1
|
Alexander SP, Christopoulos A, Davenport AP, Kelly E, Mathie A, Peters JA, Veale EL, Armstrong JF, Faccenda E, Harding SD, Pawson AJ, Southan C, Davies JA, Abbracchio MP, Alexander W, Al-Hosaini K, Bäck M, Barnes NM, Bathgate R, Beaulieu JM, Bernstein KE, Bettler B, Birdsall NJM, Blaho V, Boulay F, Bousquet C, Bräuner-Osborne H, Burnstock G, Caló G, Castaño JP, Catt KJ, Ceruti S, Chazot P, Chiang N, Chini B, Chun J, Cianciulli A, Civelli O, Clapp LH, Couture R, Csaba Z, Dahlgren C, Dent G, Singh KD, Douglas SD, Dournaud P, Eguchi S, Escher E, Filardo EJ, Fong T, Fumagalli M, Gainetdinov RR, Gasparo MD, Gerard C, Gershengorn M, Gobeil F, Goodfriend TL, Goudet C, Gregory KJ, Gundlach AL, Hamann J, Hanson J, Hauger RL, Hay DL, Heinemann A, Hollenberg MD, Holliday ND, Horiuchi M, Hoyer D, Hunyady L, Husain A, IJzerman AP, Inagami T, Jacobson KA, Jensen RT, Jockers R, Jonnalagadda D, Karnik S, Kaupmann K, Kemp J, Kennedy C, Kihara Y, Kitazawa T, Kozielewicz P, Kreienkamp HJ, Kukkonen JP, Langenhan T, Leach K, Lecca D, Lee JD, Leeman SE, Leprince J, Li XX, Williams TL, Lolait SJ, Lupp A, Macrae R, Maguire J, Mazella J, McArdle CA, et alAlexander SP, Christopoulos A, Davenport AP, Kelly E, Mathie A, Peters JA, Veale EL, Armstrong JF, Faccenda E, Harding SD, Pawson AJ, Southan C, Davies JA, Abbracchio MP, Alexander W, Al-Hosaini K, Bäck M, Barnes NM, Bathgate R, Beaulieu JM, Bernstein KE, Bettler B, Birdsall NJM, Blaho V, Boulay F, Bousquet C, Bräuner-Osborne H, Burnstock G, Caló G, Castaño JP, Catt KJ, Ceruti S, Chazot P, Chiang N, Chini B, Chun J, Cianciulli A, Civelli O, Clapp LH, Couture R, Csaba Z, Dahlgren C, Dent G, Singh KD, Douglas SD, Dournaud P, Eguchi S, Escher E, Filardo EJ, Fong T, Fumagalli M, Gainetdinov RR, Gasparo MD, Gerard C, Gershengorn M, Gobeil F, Goodfriend TL, Goudet C, Gregory KJ, Gundlach AL, Hamann J, Hanson J, Hauger RL, Hay DL, Heinemann A, Hollenberg MD, Holliday ND, Horiuchi M, Hoyer D, Hunyady L, Husain A, IJzerman AP, Inagami T, Jacobson KA, Jensen RT, Jockers R, Jonnalagadda D, Karnik S, Kaupmann K, Kemp J, Kennedy C, Kihara Y, Kitazawa T, Kozielewicz P, Kreienkamp HJ, Kukkonen JP, Langenhan T, Leach K, Lecca D, Lee JD, Leeman SE, Leprince J, Li XX, Williams TL, Lolait SJ, Lupp A, Macrae R, Maguire J, Mazella J, McArdle CA, Melmed S, Michel MC, Miller LJ, Mitolo V, Mouillac B, Müller CE, Murphy P, Nahon JL, Ngo T, Norel X, Nyimanu D, O'Carroll AM, Offermanns S, Panaro MA, Parmentier M, Pertwee RG, Pin JP, Prossnitz ER, Quinn M, Ramachandran R, Ray M, Reinscheid RK, Rondard P, Rovati GE, Ruzza C, Sanger GJ, Schöneberg T, Schulte G, Schulz S, Segaloff DL, Serhan CN, Stoddart LA, Sugimoto Y, Summers R, Tan VP, Thal D, Thomas WW, Timmermans PBMWM, Tirupula K, Tulipano G, Unal H, Unger T, Valant C, Vanderheyden P, Vaudry D, Vaudry H, Vilardaga JP, Walker CS, Wang JM, Ward DT, Wester HJ, Willars GB, Woodruff TM, Yao C, Ye RD. THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein-coupled receptors. Br J Pharmacol 2021; 178 Suppl 1:S27-S156. [PMID: 34529832 DOI: 10.1111/bph.15538] [Show More Authors] [Citation(s) in RCA: 336] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15538. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.
Collapse
|
|
4 |
336 |
2
|
Hern JA, Baig AH, Mashanov GI, Birdsall B, Corrie JET, Lazareno S, Molloy JE, Birdsall NJM. Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proc Natl Acad Sci U S A 2010; 107:2693-8. [PMID: 20133736 PMCID: PMC2823895 DOI: 10.1073/pnas.0907915107] [Citation(s) in RCA: 303] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of transmembrane signaling proteins in the human genome. Events in the GPCR signaling cascade have been well characterized, but the receptor composition and its membrane distribution are still generally unknown. Although there is evidence that some members of the GPCR superfamily exist as constitutive dimers or higher oligomers, interpretation of the results has been disputed, and recent studies indicate that monomeric GPCRs may also be functional. Because there is controversy within the field, to address the issue we have used total internal reflection fluorescence microscopy (TIRFM) in living cells to visualize thousands of individual molecules of a model GPCR, the M(1) muscarinic acetylcholine receptor. By tracking the position of individual receptors over time, their mobility, clustering, and dimerization kinetics could be directly determined with a resolution of approximately 30 ms and approximately 20 nm. In isolated CHO cells, receptors are randomly distributed over the plasma membrane. At any given time, approximately 30% of the receptor molecules exist as dimers, and we found no evidence for higher oligomers. Two-color TIRFM established the dynamic nature of dimer formation with M(1) receptors undergoing interconversion between monomers and dimers on the timescale of seconds.
Collapse
|
research-article |
15 |
303 |
3
|
Alexander SPH, Christopoulos A, Davenport AP, Kelly E, Mathie AA, Peters JA, Veale EL, Armstrong JF, Faccenda E, Harding SD, Davies JA, Abbracchio MP, Abraham G, Agoulnik A, Alexander W, Al-Hosaini K, Bäck M, Baker JG, Barnes NM, Bathgate R, Beaulieu JM, Beck-Sickinger AG, Behrens M, Bernstein KE, Bettler B, Birdsall NJM, Blaho V, Boulay F, Bousquet C, Bräuner-Osborne H, Burnstock G, Caló G, Castaño JP, Catt KJ, Ceruti S, Chazot P, Chiang N, Chini B, Chun J, Cianciulli A, Civelli O, Clapp LH, Couture R, Cox HM, Csaba Z, Dahlgren C, Dent G, Douglas SD, Dournaud P, Eguchi S, Escher E, Filardo EJ, Fong T, Fumagalli M, Gainetdinov RR, Garelja ML, de Gasparo M, Gerard C, Gershengorn M, Gobeil F, Goodfriend TL, Goudet C, Grätz L, Gregory KJ, Gundlach AL, Hamann J, Hanson J, Hauger RL, Hay DL, Heinemann A, Herr D, Hollenberg MD, Holliday ND, Horiuchi M, Hoyer D, Hunyady L, Husain A, IJzerman AP, Inagami T, Jacobson KA, Jensen RT, Jockers R, Jonnalagadda D, Karnik S, Kaupmann K, Kemp J, Kennedy C, Kihara Y, Kitazawa T, Kozielewicz P, Kreienkamp HJ, Kukkonen JP, Langenhan T, Larhammar D, Leach K, Lecca D, Lee JD, Leeman SE, Leprince J, Li XX, et alAlexander SPH, Christopoulos A, Davenport AP, Kelly E, Mathie AA, Peters JA, Veale EL, Armstrong JF, Faccenda E, Harding SD, Davies JA, Abbracchio MP, Abraham G, Agoulnik A, Alexander W, Al-Hosaini K, Bäck M, Baker JG, Barnes NM, Bathgate R, Beaulieu JM, Beck-Sickinger AG, Behrens M, Bernstein KE, Bettler B, Birdsall NJM, Blaho V, Boulay F, Bousquet C, Bräuner-Osborne H, Burnstock G, Caló G, Castaño JP, Catt KJ, Ceruti S, Chazot P, Chiang N, Chini B, Chun J, Cianciulli A, Civelli O, Clapp LH, Couture R, Cox HM, Csaba Z, Dahlgren C, Dent G, Douglas SD, Dournaud P, Eguchi S, Escher E, Filardo EJ, Fong T, Fumagalli M, Gainetdinov RR, Garelja ML, de Gasparo M, Gerard C, Gershengorn M, Gobeil F, Goodfriend TL, Goudet C, Grätz L, Gregory KJ, Gundlach AL, Hamann J, Hanson J, Hauger RL, Hay DL, Heinemann A, Herr D, Hollenberg MD, Holliday ND, Horiuchi M, Hoyer D, Hunyady L, Husain A, IJzerman AP, Inagami T, Jacobson KA, Jensen RT, Jockers R, Jonnalagadda D, Karnik S, Kaupmann K, Kemp J, Kennedy C, Kihara Y, Kitazawa T, Kozielewicz P, Kreienkamp HJ, Kukkonen JP, Langenhan T, Larhammar D, Leach K, Lecca D, Lee JD, Leeman SE, Leprince J, Li XX, Lolait SJ, Lupp A, Macrae R, Maguire J, Malfacini D, Mazella J, McArdle CA, Melmed S, Michel MC, Miller LJ, Mitolo V, Mouillac B, Müller CE, Murphy PM, Nahon JL, Ngo T, Norel X, Nyimanu D, O'Carroll AM, Offermanns S, Panaro MA, Parmentier M, Pertwee RG, Pin JP, Prossnitz ER, Quinn M, Ramachandran R, Ray M, Reinscheid RK, Rondard P, Rovati GE, Ruzza C, Sanger GJ, Schöneberg T, Schulte G, Schulz S, Segaloff DL, Serhan CN, Singh KD, Smith CM, Stoddart LA, Sugimoto Y, Summers R, Tan VP, Thal D, Thomas WW, Timmermans PBMWM, Tirupula K, Toll L, Tulipano G, Unal H, Unger T, Valant C, Vanderheyden P, Vaudry D, Vaudry H, Vilardaga JP, Walker CS, Wang JM, Ward DT, Wester HJ, Willars GB, Williams TL, Woodruff TM, Yao C, Ye RD. The Concise Guide to PHARMACOLOGY 2023/24: G protein-coupled receptors. Br J Pharmacol 2023; 180 Suppl 2:S23-S144. [PMID: 38123151 DOI: 10.1111/bph.16177] [Show More Authors] [Citation(s) in RCA: 153] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.16177. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.
Collapse
|
|
2 |
153 |
4
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, McGrath JC, Catterall WA, Spedding M, Peters JA, Harmar AJ, Abul-Hasn N, Anderson CM, Anderson CMH, Araiksinen MS, Arita M, Arthofer E, Barker EL, Barratt C, Barnes NM, Bathgate R, Beart PM, Belelli D, Bennett AJ, Birdsall NJM, Boison D, Bonner TI, Brailsford L, Bröer S, Brown P, Calo G, Carter WG, Catterall WA, Chan SLF, Chao MV, Chiang N, Christopoulos A, Chun JJ, Cidlowski J, Clapham DE, Cockcroft S, Connor MA, Cox HM, Cuthbert A, Dautzenberg FM, Davenport AP, Dawson PA, Dent G, Dijksterhuis JP, Dollery CT, Dolphin AC, Donowitz M, Dubocovich ML, Eiden L, Eidne K, Evans BA, Fabbro D, Fahlke C, Farndale R, Fitzgerald GA, Fong TM, Fowler CJ, Fry JR, Funk CD, Futerman AH, Ganapathy V, Gaisnier B, Gershengorn MA, Goldin A, Goldman ID, Gundlach AL, Hagenbuch B, Hales TG, Hammond JR, Hamon M, Hancox JC, Hauger RL, Hay DL, Hobbs AJ, Hollenberg MD, Holliday ND, Hoyer D, Hynes NA, Inui KI, Ishii S, Jacobson KA, Jarvis GE, Jarvis MF, Jensen R, Jones CE, Jones RL, Kaibuchi K, Kanai Y, Kennedy C, Kerr ID, Khan AA, Klienz MJ, Kukkonen JP, Lapoint JY, Leurs R, Lingueglia E, et alAlexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, McGrath JC, Catterall WA, Spedding M, Peters JA, Harmar AJ, Abul-Hasn N, Anderson CM, Anderson CMH, Araiksinen MS, Arita M, Arthofer E, Barker EL, Barratt C, Barnes NM, Bathgate R, Beart PM, Belelli D, Bennett AJ, Birdsall NJM, Boison D, Bonner TI, Brailsford L, Bröer S, Brown P, Calo G, Carter WG, Catterall WA, Chan SLF, Chao MV, Chiang N, Christopoulos A, Chun JJ, Cidlowski J, Clapham DE, Cockcroft S, Connor MA, Cox HM, Cuthbert A, Dautzenberg FM, Davenport AP, Dawson PA, Dent G, Dijksterhuis JP, Dollery CT, Dolphin AC, Donowitz M, Dubocovich ML, Eiden L, Eidne K, Evans BA, Fabbro D, Fahlke C, Farndale R, Fitzgerald GA, Fong TM, Fowler CJ, Fry JR, Funk CD, Futerman AH, Ganapathy V, Gaisnier B, Gershengorn MA, Goldin A, Goldman ID, Gundlach AL, Hagenbuch B, Hales TG, Hammond JR, Hamon M, Hancox JC, Hauger RL, Hay DL, Hobbs AJ, Hollenberg MD, Holliday ND, Hoyer D, Hynes NA, Inui KI, Ishii S, Jacobson KA, Jarvis GE, Jarvis MF, Jensen R, Jones CE, Jones RL, Kaibuchi K, Kanai Y, Kennedy C, Kerr ID, Khan AA, Klienz MJ, Kukkonen JP, Lapoint JY, Leurs R, Lingueglia E, Lippiat J, Lolait SJ, Lummis SCR, Lynch JW, MacEwan D, Maguire JJ, Marshall IL, May JM, McArdle CA, McGrath JC, Michel MC, Millar NS, Miller LJ, Mitolo V, Monk PN, Moore PK, Moorhouse AJ, Mouillac B, Murphy PM, Neubig RR, Neumaier J, Niesler B, Obaidat A, Offermanns S, Ohlstein E, Panaro MA, Parsons S, Pwrtwee RG, Petersen J, Pin JP, Poyner DR, Prigent S, Prossnitz ER, Pyne NJ, Pyne S, Quigley JG, Ramachandran R, Richelson EL, Roberts RE, Roskoski R, Ross RA, Roth M, Rudnick G, Ryan RM, Said SI, Schild L, Sanger GJ, Scholich K, Schousboe A, Schulte G, Schulz S, Serhan CN, Sexton PM, Sibley DR, Siegel JM, Singh G, Sitsapesan R, Smart TG, Smith DM, Soga T, Stahl A, Stewart G, Stoddart LA, Summers RJ, Thorens B, Thwaites DT, Toll L, Traynor JR, Usdin TB, Vandenberg RJ, Villalon C, Vore M, Waldman SA, Ward DT, Willars GB, Wonnacott SJ, Wright E, Ye RD, Yonezawa A, Zimmermann M. The Concise Guide to PHARMACOLOGY 2013/14: overview. Br J Pharmacol 2014; 170:1449-58. [PMID: 24528237 DOI: 10.1111/bph.12444] [Show More Authors] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties from the IUPHAR database. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. This compilation of the major pharmacological targets is divided into seven areas of focus: G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors & Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
149 |
5
|
Lin DCH, Guo Q, Luo J, Zhang J, Nguyen K, Chen M, Tran T, Dransfield PJ, Brown SP, Houze J, Vimolratana M, Jiao XY, Wang Y, Birdsall NJM, Swaminath G. Identification and pharmacological characterization of multiple allosteric binding sites on the free fatty acid 1 receptor. Mol Pharmacol 2012; 82:843-59. [PMID: 22859723 PMCID: PMC3477236 DOI: 10.1124/mol.112.079640] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 08/02/2012] [Indexed: 12/20/2022] Open
Abstract
Activation of FFA1 (GPR40), a member of G protein-coupling receptor family A, is mediated by medium- and long-chain fatty acids and leads to amplification of glucose-stimulated insulin secretion, suggesting a potential role for free fatty acid 1 (FFA1) as a target for type 2 diabetes. It was assumed previously that there is a single binding site for fatty acids and synthetic FFA1 agonists. However, using members of two chemical series of partial and full agonists that have been identified, radioligand binding interaction studies revealed that the full agonists do not bind to the same site as the partial agonists but exhibit positive heterotropic cooperativity. Analysis of functional data reveals positive functional cooperativity between the full agonists and partial agonists in various functional assays (in vitro and ex vivo) and also in vivo. Furthermore, the endogenous fatty acid docosahexaenoic acid (DHA) shows negative or neutral cooperativity with members of both series of agonists in binding assays but displays positive cooperativity in functional assays. Another synthetic agonist is allosteric with members of both agonist series, but apparently competitive with DHA. Therefore, there appear to be three allosterically linked binding sites on FFA1 with agonists specific for each of these sites. Activation of free fatty acid 1 receptor (FFAR1) by each of these agonists is differentially affected by mutations of two arginine residues, previously found to be important for FFAR1 binding and activation. These ligands with their high potencies and strong positive functional cooperativity with endogenous fatty acids, demonstrated in vitro and in vivo, have the potential to deliver therapeutic benefits.
Collapse
|
research-article |
13 |
101 |
6
|
Abstract
The evaluation of allosteric ligands at muscarinic receptors is discussed in terms of the ability of the experimental data to be interpreted by the allosteric ternary complex model. The compilation of useful SAR information of allosteric ligands is not simple, especially for muscarinic receptors, where there are multiple allosteric sites and complex interactions.
Collapse
|
|
20 |
92 |
7
|
Lazareno S, Dolezal V, Popham A, Birdsall NJM. Thiochrome enhances acetylcholine affinity at muscarinic M4 receptors: receptor subtype selectivity via cooperativity rather than affinity. Mol Pharmacol 2004; 65:257-66. [PMID: 14722259 DOI: 10.1124/mol.65.1.257] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thiochrome (2,7-dimethyl-5H-thiachromine-8-ethanol), an oxidation product and metabolite of thiamine, has little effect on the equilibrium binding of l-[3H]N-methyl scopolamine ([3H]NMS) to the five human muscarinic receptor subtypes (M1-M5) at concentrations up to 0.3 mM. In contrast, it inhibits [3H]NMS dissociation from M1 to M4 receptors at submillimolar concentrations and from M5 receptors at 1 mM. These results suggest that thiochrome binds allosterically to muscarinic receptors and has approximately neutral cooperativity with [3H]NMS at M1 to M4 and possibly M5 receptors. Thiochrome increases the affinity of acetylcholine (ACh) 3- to 5-fold for inhibiting [3H]NMS binding to M4 receptors but has no effect on ACh affinity at M1 to M3 or M5 receptors. Thiochrome (0.1 mM) also increases the direct binding of [3H]ACh to M4 receptors but decreases it slightly at M2 receptors. In agreement with the binding data, thiochrome does not affect the potency of ACh for stimulating the binding of guanosine 5'-O-(3-[35S]thiotriphosphate) ([35S]GTPgammaS) to membranes containing M1 to M3 receptors, but it increases ACh potency 3.5-fold at M4 receptors. It also selectively reduces the release of [3H]ACh from potassium-stimulated slices of rat striatum, which contain autoinhibitory presynaptic M4 receptors, but not from hippocampal slices, which contain presynaptic M2 receptors. We conclude that thiochrome is a selective M4 muscarinic receptor enhancer of ACh affinity and has neutral cooperativity with ACh at M1 to M3 receptors; it therefore demonstrates a powerful new form of selectivity, "absolute subtype selectivity", which is derived from cooperativity rather than from affinity.
Collapse
|
|
21 |
83 |
8
|
Tabor A, Weisenburger S, Banerjee A, Purkayastha N, Kaindl JM, Hübner H, Wei L, Grömer TW, Kornhuber J, Tschammer N, Birdsall NJM, Mashanov GI, Sandoghdar V, Gmeiner P. Visualization and ligand-induced modulation of dopamine receptor dimerization at the single molecule level. Sci Rep 2016; 6:33233. [PMID: 27615810 PMCID: PMC5018964 DOI: 10.1038/srep33233] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/23/2016] [Indexed: 12/19/2022] Open
Abstract
G protein–coupled receptors (GPCRs), including dopamine receptors, represent a group of important pharmacological targets. An increased formation of dopamine receptor D2 homodimers has been suggested to be associated with the pathophysiology of schizophrenia. Selective labeling and ligand-induced modulation of dimerization may therefore allow the investigation of the pathophysiological role of these dimers. Using TIRF microscopy at the single molecule level, transient formation of homodimers of dopamine receptors in the membrane of stably transfected CHO cells has been observed. The equilibrium between dimers and monomers was modulated by the binding of ligands; whereas antagonists showed a ratio that was identical to that of unliganded receptors, agonist-bound D2 receptor-ligand complexes resulted in an increase in dimerization. Addition of bivalent D2 receptor ligands also resulted in a large increase in D2 receptor dimers. A physical interaction between the protomers was confirmed using high resolution cryogenic localization microscopy, with ca. 9 nm between the centers of mass.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
75 |
9
|
Lazareno S, Popham A, Birdsall NJM. Analogs of WIN 62,577 define a second allosteric site on muscarinic receptors. Mol Pharmacol 2002; 62:1492-505. [PMID: 12435818 DOI: 10.1124/mol.62.6.1492] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
WIN 51,708 (17-beta-hydroxy-17-alpha-ethynyl-5-alpha-androstano[3,2-b]pyrimido[1,2-a]benzimidazole) and WIN 62,577 (17-beta-hydroxy- 17-alpha-ethynyl-delta(4)-androstano[3,2-b]pyrimido[1,2-a]benzimidazole) are potent and centrally active antagonists at rat, but not human, NK(1) receptors. The interactions of these compounds and some analogs with [(3)H]N-methyl scopolamine ([(3)H]NMS) and unlabeled acetylcholine (ACh) at M(1)-M(4) muscarinic receptors have been studied using equilibrium and nonequilibrium radioligand binding methods. The results are consistent with the predictions of the allosteric ternary complex model. The WIN compounds have log affinities for the unliganded receptor in the range 5 to 6.7, and exhibit positive, negative, or neutral cooperativity with [(3)H]NMS and ACh, depending on the receptor subtype and nature of the interacting ligands. WIN 62,577 is an allosteric enhancer of ACh affinity at M(3) receptors. Although interacting allosterically, WIN 62,577 and WIN 51,708 do not affect [(3)H]NMS dissociation from M(3) receptors. Certain analogs have higher affinities than WIN 62,577, and truncated forms of WIN 62,577, including steroids, also act allosterically. One analog, 17-beta-hydroxy-17-alpha-Delta(4)-androstano[3,2-b]pyrido[2,3-b]indole (PG987), has the unique effect of speeding [(3)H]NMS dissociation; its largest effect, 2.5-fold, is at M(3) receptors. The interaction between PG987 and other allosteric agents on [(3)H]NMS dissociation from M(3) receptors indicate that PG987 binds reversibly to a site distinct from that to which gallamine and strychnine bind: in contrast, PG987 seems to bind to the same site on M(3) receptors as KT5720, staurosporine, and WIN 51,708. Therefore, in addition to the allosteric site that binds strychnine (and probably chloromethyl brucine, another allosteric enhancer) there is a second, nonoverlapping, pharmacologically distinct allosteric site on M(3) receptors that also supports positive cooperativity with ACh.
Collapse
|
|
23 |
72 |
10
|
Curtis CAM, Wheatley M, Bansal S, Birdsall NJM, Eveleigh P, Pedder EK, Poyner D, Hulme EC. Propylbenzilylcholine Mustard Labels an Acidic Residue in Transmembrane Helix 3 of the Muscarinic Receptor. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(17)31284-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
|
36 |
70 |
11
|
Birdsall NJM. Class A GPCR heterodimers: evidence from binding studies. Trends Pharmacol Sci 2010; 31:499-508. [PMID: 20870299 DOI: 10.1016/j.tips.2010.08.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 08/12/2010] [Accepted: 08/13/2010] [Indexed: 11/26/2022]
Abstract
There is a large body of experimental evidence that is compatible with the presence of heterodimers of the major A subclass of G protein-coupled receptors (GPCRs) and suggests that these heterodimers might have different functional properties from those of the monomers (or homodimers) of the individual receptors that engage in heterodimer formation. The question is whether there are allosteric interactions across the receptor-receptor interface of a heterodimer that modulate the binding properties of the heterodimer components and thereby change their pharmacology. In this review, I examine published experimental evidence from radioligand binding studies in the context of different models of allosterism and discuss a number of apparently discrepant results. The analysis suggests that more experimental data are required if equal, two-way, crossreceptor interactions within a GPCR heterodimer, at the level of binding, are to be unequivocally demonstrated.
Collapse
|
Review |
15 |
57 |
12
|
Tränkle C, Weyand O, Voigtländer U, Mynett A, Lazareno S, Birdsall NJM, Mohr K. Interactions of orthosteric and allosteric ligands with [3H]dimethyl-W84 at the common allosteric site of muscarinic M2 receptors. Mol Pharmacol 2003; 64:180-90. [PMID: 12815174 DOI: 10.1124/mol.64.1.180] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An optimized assay for the binding of [3H]dimethyl-W84 to its allosteric site on M2 muscarinic receptors has been used to directly measure the affinities of allosteric ligands. Their potencies agree with those deduced indirectly by their modulation of the equilibrium binding and kinetics of [3H]N-methylscopolamine ([3H]NMS) binding to the orthosteric site. The affinities and cooperativities of orthosteric antagonists with [3H]dimethyl-W84 have also been quantitated. These affinities agree with those measured directly in a competition assay using [3H]NMS. All these data are compatible with the predictions of the allosteric ternary complex model. The association and dissociation kinetics of [3H]dimethyl-W84 are rapid but the estimate of its association rate constant is nevertheless comparable with that found for the orthosteric radioligand, [3H]NMS. This is unexpected, given that the allosteric site to which [3H]dimethyl-W84 binds is thought to be located on the external face of the receptor and above the [3H]NMS binding site that is buried within the transmembrane helices. The atypical allosteric ligands tacrine and 4,4'-bis-[(2,6-dichloro-benzyloxy-imino)-methyl]-1,1'-propane-1,3-diyl-bis-pyridinium dibromide (Duo3) inhibit [3H]dimethyl-W84 binding with the same potencies and comparably steep slope factors as found for inhibition of [3H]NMS binding. Tacrine and Duo3 decrease [3H]dimethyl-W84 affinity, not the number of binding sites. It is suggested that these atypical ligands either bind to the two known spatially separated allosteric sites on muscarinic receptors with positive cooperativity or their binding to the common allosteric site modulates receptor-receptor interactions such that homotropic positive cooperativity within a dimer or higher oligomer is generated.
Collapse
|
|
22 |
55 |
13
|
Tränkle C, Dittmann A, Schulz U, Weyand O, Buller S, Jöhren K, Heller E, Birdsall NJM, Holzgrabe U, Ellis J, Höltje HD, Mohr K. Atypical muscarinic allosteric modulation: cooperativity between modulators and their atypical binding topology in muscarinic M2 and M2/M5 chimeric receptors. Mol Pharmacol 2005; 68:1597-610. [PMID: 16157694 DOI: 10.1124/mol.105.017707] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The binding and function of muscarinic acetylcholine receptors can be modulated allosterically. Some allosteric muscarinic ligands are "atypical", having steep concentration-effect curves and not interacting competitively with "typical" allosteric modulators. For atypical agents, a second allosteric site has been proposed. Different approaches have been used to gain further insight into the interaction with M2 receptors of two atypical agents, tacrine and the bispyridinium compound 4,4'-bis-[(2,6-dichloro-benzyloxy-imino)-methyl]-1,1'-propane-1,3-diyl-bispyridinium dibromide (Duo3). Interaction studies, using radioligand binding assays and the allosteric ligands obidoxime, Mg2+, and the new tool hexamethonium to antagonize the allosteric actions of the atypical ligands, showed different modes of interaction for tacrine and Duo3 at M2 receptors. A negatively cooperative interaction was observed between hexamethonium and tacrine (but not Duo3). A tacrine dimer that exhibited increased allosteric potency relative to tacrine but behaved like a typical allosteric modulator was competitively inhibited by hexamethonium. M2/M5-receptor mutants revealed a dependence of tacrine and Duo3 affinity on different receptor epitopes. This was confirmed by docking simulations using a three-dimensional model of the M2 receptor. These showed that the allosteric site could accommodate two molecules of tacrine simultaneously but only one molecule of Duo3, which binds in different mode from typical allosteric agents. Therefore, the atypical actions of tacrine and Duo3 involve different modes of receptor interaction, but their sites of attachment seem to be the "common" allosteric binding domain at the entrance to the orthosteric ligand binding pocket of the M2-receptor. Additional complex behavior may be rationalized by allosteric interactions transmitted within a receptor dimer.
Collapse
|
Research Support, N.I.H., Extramural |
20 |
42 |
14
|
Batzold F, DeHaven R, Kuhar MJ, Birdsall N. Inhibition of high affinity choline uptake. Structure activity studies. Biochem Pharmacol 1980; 29:2413-6. [PMID: 7426047 DOI: 10.1016/0006-2952(80)90343-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
|
45 |
28 |
15
|
Fruchart-Gaillard C, Mourier G, Marquer C, Stura E, Birdsall NJM, Servent D. Different interactions between MT7 toxin and the human muscarinic M1 receptor in its free and N-methylscopolamine-occupied states. Mol Pharmacol 2008; 74:1554-63. [PMID: 18784346 DOI: 10.1124/mol.108.050773] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Muscarinic MT7 toxin is a highly selective and potent antagonist of the M(1) subtype of muscarinic receptor and acts by binding to an allosteric site. To identify the molecular determinants by which MT7 toxin interacts with this receptor in its free and NMS-occupied states, the effect on toxin potency of alanine substitution was evaluated in equilibrium and kinetic binding experiments as well as in functional assays. The determination of the crystallographic structure of an MT7-derivative (MT7-diiodoTyr51) allowed the selection of candidate residues that are accessible and present on both faces of the three toxin loops. The equilibrium binding data are consistent with negative cooperativity between N-methylscopolamine (NMS) and wild-type or modified MT7 and highlight the critical role of the tip of the central loop of the toxin (Arg34, Met35 Tyr36) in its interaction with the unoccupied receptor. Examination of the potency of wild-type and modified toxins to allosterically decrease the dissociation rate of [(3)H]NMS allowed the identification of the MT7 residues involved in its interaction with the NMS-occupied receptor. In contrast to the results with the unoccupied receptor, the most important residue for this interaction was Tyr36 in loop II, assisted by Trp10 in loop I and Arg52 in loop III. The critical role of the tips of the MT7 loops was also confirmed in functional experiments. The high specificity of the MT7-M(1) receptor interaction exploits several MT7-specific residues and reveals a different mode of interaction of the toxin with the free and NMS-occupied states of the receptor.
Collapse
|
|
17 |
27 |
16
|
Jensen AA, Gharagozloo P, Birdsall NJM, Zlotos DP. Pharmacological characterisation of strychnine and brucine analogues at glycine and alpha7 nicotinic acetylcholine receptors. Eur J Pharmacol 2006; 539:27-33. [PMID: 16687139 DOI: 10.1016/j.ejphar.2006.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 03/09/2006] [Accepted: 04/03/2006] [Indexed: 11/16/2022]
Abstract
Strychnine and brucine from the plant Strychnos nux vomica have been shown to have interesting pharmacological effects on several neurotransmitter receptors, including some members of the superfamily of ligand-gated ion channels. In this study, we have characterised the pharmacological properties of tertiary and quaternary analogues as well as bisquaternary dimers of strychnine and brucine at human alpha1 and alpha1beta glycine receptors and at a chimera consisting of the amino-terminal domain of the alpha7 nicotinic receptor (containing the orthosteric ligand binding site) and the ion channel domain of the 5-HT3A serotonin receptor. Although the majority of the analogues displayed significantly increased Ki values at the glycine receptors compared to strychnine and brucine, a few retained the high antagonist potencies of the parent compounds. However, mirroring the pharmacological profiles of strychnine and brucine, none of the analogues displayed significant selectivity between the alpha1 and alpha1beta subtypes. The structure-activity relationships for the compounds at the alpha7/5-HT3 chimera were significantly different from those at the glycine receptors. Most strikingly, quaternization of strychnine and brucine with substituents possessing different steric and electronic properties completely eliminated the activity at the glycine receptors, whereas binding affinity to the alpha7/5-HT3 chimera was retained for the majority of the quaternary analogues. This study provides an insight into the structure-activity relationships for strychnine and brucine analogues at these ligand-gated ion channels.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
26 |
17
|
Gharagozloo P, Lazareno S, Miyauchi M, Popham A, Birdsall NJM. Substituted pentacyclic carbazolones as novel muscarinic allosteric agents: synthesis and structure-affinity and cooperativity relationships. J Med Chem 2002; 45:1259-74. [PMID: 11881995 DOI: 10.1021/jm010946z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two series of pentacyclic carbazolones, 22 and 23, have been synthesized utilizing a facile intramolecular Dielsminus signAlder reaction and are allosteric modulators at muscarinic acetylcholine receptors. Their affinities and cooperativities with acetylcholine and the antagonist N-methylscopolamine (NMS) at M(1)minus signM(4) receptors have been analyzed and compared. All of the synthesized compounds are negatively cooperative with acetylcholine. In contrast, the majority of the compounds exhibit positive cooperativity with NMS, particularly at M(2) and M(4) receptors. The subtype selectivity, in terms of affinity, was in general M(2) > M(1) > M(4) > M(3). The largest increases in affinity produced by a single substitution of the core structure were given by the 1-OMe (22b) and 1-Cl (22d) derivatives. The position of the N in the ring did not appear to be important for binding affinity or cooperativity. Two compounds 22y and 23i, both trisubstituted analogues, were the most potent compounds synthesized, with dissociation constants of 30minus sign100 nM for the M(2) NMS-liganded and unliganded receptor, respectively. The results indicate that the allosteric site, like the primary binding site, is capable of high-affinity interactions with molecules of relatively low molecular weight.
Collapse
|
|
23 |
16 |
18
|
Lazareno S, Popham A, Birdsall NJM. Progress Toward a High-Affinity Allosteric Enhancer at Muscarinic M 1 Receptors. J Mol Neurosci 2003; 20:363-7. [PMID: 14501021 DOI: 10.1385/jmn:20:3:363] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2002] [Accepted: 03/24/2003] [Indexed: 11/11/2022]
Abstract
Loss of forebrain acetylcholine is an early neurochemical lesion in Alzheimer's disease (AD). As muscarinic acetylcholine receptors are involved in memory and cognition, a muscarinic agonist could therefore provide a "replacement therapy" in this disease. However, muscarinic receptors occur throughout the CNS and the periphery. A selective locus of action of a muscarinic agonist is therefore crucial in order to avoid intolerable side effects. The five subtypes of muscarinic receptors, M1-M5, have distinct regional distributions with M2 and M3 receptors mediating most of the peripheral effects. M1 receptors are the major receptor subtype in the cortex and hippocampus-the two brain regions most associated with memory and cognition. This localization has led to a, so far unsuccessful, search for a truly M1-selective muscarinic agonist. However, acetylcholinesterase inhibitors, such as donepezil (Aricept), which potentiate cholinergic neurotransmission, do have a therapeutic role in the management of AD and so the M1 receptor remains a viable therapeutic target. Our approach is to develop muscarinic allosteric enhancers-compounds that bind to the receptor at an "allosteric" site, which is distinct from the "primary" site to which ACh binds, and which enhance ACh affinity (or efficacy). Having discovered that a commercially available compound, WIN 62577, is an allosteric enhancer with micromolar potency at M3 receptors, we report here some results of a chemical synthesis project to develop this hit. Modification of WIN 62577 has led to compounds with over 1000-fold increased affinity but, so far, none of these extremely potent compounds are allosteric enhancers.
Collapse
|
|
22 |
10 |
19
|
|
News |
39 |
10 |
20
|
Gharagozloo P, Miyauchi M, Birdsall B, Birdsall NJM. Intramolecular Diels−Alder Reactions of 3-(Tetrahydropyridinyl)indoles: Stereoselective Synthesis of Novel Pentacyclic Ring Systems. J Org Chem 1998. [DOI: 10.1021/jo971981+] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
|
27 |
8 |
21
|
Mashanov GI, Nenasheva TA, Mashanova T, Maclachlan C, Birdsall NJM, Molloy JE. A method for imaging single molecules at the plasma membrane of live cells within tissue slices. J Gen Physiol 2020; 153:211598. [PMID: 33326014 PMCID: PMC7748802 DOI: 10.1085/jgp.202012657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/21/2020] [Accepted: 11/20/2020] [Indexed: 02/04/2023] Open
Abstract
Recent advances in light microscopy allow individual biological macromolecules to be visualized in the plasma membrane and cytosol of live cells with nanometer precision and ∼10-ms time resolution. This allows new discoveries to be made because the location and kinetics of molecular interactions can be directly observed in situ without the inherent averaging of bulk measurements. To date, the majority of single-molecule imaging studies have been performed in either unicellular organisms or cultured, and often chemically fixed, mammalian cell lines. However, primary cell cultures and cell lines derived from multi-cellular organisms might exhibit different properties from cells in their native tissue environment, in particular regarding the structure and organization of the plasma membrane. Here, we describe a simple approach to image, localize, and track single fluorescently tagged membrane proteins in freshly prepared live tissue slices and demonstrate how this method can give information about the movement and localization of a G protein–coupled receptor in cardiac tissue slices. In principle, this experimental approach can be used to image the dynamics of single molecules at the plasma membrane of many different soft tissue samples and may be combined with other experimental techniques.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
6 |
22
|
Birdsall NJM, Partington P, Datta N, Mondal P, Pauling PJ. Solid-state and solution structures of fluorocholine and some analogues: nuclear magnetic resonance and X-ray studies. ACTA ACUST UNITED AC 1980. [DOI: 10.1039/p29800001415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
|
45 |
4 |
23
|
Lazareno S, Popham A, Birdsall NJM. Towards a high-affinity allosteric enhancer at muscarinic M1 receptors. J Mol Neurosci 2002; 19:123-7. [PMID: 12212769 DOI: 10.1007/s12031-002-0022-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2001] [Accepted: 10/16/2001] [Indexed: 10/23/2022]
Abstract
Loss of forebrain acetylcholine (ACh) is an early neurochemical lesion in Alzheimer's Disease (AD), and muscarinic receptors for ACh are involved in memory and cognition, so a muscarinic agonist could provide 'replacement therapy' in this disease. Muscarinic receptors, which couple to G-proteins, occur throughout the CNS, and in the periphery they mediate the responses of the parasympathetic nervous system, so selectivity is crucial. The five subtypes of muscarinic receptor, M1-M5, have a distinct regional distribution, with M2 and M3 mediating most of the peripheral effects, M2 predominating in hindbrain areas, and M1 predominating in the cortex and hippocampus--the brain regions most associated with memory and cognition, which has lead to a search for a truly M1-selective muscarinic agonist. That search has so far been unsuccessful, but acetylcholinesterase inhibitors such as donepezil (Aricept), which potentiate cholinergic neurotransmission, have a therapeutic role in the management of AD; so the M1 receptor remains a therapeutic target. Our approach is to develop allosteric enhancers--compounds which bind to the receptor at an 'allosteric' site which is distinct from the 'primary' site to which the endogenous ligand binds, and which enhance the affinity (or efficacy) of the endogenous ligand. We have developed radioligand binding assays and analyses for the detection and quantitatitation of allosteric interactions of a test agent with labelled and unlabelled 'primary' ligands, and we report here some results of the initial phase of a chemical synthesis project to develop potent and selective allosteric enhancers at muscarinic M1 receptors.
Collapse
|
|
23 |
3 |
24
|
Birdsall NJM, Bradley S, Brown DA, Buckley NJ, Challiss RJ, Christopoulos A, Eglen RM, Ehlert F, Felder CC, Hammer R, Kilbinger HJ, Lambrecht G, Langmead C, Mitchelson F, Mutschler E, Nathanson NM, Schwarz RD, Tobin AB, Valant C, Wess J. Acetylcholine receptors (muscarinic) (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. ACTA ACUST UNITED AC 2019. [DOI: 10.2218/gtopdb/f2/2019.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Muscarinic acetylcholine receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Muscarinic Acetylcholine Receptors [45]) are GPCRs of the Class A, rhodopsin-like family where the endogenous agonist is acetylcholine. In addition to the agents listed in the table, AC-42, its structural analogues AC-260584 and 77-LH-28-1, N-desmethylclozapine, TBPB and LuAE51090 have been described as functionally selective agonists of the M1 receptor subtype via binding in a mode distinct from that utilized by non-selective agonists [243, 242, 253, 155, 154, 181, 137, 11, 230]. There are two pharmacologically characterised allosteric sites on muscarinic receptors, one defined by it binding gallamine, strychnine and brucine, and the other defined by the binding of KT 5720, WIN 62,577, WIN 51,708 and staurosporine [161, 162].
Collapse
|
|
6 |
2 |
25
|
Mashanov GI, Nenasheva TA, Mashanova A, Lape R, Birdsall NJM, Sivilotti L, Molloy JE. Heterogeneity of cell membrane structure studied by single molecule tracking. Faraday Discuss 2021; 232:358-374. [PMID: 34647559 PMCID: PMC8704140 DOI: 10.1039/d1fd00035g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Heterogeneity in cell membrane structure, typified by microdomains with different biophysical and biochemical properties, is thought to impact on a variety of cell functions. Integral membrane proteins act as nanometre-sized probes of the lipid environment and their thermally-driven movements can be used to report local variations in membrane properties. In the current study, we have used total internal reflection fluorescence microscopy (TIRFM) combined with super-resolution tracking of multiple individual molecules, in order to create high-resolution maps of local membrane viscosity. We used a quadrat sampling method and show how statistical tests for membrane heterogeneity can be conducted by analysing the paths of many molecules that pass through the same unit area of membrane. We describe experiments performed on cultured primary cells, stable cell lines and ex vivo tissue slices using a variety of membrane proteins, under different imaging conditions. In some cell types, we find no evidence for heterogeneity in mobility across the plasma membrane, but in others we find statistically significant differences with some regions of membrane showing significantly higher viscosity than others. We use total internal reflection fluorescence microscopy combined with super-resolution tracking of multiple individual molecules, in order to create high-resolution maps of local membrane viscosity.![]()
Collapse
|
|
4 |
2 |