1
|
Sahoo AK, Baskaran SP, Chivukula N, Kumar K, Samal A. Analysis of structure-activity and structure-mechanism relationships among thyroid stimulating hormone receptor binding chemicals by leveraging the ToxCast library. RSC Adv 2023; 13:23461-23471. [PMID: 37546222 PMCID: PMC10401517 DOI: 10.1039/d3ra04452a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023] Open
Abstract
The thyroid stimulating hormone receptor (TSHR) is crucial in thyroid hormone production in humans, and dysregulation in TSHR activation can lead to adverse health effects such as hypothyroidism and Graves' disease. Further, animal studies have shown that binding of endocrine disrupting chemicals (EDCs) with TSHR can lead to developmental toxicity. Hence, several such chemicals have been screened for their adverse physiological effects in human cell lines via high-throughput assays in the ToxCast project. The invaluable data generated by the ToxCast project has enabled the development of toxicity predictors, but they can be limited in their predictive ability due to the heterogeneity in structure-activity relationships among chemicals. Here, we systematically investigated the heterogeneity in structure-activity as well as structure-mechanism relationships among the TSHR binding chemicals from ToxCast. By employing a structure-activity similarity (SAS) map, we identified 79 activity cliffs among 509 chemicals in TSHR agonist dataset and 69 activity cliffs among 650 chemicals in the TSHR antagonist dataset. Further, by using the matched molecular pair (MMP) approach, we find that the resultant activity cliffs (MMP-cliffs) are a subset of activity cliffs identified via the SAS map approach. Subsequently, by leveraging ToxCast mechanism of action (MOA) annotations for chemicals common to both TSHR agonist and TSHR antagonist datasets, we identified 3 chemical pairs as strong MOA-cliffs and 19 chemical pairs as weak MOA-cliffs. In conclusion, the insights from this systematic investigation of the TSHR binding chemicals are likely to inform ongoing efforts towards development of better predictive toxicity models for characterization of the chemical exposome.
Collapse
|
research-article |
2 |
2 |
2
|
Sahoo AK, Madgaonkar SR, Chivukula N, Karthikeyan P, Ramesh K, Marigoudar SR, Sharma KV, Samal A. Network-based investigation of petroleum hydrocarbons-induced ecotoxicological effects and their risk assessment. ENVIRONMENT INTERNATIONAL 2024; 194:109163. [PMID: 39612746 DOI: 10.1016/j.envint.2024.109163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/10/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
Petroleum hydrocarbons (PHs) are compounds composed mostly of carbon and hydrogen, originating from crude oil and its derivatives. PHs are primarily released into the environment through the diffusion of oils, resulting from anthropogenic activities like transportation and offshore drilling, and accidental incidents such as oil spills. Once released, these PHs can persist in different ecosystems and cause long-term detrimental ecological impacts. While the hazards associated with such PH contaminations are often assessed by the concentrations of total petroleum hydrocarbons in the environment, studies focusing on the risks associated with individual PHs are limited. In this study, different network-based frameworks were utilized to explore and understand the adverse ecological effects associated with PH exposure. First, a list of 320 PHs was systematically curated from published reports. Next, biological endpoint data from toxicological databases was systematically integrated, and a stressor-centric adverse outcome pathway (AOP) network, linking 75 PHs with 177 ecotoxicologically-relevant high confidence AOPs within AOP-Wiki, was constructed. Further, stressor-species networks, based on reported toxicity concentrations and bioconcentration factors data within ECOTOX, were constructed for 80 PHs and 28 PHs, respectively. It was found that crustaceans are documented to be affected by many of these PHs. Finally, the aquatic toxicity data within ECOTOX was used to construct species sensitivity distributions for PHs, and their corresponding hazard concentrations (HC05), that are harmful to 5% of species in the aquatic ecosystem, were derived. Further, the predicted no-effect concentrations (PNECs) and risk quotients for the US EPA priority polycyclic aromatic hydrocarbons (PAHs) were computed by using their environmental concentration data for Indian coastal and river waters. Overall, this study highlights the importance of using network-based approaches and risk assessment methods to understand the PH-induced toxicities effectively.
Collapse
|
|
1 |
|
3
|
Natarajan A, Chivukula N, Dhanakoti GB, Sahoo AK, Ravichandran J, Samal A. EPEK: Creation and analysis of an Ectopic Pregnancy Expression Knowledgebase. Comput Biol Chem 2023; 104:107866. [PMID: 37030102 DOI: 10.1016/j.compbiolchem.2023.107866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/04/2023] [Accepted: 04/01/2023] [Indexed: 04/10/2023]
Abstract
Ectopic pregnancy (EP) is one of the leading causes of maternal mortality, where the fertilized embryo grows outside of the uterus. Recent experiments on mice have uncovered the importance of genetic factors in the transport of embryos inside the uterus. In the past, efforts have been made to identify possible gene or protein markers in EP in humans through multiple expression studies. Although there exist comprehensive gene resources for other maternal health disorders, there is no specific resource that compiles the genes associated with EP from such expression studies. Here, we address that knowledge gap by creating a computational resource, Ectopic Pregnancy Expression Knowledgebase (EPEK), that involves manual compilation and curation of expression profiles of EP in humans from published articles. In EPEK, we compiled information on 314 differentially expressed genes, 17 metabolites, and 3 SNPs associated with EP. Computational analyses on the gene set from EPEK showed the implication of cellular signaling processes in EP. We also identified possible exosome markers that could be clinically relevant in the diagnosis of EP. In a nutshell, EPEK is the first and only dedicated resource on the expression profile of EP in humans. EPEK is accessible at https://cb.imsc.res.in/epek.
Collapse
|
|
2 |
|
4
|
Sahoo AK, Chivukula N, Ramesh K, Singha J, Marigoudar SR, Sharma KV, Samal A. An integrative data-centric approach to derivation and characterization of an adverse outcome pathway network for cadmium-induced toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170968. [PMID: 38367714 DOI: 10.1016/j.scitotenv.2024.170968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
Cadmium is a prominent toxic heavy metal that contaminates both terrestrial and aquatic environments. Owing to its high biological half-life and low excretion rates, cadmium causes a variety of adverse biological outcomes. Adverse outcome pathway (AOP) networks were envisioned to systematically capture toxicological information to enable risk assessment and chemical regulation. Here, we leveraged AOP-Wiki and integrated heterogeneous data from four other exposome-relevant resources to build the first AOP network relevant for inorganic cadmium-induced toxicity. From AOP-Wiki, we filtered 309 high confidence AOPs, identified 312 key events (KEs) associated with inorganic cadmium from five exposome-relevant databases using a data-centric approach, and thereafter, curated 30 cadmium relevant AOPs (cadmium-AOPs). By constructing the undirected AOP network, we identified a large connected component of 18 cadmium-AOPs. Further, we analyzed the directed network of 59 KEs and 82 key event relationships (KERs) in the largest component using graph-theoretic approaches. Subsequently, we mined published literature using artificial intelligence-based tools to provide auxiliary evidence of cadmium association for all KEs in the largest component. Finally, we performed case studies to verify the rationality of cadmium-induced toxicity in humans and aquatic species. Overall, cadmium-AOP network constructed in this study will aid ongoing research in systems toxicology and chemical exposome.
Collapse
|
|
1 |
|
5
|
Baskaran S, Sahoo AK, Chivukula N, Kumar K, Samal A. Cheminformatics Analysis of the Multitarget Structure-Activity Landscape of Environmental Chemicals Binding to Human Endocrine Receptors. ACS OMEGA 2023; 8:49383-49395. [PMID: 38162763 PMCID: PMC10753715 DOI: 10.1021/acsomega.3c07920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024]
Abstract
In human exposome, environmental chemicals can target and disrupt different endocrine axes, ultimately leading to several endocrine disorders. Such chemicals, termed endocrine disrupting chemicals, can promiscuously bind to different endocrine receptors and lead to varying biological end points. Thus, understanding the complexity of molecule-receptor binding of environmental chemicals can aid in the development of robust toxicity predictors. Toward this, the ToxCast project has generated the largest resource on the chemical-receptor activity data for environmental chemicals that were screened across various endocrine receptors. However, the heterogeneity in the multitarget structure-activity landscape of such chemicals is not yet explored. In this study, we systematically curated the chemicals targeting eight human endocrine receptors, their activity values, and biological end points from the ToxCast chemical library. We employed dual-activity difference and triple-activity difference maps to identify single-, dual-, and triple-target cliffs across different target combinations. We annotated the identified activity cliffs through the matched molecular pair (MMP)-based approach and observed that a small fraction of activity cliffs form MMPs. Further, we structurally classified the activity cliffs and observed that R-group cliffs form the highest fraction among the cliffs identified in various target combinations. Finally, we leveraged the mechanism of action (MOA) annotations to analyze structure-mechanism relationships and identified strong MOA-cliffs and weak MOA-cliffs, for each of the eight endocrine receptors. Overall, insights from this first study analyzing the structure-activity landscape of environmental chemicals targeting multiple human endocrine receptors will likely contribute toward the development of better toxicity prediction models for characterizing the human chemical exposome.
Collapse
|
research-article |
2 |
|
6
|
Sahoo AK, Chivukula N, Madgaonkar SR, Ramesh K, Marigoudar SR, Sharma KV, Samal A. Leveraging integrative toxicogenomic approach towards development of stressor-centric adverse outcome pathway networks for plastic additives. Arch Toxicol 2024; 98:3299-3321. [PMID: 39097536 PMCID: PMC11402864 DOI: 10.1007/s00204-024-03825-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
Plastics are widespread pollutants found in atmospheric, terrestrial and aquatic ecosystems due to their extensive usage and environmental persistence. Plastic additives, that are intentionally added to achieve specific functionality in plastics, leach into the environment upon plastic degradation and pose considerable risk to ecological and human health. Limited knowledge concerning the presence of plastic additives throughout plastic life cycle has hindered their effective regulation, thereby posing risks to product safety. In this study, we leveraged the adverse outcome pathway (AOP) framework to understand the mechanisms underlying plastic additives-induced toxicities. We first identified an exhaustive list of 6470 plastic additives from chemicals documented in plastics. Next, we leveraged heterogenous toxicogenomics and biological endpoints data from five exposome-relevant resources, and identified associations between 1287 plastic additives and 322 complete and high quality AOPs within AOP-Wiki. Based on these plastic additive-AOP associations, we constructed a stressor-centric AOP network, wherein the stressors are categorized into ten priority use sectors and AOPs are linked to 27 disease categories. We visualized the plastic additives-AOP network for each of the 1287 plastic additives and made them available in a dedicated website: https://cb.imsc.res.in/saopadditives/ . Finally, we showed the utility of the constructed plastic additives-AOP network by identifying highly relevant AOPs associated with benzo[a]pyrene (B[a]P), bisphenol A (BPA), and bis(2-ethylhexyl) phthalate (DEHP) and thereafter, explored the associated toxicity pathways in humans and aquatic species. Overall, the constructed plastic additives-AOP network will assist regulatory risk assessment of plastic additives, thereby contributing towards a toxic-free circular economy for plastics.
Collapse
|
research-article |
1 |
|
7
|
Sahoo A, Vivek-Ananth RP, Chivukula N, Rajaram SV, Mohanraj K, Khare D, Acharya C, Samal A. T9GPred: A Comprehensive Computational Tool for the Prediction of Type 9 Secretion System, Gliding Motility, and the Associated Secreted Proteins. ACS OMEGA 2023; 8:34091-34102. [PMID: 37744817 PMCID: PMC10515386 DOI: 10.1021/acsomega.3c05155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023]
Abstract
Type 9 secretion system (T9SS) is one of the least characterized secretion systems exclusively found in the Bacteroidetes phylum, which comprises various environmental and economically relevant bacteria. While T9SS plays a central role in bacterial movement termed gliding motility, survival, and pathogenicity, there is an unmet need for a comprehensive tool that predicts T9SS, gliding motility, and proteins secreted via T9SS. In this study, we develop such a computational tool, Type 9 secretion system and Gliding motility Prediction (T9GPred). To build this tool, we manually curated published experimental evidence and identified mandatory components for T9SS and gliding motility prediction. We also compiled experimentally characterized proteins secreted via T9SS and determined the presence of three unique types of C-terminal domain signals, and these insights were leveraged to predict proteins secreted via T9SS. Notably, using recently published experimental evidence, we show that T9GPred has high predictive power. Thus, we used T9GPred to predict the presence of T9SS, gliding motility, and associated secreted proteins across 693 completely sequenced Bacteroidetes strains. T9GPred predicted 402 strains to have T9SS, of which 327 strains are also predicted to exhibit gliding motility. Further, T9GPred also predicted putative secreted proteins for the 402 strains. In a nutshell, T9GPred is a novel computational tool for systems-level prediction of T9SS and streamlining future experimentation. The source code of the computational tool is available in our GitHub repository: https://github.com/asamallab/T9GPred. The tool and its predicted results are compiled in a web server available at: https://cb.imsc.res.in/t9gpred/.
Collapse
|
research-article |
2 |
|
8
|
Chivukula N, Ramesh K, Subbaroyan A, Sahoo AK, Dhanakoti GB, Ravichandran J, Samal A. ViCEKb: Vitiligo-linked Chemical Exposome Knowledgebase. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169711. [PMID: 38160837 DOI: 10.1016/j.scitotenv.2023.169711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Vitiligo is a complex disease wherein the environmental factors, in conjunction with the underlying genetic predispositions, trigger the autoimmune destruction of melanocytes, ultimately leading to depigmented patches on the skin. While genetic factors have been extensively studied, the knowledge on environmental triggers remains sparse and less understood. To address this knowledge gap, we present the first comprehensive knowledgebase of vitiligo-triggering chemicals namely, Vitiligo-linked Chemical Exposome Knowledgebase (ViCEKb). ViCEKb involves an extensive and systematic manual effort in curation of published literature and subsequent compilation of 113 unique chemical triggers of vitiligo. ViCEKb standardizes various chemical information, and categorizes the chemicals based on their evidences and sources of exposure. Importantly, ViCEKb contains a wide range of metrics necessary for different toxicological evaluations. Notably, we observed that ViCEKb chemicals are present in a variety of consumer products. For instance, Propyl gallate is present as a fragrance substance in various household products, and Flutamide is used in medication to treat prostate cancer. These two chemicals have the highest level of evidence in ViCEKb, but are not regulated for their skin sensitizing effects. Furthermore, an extensive cheminformatics-based investigation revealed that ViCEKb chemical space is structurally diverse and comprises unique chemical scaffolds in comparison with skin specific regulatory lists. For example, Neomycin and 2,3,5-Triglycidyl-4-aminophenol have unique chemical scaffolds and the highest level of evidence in ViCEKb, but are not regulated for their skin sensitizing effects. Finally, a transcriptomics-based analysis of ViCEKb chemical perturbations in skin cell samples highlighted the commonality in their linked biological processes. Overall, we present the first comprehensive effort in compilation and exploration of various chemical triggers of vitiligo. We believe such a resource will enable in deciphering the complex etiology of vitiligo and aid in the characterization of human chemical exposome. ViCEKb is freely available for academic research at: https://cb.imsc.res.in/vicekb.
Collapse
|
|
1 |
|