1
|
von Essen MR, Kongsbak M, Schjerling P, Olgaard K, Odum N, Geisler C. Vitamin D controls T cell antigen receptor signaling and activation of human T cells. Nat Immunol 2010; 11:344-9. [PMID: 20208539 DOI: 10.1038/ni.1851] [Citation(s) in RCA: 379] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 02/08/2010] [Indexed: 12/19/2022]
Abstract
Phospholipase C (PLC) isozymes are key signaling proteins downstream of many extracellular stimuli. Here we show that naive human T cells had very low expression of PLC-gamma1 and that this correlated with low T cell antigen receptor (TCR) responsiveness in naive T cells. However, TCR triggering led to an upregulation of approximately 75-fold in PLC-gamma1 expression, which correlated with greater TCR responsiveness. Induction of PLC-gamma1 was dependent on vitamin D and expression of the vitamin D receptor (VDR). Naive T cells did not express VDR, but VDR expression was induced by TCR signaling via the alternative mitogen-activated protein kinase p38 pathway. Thus, initial TCR signaling via p38 leads to successive induction of VDR and PLC-gamma1, which are required for subsequent classical TCR signaling and T cell activation.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
379 |
2
|
Brodersen P, Petersen M, Pike HM, Olszak B, Skov S, Odum N, Jørgensen LB, Brown RE, Mundy J. Knockout of Arabidopsis accelerated-cell-death11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense. Genes Dev 2002; 16:490-502. [PMID: 11850411 PMCID: PMC155338 DOI: 10.1101/gad.218202] [Citation(s) in RCA: 296] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We describe the lethal, recessive accelerated-cell-death11 Arabidopsis mutant (acd11). Cell death in acd11 exhibits characteristics of animal apoptosis monitored by flow cytometry, and acd11 constitutively expresses defense-related genes that accompany the hypersensitive response normally triggered by avirulent pathogens. Global transcriptional changes during programmed cell death (PCD) and defense activation in acd11 were monitored by cDNA microarray hybridization. The PCD and defense pathways activated in acd11 are salicylic acid (SA) dependent, but do not require intact jasmonic acid or ethylene signaling pathways. Light is required for PCD execution in acd11, as application of an SA-analog to SA-deficient acd11 induced death in the light, but not in the dark. Epistatic analysis showed that the SA-dependent pathways require two regulators of SA-mediated resistance responses, PAD4 and EDS1. Furthermore, acd11 PR1 gene expression, but not cell death, depends on the SA signal tranducer NPR1, suggesting that the npr1-1 mutation uncouples resistance responses and cell death in acd11. The acd11 phenotype is caused by deletion of the ACD11 gene encoding a protein homologous to a mammalian glycolipid transfer protein (GLTP). In contrast to GLTP, ACD11 accelerates the transfer of sphingosine, but not of glycosphingolipids, between membranes in vitro.
Collapse
|
research-article |
23 |
296 |
3
|
Skov S, Pedersen MT, Andresen L, Straten PT, Woetmann A, Odum N. Cancer cells become susceptible to natural killer cell killing after exposure to histone deacetylase inhibitors due to glycogen synthase kinase-3-dependent expression of MHC class I-related chain A and B. Cancer Res 2005; 65:11136-45. [PMID: 16322264 DOI: 10.1158/0008-5472.can-05-0599] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We show that histone deacetylase (HDAC) inhibitors lead to functional expression of MHC class I-related chain A and B (MICA/B) on cancer cells, making them potent targets for natural killer (NK) cell-mediated killing through a NK group 2, member D (NKG2D) restricted mechanism. Blocking either apoptosis or oxidative stress caused by HDAC inhibitor treatment did not affect MICA/B expression, suggesting involvement of a separate signal pathway not directly coupled to induction of cell death. HDAC inhibitor treatment induced glycogen synthase kinase-3 (GSK-3) activity and down-regulation of GSK-3 by small interfering RNA or by different inhibitors showed that GSK-3 activity is essential for the induced MICA/B expression. We thus present evidence that cancer cells which survive the direct induction of cell death by HDAC inhibitors become targets for NKG2D-expressing cells like NK cells, gammadelta T cells, and CD8 T cells.
Collapse
|
|
20 |
218 |
4
|
Zhang Q, Raghunath PN, Xue L, Majewski M, Carpentieri DF, Odum N, Morris S, Skorski T, Wasik MA. Multilevel dysregulation of STAT3 activation in anaplastic lymphoma kinase-positive T/null-cell lymphoma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:466-74. [PMID: 11751994 DOI: 10.4049/jimmunol.168.1.466] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Accumulating evidence indicates that expression of anaplastic lymphoma kinase (ALK), typically due to t(2;5) translocation, defines a distinct type of T/null-cell lymphoma (TCL). The resulting nucleophosmin (NPM) /ALK chimeric kinase is constitutively active and oncogenic. Downstream effector molecules triggered by NPM/ALK remain, however, largely unidentified. Here we report that NPM/ALK induces continuous activation of STAT3. STAT3 displayed tyrosine phosphorylation and DNA binding in all (four of four) ALK+ TCL cell lines tested. The activation of STAT3 was selective because none of the other known STATs was consistently tyrosine phosphorylated in these cell lines. In addition, malignant cells in tissue sections from all (10 of 10) ALK+ TCL patients expressed tyrosine-phosphorylated STAT3. Transfection of BaF3 cells with NPM/ALK resulted in tyrosine phosphorylation of STAT3. Furthermore, STAT3 was constitutively associated with NPM/ALK in the ALK+ TCL cell lines. Additional studies into the mechanisms of STAT3 activation revealed that the ALK+ TCL cells expressed a positive regulator of STAT3 activation, protein phosphatase 2A (PP2A), which was constitutively associated with STAT3. Treatment with the PP2A inhibitor calyculin A abrogated tyrosine phosphorylation of STAT3. Finally, ALK+ T cells failed to express a negative regulator of activated STAT3, protein inhibitor of activated STAT3. These data indicate that NPM/ALK activates STAT3 and that PP2A and lack of protein inhibitor of activated STAT3 may be important in maintaining STAT3 in the activated state in the ALK+ TCL cells. These results also suggest that activated STAT3, which is known to display oncogenic properties, as well as its regulatory molecules may represent attractive targets for novel therapies in ALK+ TCL.
Collapse
|
|
23 |
206 |
5
|
Nielsen M, Kaltoft K, Nordahl M, Röpke C, Geisler C, Mustelin T, Dobson P, Svejgaard A, Odum N. Constitutive activation of a slowly migrating isoform of Stat3 in mycosis fungoides: tyrphostin AG490 inhibits Stat3 activation and growth of mycosis fungoides tumor cell lines. Proc Natl Acad Sci U S A 1997; 94:6764-9. [PMID: 9192639 PMCID: PMC21232 DOI: 10.1073/pnas.94.13.6764] [Citation(s) in RCA: 191] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mycosis fungoides (MF) is a low-grade cutaneous T cell lymphoma of unknown etiology. In this report, the Jak/Stat (Janus kinase/signal transducer and activator of transcription) signaling pathway was investigated in tumor cell lines established from skin biopsy specimens from a patient with MF. Jaks link cytokine receptors to Stats, and abnormal Jak/Stat signaling has been observed in some hemopoietic cancers. In MF tumor cells, a slowly migrating isoform of Stat3, Stat3(sm), was found to be constitutively activated, i.e., (i) Stat3(sm) was constitutively phosphorylated on tyrosine residues, and tyrosine phosphorylation was not enhanced by growth factor stimulation; (ii) band shift assays and immunoprecipitations of DNA/Stat complexes showed constitutive DNA-binding properties of Stat3(sm); and (iii) Stat3(sm) was constitutively associated with Jak3. The abnormal activation of Stat3(sm) was highly specific. Thus, neither the fast migrating isoform of Stat3 (Stat3(fm)) nor other Stats (Stat1, Stat2, and Stat4 through Stat6) were constitutively activated. The Jak kinase inhibitor, tyrphostin AG490, blocked the constitutive activation of Stat3(sm) and inhibited spontaneous as well as interleukin 2-induced growth of MF tumor cells. In conclusion, we have provided evidence for an abnormal Jak/Stat signaling and growth regulation in tumor cells obtained from affected skin of an MF patient.
Collapse
|
research-article |
28 |
191 |
6
|
Nielsen M, Kaestel CG, Eriksen KW, Woetmann A, Stokkedal T, Kaltoft K, Geisler C, Röpke C, Odum N. Inhibition of constitutively activated Stat3 correlates with altered Bcl-2/Bax expression and induction of apoptosis in mycosis fungoides tumor cells. Leukemia 1999; 13:735-8. [PMID: 10374878 DOI: 10.1038/sj.leu.2401415] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Jak/Stat signaling pathway transmits signals from many cytokine and growth factor receptors to target genes in the nucleus. Constitutive activation of Stat3 has recently been observed in many tumor cells and dysregulation of the Stat signaling pathway has been proposed to be implicated in malignant transformation. In a previous study, we found constitutively tyrosine phosphorylated Stat3 in mycosis fungoides tumor cells. Here, we show that the Jak kinase inhibitor, Ag490, inhibits the constitutive binding of Stat3 to an oligonucleotide representing the Stat-binding sequence from the ICAM promotor. The decreased ability of Stat3 to bind DNA precedes dynamic alterations in the expression of anti-apoptotic Bcl-2 and pro-apoptotic Bax proteins (decreased Bcl-2 expression and increased Bax expression) and induction of apoptosis. Thus, our data suggest that the involvement of Stat3 in oncogenic transformation could be mediated through regulation of survival signals.
Collapse
|
|
26 |
163 |
7
|
Dietrich J, Kastrup J, Nielsen BL, Odum N, Geisler C. Regulation and function of the CD3gamma DxxxLL motif: a binding site for adaptor protein-1 and adaptor protein-2 in vitro. J Cell Biol 1997; 138:271-81. [PMID: 9230070 PMCID: PMC2138198 DOI: 10.1083/jcb.138.2.271] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Several receptors are downregulated by internalization after ligand binding. Regulation of T cell receptor (TCR) expression is an important step in T cell activation, desensitization, and tolerance induction. One way T cells regulate TCR expression is by phosphorylation/dephosphorylation of the TCR subunit clusters of differentiation (CD)3gamma. Thus, phosphorylation of CD3gamma serine 126 (S126) causes a downregulation of the TCR. In this study, we have analyzed the CD3gamma internalization motif in three different systems in parallel: in the context of the complete multimeric TCR; in monomeric CD4/CD3gamma chimeras; and in vitro by binding CD3gamma peptides to clathrin-coated vesicle adaptor proteins (APs). We find that the CD3gamma D127xxxLL131/132 sequence represents one united motif for binding of both AP-1 and AP-2, and that this motif functions as an active sorting motif in monomeric CD4/ CD3gamma molecules independently of S126. An acidic amino acid is required at position 127 and a leucine (L) is required at position 131, whereas the requirements for position 132 are more relaxed. The spacing between aspartic acid 127 (D127) and L131 is crucial for the function of the motif in vivo and for AP binding in vitro. Furthermore, we provide evidence indicating that phosphorylation of CD3gamma S126 in the context of the complete TCR induces a conformational change that exposes the DxxxLL sequence for AP binding. Exposure of the DxxxLL motif causes an increase in the TCR internalization rate and we demonstrate that this leads to an impairment of TCR signaling. On the basis of the present results, we propose the existence of at least three different types of L-based receptor sorting motifs.
Collapse
|
research-article |
28 |
146 |
8
|
Zhang Q, Wang HY, Woetmann A, Raghunath PN, Odum N, Wasik MA. STAT3 induces transcription of the DNA methyltransferase 1 gene (DNMT1) in malignant T lymphocytes. Blood 2006; 108:1058-64. [PMID: 16861352 PMCID: PMC1895864 DOI: 10.1182/blood-2005-08-007377] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In this study, we demonstrated that STAT3, a well-characterized transcription factor expressed in continuously activated oncogenic form in the large spectrum of cancer types, induces in malignant T lymphocytes the expression of DNMT1, the key effector of epigenetic gene silencing. STAT3 binds in vitro to 2 STAT3 SIE/GAS-binding sites identified in promoter 1 and enhancer 1 of the DNMT1 gene. STAT3 also binds to the promoter 1 region and induces its activity in vivo. Treatment of the malignant T lymphocytes with STAT3 siRNA abrogates expression of DNMT1, inhibits cell growth, and induces programmed cell death. In turn, inhibition of DNMT1 by a small molecule inhibitor, 5-aza-2-deoxy-cytidine, and 2 DNMT1 antisense DNA oligonucleotides inhibits the phosphorylation of STAT3. These data indicate that STAT3 may in part transform cells by fostering epigenetic silencing of tumor-suppressor genes. They also indicate that by inducing DNMT1, STAT3 facilitates its own persistent activation in malignant T cells. Finally, these data provide further rationale for therapeutically targeting STAT3 in T-cell lymphomas and, possibly, other malignancies.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
135 |
9
|
Eriksen KW, Kaltoft K, Mikkelsen G, Nielsen M, Zhang Q, Geisler C, Nissen MH, Röpke C, Wasik MA, Odum N. Constitutive STAT3-activation in Sezary syndrome: tyrphostin AG490 inhibits STAT3-activation, interleukin-2 receptor expression and growth of leukemic Sezary cells. Leukemia 2001; 15:787-93. [PMID: 11368440 DOI: 10.1038/sj.leu.2402093] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Interleukin-2 (IL-2) is a growth factor which upon binding to high-affinity receptors (IL-2Ralphabetagamma) triggers mitogenesis in T cells. IL-2Ralpha expression is restricted to T cells which have recently encountered antigen, and in healthy individuals the majority (>95%) of peripheral T cells are IL-2Ralpha negative. An aberrant expression of IL-2Ralpha has recently been described in cutaneous T-cell lymphoma (CTCL). Here, we study the regulation of IL-2Ralpha expression and STATs in a tumor cell line obtained from peripheral blood from a patient with Sezary syndrome (SS), a leukemic variant of CTCL. We show that (1) STAT3 (a transcription factor known to regulate IL-2Ralpha transcription) is constitutively tyrosine-phosphorylated in SS tumor cells, but not in non-malignant T cells; (2) STAT3 binds constitutively to a STAT-binding sequence in the promotor of the IL-2Ralpha gene; (3) the Janus kinase inhibitor, tyrphostine AG490, inhibits STAT3 activation, STAT3 DNA binding, and IL-2Ralpha mRNA and protein expression in parallel; and (4) tyrphostine AG490 inhibits IL-2 driven mitogenesis and triggers apoptosis in SS tumor cells. In conclusion, we provide the first example of a constitutive STAT3 activation in SS tumor cells. Moreover, our findings suggest that STAT3 activation might play an important role in the constitutive IL-2Ralpha expression, survival, and growth of malignant SS cells.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
24 |
128 |
10
|
Bendtzen K, Morling N, Fomsgaard A, Svenson M, Jakobsen B, Odum N, Svejgaard A. Association between HLA-DR2 and production of tumour necrosis factor alpha and interleukin 1 by mononuclear cells activated by lipopolysaccharide. Scand J Immunol 1988; 28:599-606. [PMID: 3264932 DOI: 10.1111/j.1365-3083.1988.tb01492.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The production of tumour necrosis factor (TNF) and interleukin 1 (IL-1) by lipopolysaccharide-activated mononuclear cells from 39 healthy donors was studied in vitro by bioassay and ELISA. The donors were typed for HLA-A, -B, -C, -DR, and -DP antigens. There was no detectable production of TNF beta (lymphotoxin). The intracellular levels of bioactive TNF alpha were minimal or undetectable in all cases. Cells from HLA-DR2+ individuals secreted significantly lower amounts of TNF alpha than cells from HLA-DR2- donors [2 ng/ml (1.5-4.4) and 7.5 ng/ml (3.9-8.3) respectively (medians 25-75%); P less than 0.01]. The difference disappeared if the cells were preactivated for 2 days with 1000 U/ml of recombinant gamma interferon (rIFN-gamma). In some individuals, the TNF alpha response increased considerably after IFN-gamma priming, in particular in those possessing the HLA-DR2 antigen. In contrast, there was no detectable difference in the production of IL-1 beta between the donors, and the IL-1 beta response decreased significantly after rIFN-gamma priming in HLA-DR2+ individuals [2.3 ng/ml (1.1-8.4) versus 7.2 ng/ml (5-7.9); P less than 0.05] and in HLA-DR2- individuals [3 ng/ml (1.1-5.3) versus 5.7 ng/ml (3.9-7.5); P less than 0.01]. There was no correlation between the TNF alpha and IL-1 responses and any of the other HLA-DR, -DP, or -B antigens. There was a significant positive correlation between the levels of TNF alpha measured by ELISA and by cytotoxicity assay. However, the TNF alpha-containing supernatants from 9 out of 37 individuals appeared to contain inhibitor(s) of the biological activity of TNF alpha. The presence of inhibitor(s) was not associated with any HLA antigens.
Collapse
|
|
37 |
124 |
11
|
Gjerdrum LM, Woetmann A, Odum N, Burton CM, Rossen K, Skovgaard GL, Ryder LP, Ralfkiaer E. FOXP3+ regulatory T cells in cutaneous T-cell lymphomas: association with disease stage and survival. Leukemia 2007; 21:2512-8. [PMID: 17713545 DOI: 10.1038/sj.leu.2404913] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
FOXP3 is a unique marker for CD4+CD25+ regulatory T cells (Tregs). In solid tumours, high numbers of Tregs are associated with a poor prognosis. Knowledge about the implications of Tregs for the behaviour of haematological malignancies is limited. In this study, skin biopsies from 86 patients with mycosis fungoides (MF) and cutaneous T-cell lymphoma (CTCL) unspecified were analysed for the expression of FOXP3 on tumour cells and tumour-infiltrating Tregs. Labelling of above 10% of the neoplastic cells was seen in one case classified as an aggressive epidermotropic CD8+ cytotoxic CTCL. In the remaining 85 cases, the atypical neoplastic infiltrate was either FOXP3 negative (n=80) or contained only very occasional weakly positive cells (n=5). By contrast, all biopsies showed varying numbers of strongly FOXP3+ tumour-infiltrating Tregs. MF with early or infiltrated plaques had significantly higher numbers of FOXP3+ Tregs than CTCL unspecified or advanced MF with tumours or transformation to large cell lymphoma. An analysis of all patients demonstrated that increasing numbers of FOXP3+ Tregs were associated with improved survival in both MF and CTCL unspecified. In conclusion, our data indicate that the presence of FOXP3+ Tregs in CTCL is associated with disease stage and patient survival.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Cell Line, Tumor
- Female
- Forkhead Transcription Factors/analysis
- Humans
- Jurkat Cells/chemistry
- Kaplan-Meier Estimate
- Lymphocytes, Tumor-Infiltrating/chemistry
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/pathology
- Lymphoma, T-Cell, Cutaneous/immunology
- Lymphoma, T-Cell, Cutaneous/mortality
- Lymphoma, T-Cell, Cutaneous/pathology
- Male
- Middle Aged
- Mycosis Fungoides/mortality
- Mycosis Fungoides/pathology
- Neoplasm Staging
- Prognosis
- Proportional Hazards Models
- Recombinant Fusion Proteins/analysis
- Skin Neoplasms/immunology
- Skin Neoplasms/mortality
- Skin Neoplasms/pathology
- Survival Analysis
- T-Lymphocytes, Regulatory/chemistry
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
122 |
12
|
Woetmann A, Nielsen M, Christensen ST, Brockdorff J, Kaltoft K, Engel AM, Skov S, Brender C, Geisler C, Svejgaard A, Rygaard J, Leick V, Odum N. Inhibition of protein phosphatase 2A induces serine/threonine phosphorylation, subcellular redistribution, and functional inhibition of STAT3. Proc Natl Acad Sci U S A 1999; 96:10620-5. [PMID: 10485875 PMCID: PMC17932 DOI: 10.1073/pnas.96.19.10620] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Signal transducers and activators of transcription (STATs) are rapidly phosphorylated on tyrosine residues in response to cytokine and growth factor stimulation of cell surface receptors. STATs hereafter are translocated to the nucleus where they act as transcription factors. Recent reports suggest that serine phosphorylation of STATs also is involved in the regulation of STAT-mediated gene transcription. Here, we studied the role of serine/threonine phosphatases in STAT3 signaling in human antigen-specific CD4(+) T cell lines and cutaneous T cell lymphoma lines, expressing a constitutively activated STAT3. We show that an inhibitor of protein phosphatases (PPs) PP1/PP2A, calyculin A, induces (i) phosphorylation of STAT3 on serine and threonine residues, (ii) inhibition of STAT3 tyrosine phosphorylation and DNA binding activity, and (iii) relocation of STAT3 from the nucleus to the cytoplasm. Similar results were obtained with other PP2A inhibitors (okadaic acid, endothall thioanhydride) but not with inhibitors of PP1 (tautomycin) or PP2B (cyclosporine A). Pretreatment with the broad serine/threonine kinase inhibitor staurosporine partly blocked the calyculin A-induced STAT3 phosphorylation, whereas inhibitors of serine/threonine kinases, such as mitogen-activated protein kinase-1 extracellular-regulated kinase-kinase, mitogen-activated protein p38 kinase, and phosphatidylinositol 3-kinase, did not. In conclusion, we provide evidence that PP2A plays a crucial role in the regulation of STAT3 phosphorylation and subcellular distribution in T cells. Moreover, our findings suggest that the level of STAT3 phosphorylation is balanced between a staurosporine-sensitive kinase(s) and PP2A.
Collapse
|
research-article |
26 |
116 |
13
|
Zhang Q, Raghunath PN, Vonderheid E, Odum N, Wasik MA. Lack of phosphotyrosine phosphatase SHP-1 expression in malignant T-cell lymphoma cells results from methylation of the SHP-1 promoter. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 157:1137-46. [PMID: 11021818 PMCID: PMC1850163 DOI: 10.1016/s0002-9440(10)64629-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SHP-1 is an important negative regulator of signaling by several receptors including receptors for interleukin-2 (IL-2R) and other cytokines. SHP-1 acts by dephosphorylating the receptors and receptor-associated kinases such as IL-2R-associated Jak3 kinase. We found that SHP-1 protein was not detectable or greatly diminished in most (six of seven) T cell lines derived from various types of T cell lymphomas and all (eight of eight) cutaneous T-cell lymphoma tissues with a transformed, large-cell morphology. All T-cell lymphoma lines tested (eight of eight) expressed diminished amounts or no detectable SHP-1 mRNA. These T cell lines did not, however, carry any mutations in the SHP-1 gene-coding, splice-junction, and promoter regions. Importantly, SHP-1 DNA promoter region in the T cell lines was resistant to digestion with three different methylation-sensitive restriction enzymes. This resistance was reversed by treatment of the cells with a demethylating agent, 5-deoxyazacytidine. The treatment resulted also in the expression of SHP-1 mRNA and, less frequently, SHP-1 protein. The expression of SHP-1 protein was associated with dephosphorylation of the Jak3 kinase. These results show that lack of SHP-1 expression is frequent in malignant T cells and results from methylation of the SHP-1 gene promoter. Furthermore, they indicate that SHP-1 loss may play a role in the pathogenesis of T cell lymphomas by permitting persistence of signals generated by IL-2R and, possibly, other receptor complexes.
Collapse
|
research-article |
25 |
109 |
14
|
Brender C, Nielsen M, Kaltoft K, Mikkelsen G, Zhang Q, Wasik M, Billestrup N, Odum N. STAT3-mediated constitutive expression of SOCS-3 in cutaneous T-cell lymphoma. Blood 2001; 97:1056-62. [PMID: 11159537 DOI: 10.1182/blood.v97.4.1056] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A characteristic feature of neoplastic transformation is the loss of external control by cytokines and extracellular matrix of cellular differentiation, migration, and mitogenesis. Because suppressors of cytokine signaling (SOCS) proteins are negative regulators of cytokine-induced signaling, it has been hypothesized that an aberrant SOCS expression plays a role in neoplastic transformation. This study reports on a constitutive SOCS-3 expression in cutaneous T-cell lymphoma (CTCL) cell lines. SOCS-3 protein is constitutively expressed in tumor cell lines (but not in nonmalignant T cells) obtained from affected skin from a patient with mycosis fungoides (MF) and from peripheral blood from a patient with Sezary syndrome (SS). In contrast, constitutive SOCS-3 expression is not found in the leukemic Jurkat T-cell line, the MOLT-4 acute lymphoblastic leukemia cell line, and the monocytic leukemic cell line U937. Expression of SOCS-3 coincides with a constitutive activation of STAT3 in CTCL tumor cells, and stable transfection of CTCL tumor cells with a dominant negative STAT3 strongly inhibits SOCS-3 expression, whereas transfection with wild-type STAT3 does not. Moreover, the reduced SOCS-3 expression in cells transfected with the dominant negative STAT3 is associated with an increased sensitivity to interferon-alpha (IFN-alpha). In conclusion, evidence is provided for a constitutive SOCS-3 expression in cancer cells obtained from patients with CTCL. Moreover, the findings indicate that the aberrant expression of SOCS-3 is mediated by a constitutive activation of STAT3 in CTCL cells and affects the IFN-alpha sensitivity of these cells. (Blood. 2001;97:1056-1062)
Collapse
MESH Headings
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Dimethyl Sulfoxide/pharmacology
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation, Neoplastic/physiology
- Genes, Dominant
- Humans
- Interferon-alpha/pharmacology
- Interferon-gamma/pharmacology
- Jurkat Cells/metabolism
- Leukemia-Lymphoma, Adult T-Cell/genetics
- Leukemia-Lymphoma, Adult T-Cell/metabolism
- Leukemia-Lymphoma, Adult T-Cell/pathology
- Mutation
- Mycosis Fungoides/genetics
- Mycosis Fungoides/metabolism
- Mycosis Fungoides/pathology
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Protein Biosynthesis
- Proteins/genetics
- Quinazolines
- RNA, Messenger/biosynthesis
- RNA, Neoplasm/biosynthesis
- Recombinant Fusion Proteins/physiology
- Repressor Proteins
- STAT3 Transcription Factor
- Sezary Syndrome/genetics
- Sezary Syndrome/metabolism
- Sezary Syndrome/pathology
- Skin Neoplasms/genetics
- Skin Neoplasms/metabolism
- Suppressor of Cytokine Signaling 3 Protein
- Suppressor of Cytokine Signaling Proteins
- Trans-Activators/genetics
- Trans-Activators/physiology
- Transcription Factors
- Transcription, Genetic
- Transfection
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/metabolism
- Tyrphostins/pharmacology
Collapse
|
|
24 |
98 |
15
|
Manfè V, Biskup E, Rosbjerg A, Kamstrup M, Skov AG, Lerche CM, Lauenborg BT, Odum N, Gniadecki R. miR-122 regulates p53/Akt signalling and the chemotherapy-induced apoptosis in cutaneous T-cell lymphoma. PLoS One 2012; 7:e29541. [PMID: 22235305 PMCID: PMC3250447 DOI: 10.1371/journal.pone.0029541] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 11/30/2011] [Indexed: 11/25/2022] Open
Abstract
Advanced cutaneous T-cell lymphoma (CTCL) is resistant to chemotherapy and presents a major area of medical need. In view of the known role of microRNAs (miRNAs) in the regulation of cellular signalling, we aimed to identify the functionally important miRNA species, which regulate apoptosis in CTCL. Using a recently established model in which apoptosis of CTCL cell lines is induced by Notch-1 inhibition by γ-secretase inhibitors (GSIs), we found that miR-122 was significantly increased in the apoptotic cells. miR-122 up-regulation was not specific for GSI-1 but was also seen during apoptosis induced by chemotherapies including doxorubicin and proteasome blockers (bortezomib, MG132). miR-122 was not expressed in quiescent T-cells, but was detectable in CTCL: in lesional skin in mycosis fungoides and in Sézary cells purified from peripheral blood. In situ hybridization results showed that miR-122 was expressed in the malignant T-cell infiltrate and increased in the advanced stage mycosis fungoides. Surprisingly, miR-122 overexpression decreased the sensitivity to the chemotherapy-induced apoptosis via a signaling circuit involving the activation of Akt and inhibition of p53. We have also shown that induction of miR-122 occurred via p53 and that p53 post-transcriptionally up-regulated miR-122. miR-122 is thus an amplifier of the antiapoptotic Akt/p53 circuit and it is conceivable that a pharmacological intervention in this pathway may provide basis for novel therapies for CTCL.
Collapse
|
research-article |
13 |
92 |
16
|
Krejsgaard T, Odum N, Geisler C, Wasik MA, Woetmann A. Regulatory T cells and immunodeficiency in mycosis fungoides and Sézary syndrome. Leukemia 2011; 26:424-32. [PMID: 21904385 DOI: 10.1038/leu.2011.237] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cutaneous T-cell lymphoma (CTCL) is the term for diseases characterized by primary accumulation of malignant T cells in the skin. Patients with the two predominant clinical forms of CTCL called mycosis fungoides (MF) and Sézary syndrome (SS) characteristically develop severe immunodeficiency during disease progression and consequently patients with advanced disease frequently die of infections and not from the tumor burden. For decades, it has been suspected that the malignant T cells actively drive the evolving immunodeficiency to avoid antitumor immunity, yet, the underlying mechanisms remain unclear. The identification of a subset of highly immunosuppressive regulatory T cells (Tregs) triggered a variety of studies investigating if MF and SS are malignant proliferations of Tregs but seemingly discordant findings have been reported. Here, we review the literature to clarify the role of Tregs in MF and SS and discuss the potential mechanisms driving the immunodeficiency.
Collapse
|
Review |
14 |
90 |
17
|
Krejsgaard T, Ralfkiaer U, Clasen-Linde E, Eriksen KW, Kopp KL, Bonefeld CM, Geisler C, Dabelsteen S, Wasik MA, Ralfkiaer E, Woetmann A, Odum N. Malignant cutaneous T-cell lymphoma cells express IL-17 utilizing the Jak3/Stat3 signaling pathway. J Invest Dermatol 2011; 131:1331-8. [PMID: 21346774 DOI: 10.1038/jid.2011.27] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
IL-17 is a proinflammatory cytokine that is crucial for the host's protection against a range of extracellular pathogens. However, inappropriately regulated expression of IL-17 is associated with the development of inflammatory diseases and cancer. In cutaneous T-cell lymphoma (CTCL), malignant T cells gradually accumulate in skin lesions characterized by massive chronic inflammation, suggesting that IL-17 could be involved in the pathogenesis. In this study we show that IL-17 protein is present in 10 of 13 examined skin lesions but not in sera from 28 CTCL patients. Importantly, IL-17 expression is primarily observed in atypical lymphocytes with characteristic neoplastic cell morphology. In accordance, malignant T-cell lines from CTCL patients produce IL-17 and the synthesis is selectively increased by IL-2 receptor β chain cytokines. Small-molecule inhibitors or small interfering RNA against Jak3 and signal transducer and activator of transcription 3 (Stat3) reduce the production of IL-17, showing that the Jak3/Stat3 pathway promotes the expression of the cytokine. In summary, our findings indicate that the malignant T cells in CTCL lesions express IL-17 and that this expression is promoted by the Jak3/Stat3 pathway.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
86 |
18
|
Sibbesen NA, Kopp KL, Litvinov IV, Jønson L, Willerslev-Olsen A, Fredholm S, Petersen DL, Nastasi C, Krejsgaard T, Lindahl LM, Gniadecki R, Mongan NP, Sasseville D, Wasik MA, Iversen L, Bonefeld CM, Geisler C, Woetmann A, Odum N. Jak3, STAT3, and STAT5 inhibit expression of miR-22, a novel tumor suppressor microRNA, in cutaneous T-Cell lymphoma. Oncotarget 2016; 6:20555-69. [PMID: 26244872 PMCID: PMC4653025 DOI: 10.18632/oncotarget.4111] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/22/2015] [Indexed: 01/08/2023] Open
Abstract
Aberrant activation of Janus kinase-3 (Jak3) and its key down-stream effectors, Signal Transducer and Activator of Transcription-3 (STAT3) and STAT5, is a key feature of malignant transformation in cutaneous T-cell lymphoma (CTCL). However, it remains only partially understood how Jak3/STAT activation promotes lymphomagenesis. Recently, non-coding microRNAs (miRNAs) have been implicated in the pathogenesis of this malignancy. Here, we show that (i) malignant T cells display a decreased expression of a tumor suppressor miRNA, miR-22, when compared to non-malignant T cells, (ii) STAT5 binds the promoter of the miR-22 host gene, and (iii) inhibition of Jak3, STAT3, and STAT5 triggers increased expression of pri-miR-22 and miR-22. Curcumin, a nutrient with anti-Jak3 activity and histone deacetylase inhibitors (HDACi) also trigger increased expression of pri-miR-22 and miR-22. Transfection of malignant T cells with recombinant miR-22 inhibits the expression of validated miR-22 targets including NCoA1, a transcriptional co-activator in others cancers, as well as HDAC6, MAX, MYCBP, PTEN, and CDK2, which have all been implicated in CTCL pathogenesis. In conclusion, we provide the first evidence that de-regulated Jak3/STAT3/STAT5 signalling in CTCL cells represses the expression of the gene encoding miR-22, a novel tumor suppressor miRNA.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
76 |
19
|
Jensen BS, Odum N, Jorgensen NK, Christophersen P, Olesen SP. Inhibition of T cell proliferation by selective block of Ca(2+)-activated K(+) channels. Proc Natl Acad Sci U S A 1999; 96:10917-21. [PMID: 10485926 PMCID: PMC17983 DOI: 10.1073/pnas.96.19.10917] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
T lymphocytes express a plethora of distinct ion channels that participate in the control of calcium homeostasis and signal transduction. Potassium channels play a critical role in the modulation of T cell calcium signaling, and the significance of the voltage-dependent K channel, Kv1.3, is well established. The recent cloning of the Ca(2+)-activated, intermediate-conductance K(+) channel (IK channel) has enabled a detailed investigation of the role of this highly Ca(2+)-sensitive K(+) channel in the calcium signaling and subsequent regulation of T cell proliferation. The role IK channels play in T cell activation and proliferation has been investigated by using various blockers of IK channels. The Ca(2+)-activated K(+) current in human T cells is shown by the whole-cell voltage-clamp technique to be highly sensitive to clotrimazole, charybdotoxin, and nitrendipine, but not to ketoconazole. Clotrimazole, nitrendipine, and charybdotoxin block T cell activation induced by signals that elicit a rise in intracellular Ca(2+)-e.g., phytohemagglutinin, Con A, and antigens such as Candida albicans and tetanus toxin in a dose-dependent manner. The release of IFN-gamma from activated T cells is also inhibited after block of IK channels by clotrimazole. Clotrimazole and cyclosporin A act synergistically to inhibit T cell proliferation, which confirms that block of IK channels affects the process downstream from T cell receptor activation. We suggest that IK channels constitute another target for immune suppression.
Collapse
|
research-article |
26 |
74 |
20
|
Marzec M, Halasa K, Kasprzycka M, Wysocka M, Liu X, Tobias JW, Baldwin D, Zhang Q, Odum N, Rook AH, Wasik MA. Differential effects of interleukin-2 and interleukin-15 versus interleukin-21 on CD4+ cutaneous T-cell lymphoma cells. Cancer Res 2008; 68:1083-91. [PMID: 18281483 DOI: 10.1158/0008-5472.can-07-2403] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we compared the effects of interleukin-2 (IL-2), IL-15, and IL-21 on gene expression, activation of cell signaling pathways, and functional properties of cells derived from CD4+ cutaneous T-cell lymphoma (CTCL). Whereas both IL-2 and IL-15 modulated, in a CTCL cell line, the expression of >1,000 gene transcripts by at least 2-fold, IL-21 up-regulated <40 genes. All three cytokines induced tyrosine phosphorylation of Jak1 and Jak3 in CTCL cell lines and native leukemic (Sezary) cells. However, only IL-2 and IL-15 strongly activated signal transducers and activators of transcription 5, phosphoinositide 3-kinase/Akt, and mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase/ERK signaling pathways in the cell lines and mitogen-primed native cells. In contrast, IL-21 selectively activated signal transducers and activators of transcription 3. Whereas all three cytokines protected CTCL cells from apoptosis, only IL-2 and IL-15 promoted their proliferation. The effects of the cytokine stimulation were Jak3 kinase- and Jak1 kinase- dependent. These findings document the vastly different effect of IL-2 and IL-15 versus IL-21 on CTCL cells. They also suggest two novel therapeutic approaches to CTCL and, possibly, other CD4+ T-cell lymphomas: inhibition of the Jak1/Jak3 kinase complex and, given the known strong immunostimulatory properties of IL-21 on CD8+ T, natural killer, and B cells, application of this cytokine to boost an immune response against malignant CD4+ T cells.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
70 |
21
|
Willerslev-Olsen A, Krejsgaard T, Lindahl LM, Bonefeld CM, A. Wasik M, B. Koralov S, Geisler C, Kilian M, Iversen L, Woetmann A, Odum N. Bacterial toxins fuel disease progression in cutaneous T-cell lymphoma. Toxins (Basel) 2013; 5:1402-21. [PMID: 23949004 PMCID: PMC3760043 DOI: 10.3390/toxins5081402] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/02/2013] [Accepted: 08/06/2013] [Indexed: 01/02/2023] Open
Abstract
In patients with cutaneous T-cell lymphoma (CTCL) bacterial infections constitute a major clinical problem caused by compromised skin barrier and a progressive immunodeficiency. Indeed, the majority of patients with advanced disease die from infections with bacteria, e.g., Staphylococcus aureus. Bacterial toxins such as staphylococcal enterotoxins (SE) have long been suspected to be involved in the pathogenesis in CTCL. Here, we review links between bacterial infections and CTCL with focus on earlier studies addressing a direct role of SE on malignant T cells and recent data indicating novel indirect mechanisms involving SE- and cytokine-driven cross-talk between malignant- and non-malignant T cells.
Collapse
|
Review |
12 |
70 |
22
|
Müller K, Odum N, Bendtzen K. 1,25-dihydroxyvitamin D3 selectively reduces interleukin-2 levels and proliferation of human T cell lines in vitro. Immunol Lett 1993; 35:177-82. [PMID: 8389732 DOI: 10.1016/0165-2478(93)90088-j] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
1,25-Dihydroxyvitamin D3 (1,25-(OH)2D3) inhibits the proliferation of mitogen-stimulated human mononuclear cells (MNC) as well as the production of a number of proinflammatory cytokines, including interleukin (IL)-1 alpha, IL-6, tumour necrosis factor-alpha, IL-2, interferon-gamma (IFNg) and lymphotoxin (LT). These effects are most likely mediated via specific vitamin D receptors expressed by monocytes and activated T lymphocytes. In the present study we have evaluated the ability of 1,25-(OH)2D3 to affect proliferation and cytokine production by human T cell lines stimulated by anti-CD3 antibodies or anti-CD3 plus anti-CD28 antibodies. 1,25-(OH)2D3 selectively reduced the supernatant levels of IL-2, while the IFNg and LT levels were unaffected. This was followed by a time- and dose-dependent reduction in proliferation. Although the expression of high affinity IL-2 receptors (IL-2R) (p75) was unaffected, exogenously added IL-2 failed to restore proliferation. The study demonstrates that human T cell lines, in the absence of accessory cells, may be a direct target for 1,25-(OH)2D3, resulting in a specific reduction of IL-2 levels and inhibition of proliferation. The mechanism by which 1,25-(OH)2D3 inhibits proliferation most likely involves interference with activation signals at the IL-2R level or at a post IL-2R level.
Collapse
|
|
32 |
69 |
23
|
Odum N, Hyldig-Nielsen JJ, Morling N, Sandberg-Wollheim M, Platz P, Svejgaard A. HLA-DP antigens are involved in the susceptibility to multiple sclerosis. TISSUE ANTIGENS 1988; 31:235-7. [PMID: 3400089 DOI: 10.1111/j.1399-0039.1988.tb02088.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Forty-five unrelated patients with multiple sclerosis (MS) from Sweden and 166 Danish controls were typed for HLA-DP using Primed Lymphocyte Typing. Thirty-nine MS-patients and 63 controls were also DNA-typed with the Restriction Fragment Length Polymorphism (RFLP) technique for HLA-DP and -DR genes. The frequencies of DPw4 were 93.3% in MS patients and 72.3% in controls (relative risk, RR = 5.4, p = 0.0014). The DR2 antigen was present in 75.5% of the patients and in 33.7% of the controls (RR = 6.1, p less than 10(-6)). DPw4 was not associated (i.e., was not in linkage disequilibrium) with DR2 in patients or controls. Thus, in MS the associations with DP and DR are independent of each other. However, the combined presence of DPw4 and DR2 gave a significantly higher risk than each antigen alone, indicating that synergism between DP and DR gene products may play a role in the genetic susceptibility to MS.
Collapse
|
|
37 |
68 |
24
|
Hofmann B, Lindhardt BO, Gerstoft J, Petersen CS, Platz P, Ryder LP, Odum N, Dickmeiss E, Nielsen PB, Ullman S. Lymphocyte transformation response to pokeweed mitogen as a predictive marker for development of AIDS and AIDS related symptoms in homosexual men with HIV antibodies. BMJ : BRITISH MEDICAL JOURNAL 1987; 295:293-6. [PMID: 2820544 PMCID: PMC1247139 DOI: 10.1136/bmj.295.6593.293] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
To identify factors that may predict the development of the acquired immune deficiency syndrome (AIDS) or AIDS related symptoms various immunological measurements were studied in a group of homosexual men attending screening clinics for AIDS in Copenhagen. Fifty seven men whose ratio of T helper lymphocytes to T suppressor lymphocytes (CD4:CD8 ratio) was less than 1.0 before the study began were included. Forty two were positive for antibody to the human immunodeficiency virus (HIV), of whom 38 were reinvestigated after a median observation period of 10 months. Among the seropositive men the transformation responses to pokeweed mitogen and cytomegalovirus and the absolute count of CD4 positive lymphocytes were the most common abnormal values. In particular, a low relative response to pokeweed mitogen on initial investigation correlated with a worsened clinical condition on reinvestigation. The risk of a worsened clinical condition was 55 times higher in seropositive men whose responses to pokeweed mitogen were low than in other seropositive men. The corresponding relative risks for low transformation responses to cytomegalovirus and for a decreased absolute count of CD4 positive lymphocytes were 18 and six. The relative response to pokeweed mitogen is therefore a very sensitive short term predictive marker of the clinical condition of seropositive patients who have a CD4:CD8 ratio of less than 1.0.
Collapse
|
research-article |
38 |
65 |
25
|
Vennegaard MT, Bonefeld CM, Hagedorn PH, Bangsgaard N, Løvendorf MB, Odum N, Woetmann A, Geisler C, Skov L. Allergic contact dermatitis induces upregulation of identical microRNAs in humans and mice. Contact Dermatitis 2012; 67:298-305. [PMID: 22594804 DOI: 10.1111/j.1600-0536.2012.02083.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND MicroRNAs are short, endogenous RNA molecules that can bind to parts of target mRNAs, thus inhibiting their translation and causing accelerated turnover or degradation of transcripts, thereby regulating gene expression. Several microRNAs have been found to be upregulated in atopic dermatitis and psoriasis, indicating a role in inflammatory skin diseases. However, there have been no studies on the expression of microRNAs in allergic contact dermatitis. OBJECTIVES To investigate expression of microRNAs in allergic contact dermatitis. Methods. Lesional and non-lesional skin biopsies were collected from subjects with allergic responses to diphenylcyclopropenone (DPCP). Additional samples for profiling were collected from an experimental mouse model by use of the strong allergen dinitrofluorobenzene. RNA was purified from all samples, and locked nucleic acid microarray analysis was performed, followed by validation with quantitative polymerase chain reaction (PCR). RESULTS In humans sensitized with DPCP, we found significant upregulation of miR-21, miR-142-3p, miR-142-5p and miR-223 in challenged skin. The same microRNAs were significantly upregulated in the skin of mice in a mouse model of contact allergy. The upregulation of microRNA was confirmed by quantitative PCR. CONCLUSION These are the first results indicating that microRNAs may be involved in the pathogenesis of allergic contact dermatitis, and they show that mouse models are valuable tools for further study of the involvement of microRNAs in allergic contact dermatitis.
Collapse
|
Journal Article |
13 |
65 |