANT BIOLOGY 2021; 21:121. [PMID: 33639842 PMCID: PMC7913447 DOI: 10.1186/s12870-021-02894-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/18/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Transcriptomic studies combined with a well annotated genome have laid the foundations for new understanding of molecular processes. Tools which visualise gene expression patterns have further added to these resources. The manual annotation of the Actinidia chinensis (kiwifruit) genome has resulted in a high quality set of 33,044 genes. Here we investigate gene expression patterns in diverse tissues, visualised in an Electronic Fluorescent Pictograph (eFP) browser, to study the relationship of transcription factor (TF) expression using network analysis. RESULTS Sixty-one samples covering diverse tissues at different developmental time points were selected for RNA-seq analysis and an eFP browser was generated to visualise this dataset. 2839 TFs representing 57 different classes were identified and named. Network analysis of the TF expression patterns separated TFs into 14 different modules. Two modules consisting of 237 TFs were correlated with floral bud and flower development, a further two modules containing 160 TFs were associated with fruit development and maturation. A single module of 480 TFs was associated with ethylene-induced fruit ripening. Three "hub" genes correlated with flower and fruit development consisted of a HAF-like gene central to gynoecium development, an ERF and a DOF gene. Maturing and ripening hub genes included a KNOX gene that was associated with seed maturation, and a GRAS-like TF. CONCLUSIONS This study provides an insight into the complexity of the transcriptional control of flower and fruit development, as well as providing a new resource to the plant community. The Actinidia eFP browser is provided in an accessible format that allows researchers to download and work internally.
Collapse
|
research-article |
4 |
11 |
6
|
Feng J, Nieuwenhuizen N, Atkinson R, Wang W, Zeng J, Zheng H, Tao J. Comparative study of phenolic compounds reveals a positive relationship between astringency and the phenolic composition in table grape varieties. J Food Sci 2023; 88:447-461. [PMID: 36527319 DOI: 10.1111/1750-3841.16413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/28/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022]
Abstract
Phenolic compounds and their derivatives play a major role in the intensity and characteristics of grape (Vitis vinifera) astringency. The present study investigated the relationship between phenolic composition and astringency of six commercial table grape varieties (two of each white-, red-, and black-skinned). Qualitative and quantitative liquid chromatography-mass spectrometry analysis was used to identify the variety-specific phenolic profiles in the skins and total astringency intensity was assessed and described by a trained sensory panel. Thirty phenolic compounds were identified among the six varieties. Principal component analysis of the phenolic profiles revealed that the intensity of astringency of grape skin was positively correlated with catechin, epicatechin, epicatechin-3-O-gallate, and proanthocyanidin dimers B1, B2, and B3. A further orthogonal partial least-squares discrimination analysis of these compounds showed that catechin was the substance most strongly and positively correlated (R = 0.904) with grape skin astringency. PRACTICAL APPLICATION: This study provided a better understanding of the relationships between phenolic composition and table grape astringency and highlighted a potential metabolic marker that could be used as a predictor for the complex astringency sensory attributes of table grape berries.
Collapse
|
|
2 |
1 |
8
|
Yang G, Sun M, Brewer L, Tang Z, Nieuwenhuizen N, Cooney J, Xu S, Sheng J, Andre C, Xue C, Rebstock R, Yang B, Chang W, Liu Y, Li J, Wang R, Qin M, Brendolise C, Allan AC, Espley RV, Lin‐Wang K, Wu J. Allelic variation of BBX24 is a dominant determinant controlling red coloration and dwarfism in pear. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1468-1490. [PMID: 38169146 PMCID: PMC11123420 DOI: 10.1111/pbi.14280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Variation in anthocyanin biosynthesis in pear fruit provides genetic germplasm resources for breeding, while dwarfing is an important agronomic trait, which is beneficial to reduce the management costs and allow for the implementation of high-density cultivation. Here, we combined bulked segregant analysis (BSA), quantitative trait loci (QTL), and structural variation (SV) analysis to identify a 14-bp deletion which caused a frame shift mutation and resulted in the premature translation termination of a B-box (BBX) family of zinc transcription factor, PyBBX24, and its allelic variation termed PyBBX24ΔN14. PyBBX24ΔN14 overexpression promotes anthocyanin biosynthesis in pear, strawberry, Arabidopsis, tobacco, and tomato, while that of PyBBX24 did not. PyBBX24ΔN14 directly activates the transcription of PyUFGT and PyMYB10 through interaction with PyHY5. Moreover, stable overexpression of PyBBX24ΔN14 exhibits a dwarfing phenotype in Arabidopsis, tobacco, and tomato plants. PyBBX24ΔN14 can activate the expression of PyGA2ox8 via directly binding to its promoter, thereby deactivating bioactive GAs and reducing the plant height. However, the nuclear localization signal (NLS) and Valine-Proline (VP) motifs in the C-terminus of PyBBX24 reverse these effects. Interestingly, mutations leading to premature termination of PyBBX24 were also identified in red sports of un-related European pear varieties. We conclude that mutations in PyBBX24 gene link both an increase in pigmentation and a decrease in plant height.
Collapse
|
research-article |
1 |
|