1
|
Ostrov N, Landon M, Guell M, Kuznetsov G, Teramoto J, Cervantes N, Zhou M, Singh K, Napolitano MG, Moosburner M, Shrock E, Pruitt BW, Conway N, Goodman DB, Gardner CL, Tyree G, Gonzales A, Wanner BL, Norville JE, Lajoie MJ, Church GM. Design, synthesis, and testing toward a 57-codon genome. Science 2016; 353:819-22. [PMID: 27540174 DOI: 10.1126/science.aaf3639] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 07/21/2016] [Indexed: 01/07/2023]
Abstract
Recoding--the repurposing of genetic codons--is a powerful strategy for enhancing genomes with functions not commonly found in nature. Here, we report computational design, synthesis, and progress toward assembly of a 3.97-megabase, 57-codon Escherichia coli genome in which all 62,214 instances of seven codons were replaced with synonymous alternatives across all protein-coding genes. We have validated 63% of recoded genes by individually testing 55 segments of 50 kilobases each. We observed that 91% of tested essential genes retained functionality with limited fitness effect. We demonstrate identification and correction of lethal design exceptions, only 13 of which were found in 2229 genes. This work underscores the feasibility of rewriting genomes and establishes a framework for large-scale design, assembly, troubleshooting, and phenotypic analysis of synthetic organisms.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
9 |
210 |
2
|
Ostrov N, Jimenez M, Billerbeck S, Brisbois J, Matragrano J, Ager A, Cornish VW. A modular yeast biosensor for low-cost point-of-care pathogen detection. SCIENCE ADVANCES 2017; 3:e1603221. [PMID: 28782007 PMCID: PMC5489263 DOI: 10.1126/sciadv.1603221] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/15/2017] [Indexed: 05/16/2023]
Abstract
The availability of simple, specific, and inexpensive on-site detection methods is of key importance for deployment of pathogen surveillance networks. We developed a nontechnical and highly specific colorimetric assay for detection of pathogen-derived peptides based on Saccharomyces cerevisiae-a genetically tractable model organism and household product. Integrating G protein-coupled receptors with a visible, reagent-free lycopene readout, we demonstrate differential detection of major human, plant, and food fungal pathogens with nanomolar sensitivity. We further optimized a one-step rapid dipstick prototype that can be used in complex samples, including blood, urine, and soil. This modular biosensor can be economically produced at large scale, is not reliant on cold-chain storage, can be detected without additional equipment, and is thus a compelling platform scalable to global surveillance of pathogens.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
77 |
3
|
Wiegand DJ, Lee HH, Ostrov N, Church GM. Establishing a Cell-Free Vibrio natriegens Expression System. ACS Synth Biol 2018; 7:2475-2479. [PMID: 30160938 DOI: 10.1021/acssynbio.8b00222] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The fast growing bacterium Vibrio natriegens is an emerging microbial host for biotechnology. Harnessing its productive cellular components may offer a compelling platform for rapid protein production and prototyping of metabolic pathways or genetic circuits. Here, we report the development of a V. natriegens cell-free expression system. We devised a simplified crude extract preparation protocol and achieved >260 μg/mL of superfolder GFP in a small-scale batch reaction after 3 h. Culturing conditions, including growth media and cell density, significantly affect translation kinetics and protein yield of extracts. We observed maximal protein yield at incubation temperatures of 26 or 30 °C, and show improved yield by tuning ions crucial for ribosomal stability. This work establishes an initial V. natriegens cell-free expression system, enables probing of V. natriegens biology, and will serve as a platform to accelerate metabolic engineering and synthetic biology applications.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
51 |
4
|
Ostrov N, Beal J, Ellis T, Gordon DB, Karas BJ, Lee HH, Lenaghan SC, Schloss JA, Stracquadanio G, Trefzer A, Bader JS, Church GM, Coelho CM, Efcavitch JW, Güell M, Mitchell LA, Nielsen AAK, Peck B, Smith AC, Stewart CN, Tekotte H. Technological challenges and milestones for writing genomes. Science 2019; 366:310-312. [DOI: 10.1126/science.aay0339] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
|
6 |
34 |
5
|
Ostrov N, Gazit E. Genetic engineering of biomolecular scaffolds for the fabrication of organic and metallic nanowires. Angew Chem Int Ed Engl 2010; 49:3018-21. [PMID: 20349481 DOI: 10.1002/anie.200906831] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
Journal Article |
15 |
29 |
6
|
Pirakitikulr N, Ostrov N, Peralta-Yahya P, Cornish VW. PCRless library mutagenesis via oligonucleotide recombination in yeast. Protein Sci 2011; 19:2336-46. [PMID: 20936671 DOI: 10.1002/pro.513] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The directed evolution of biomolecules with new functions is largely performed in vitro, with PCR mutagenesis followed by high-throughput assays for desired activities. As synthetic biology creates impetus for generating biomolecules that function in living cells, new technologies are needed for performing mutagenesis and selection for directed evolution in vivo. Homologous recombination, routinely exploited for targeted gene alteration, is an attractive tool for in vivo library mutagenesis, yet surprisingly is not routinely used for this purpose. Here, we report the design and characterization of a yeast-based system for library mutagenesis of protein loops via oligonucleotide recombination. In this system, a linear vector is co-transformed with single-stranded mutagenic oligonucleotides. Using repair of nonsense codons engineered in three different active-site loops in the selectable marker TRP1 as a model system, we first optimized the recombination efficiency. Single-loop recombination was highly efficient, averaging 5%, or 4.0×10(5) recombinants. Multiple loops could be simultaneously mutagenized, although the efficiencies dropped to 0.2%, or 6.0×10(3) recombinants, for two loops and 0.01% efficiency, or 1.5×10(2) recombinants, for three loops. Finally, the utility of this system for directed evolution was tested explicitly by selecting functional variants from a mock library of 1:10(6) wild-type:nonsense codons. Sequencing showed that oligonucleotide recombination readily covered this large library, mutating not only the target codon but also encoded silent mutations on either side of the library cassette. Together these results establish oligonucleotide recombination as a simple and powerful library mutagenesis technique and advance efforts to engineer the cell for fully in vivo directed evolution.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
16 |
7
|
Wiegand DJ, Lee HH, Ostrov N, Church GM. Cell-free Protein Expression Using the Rapidly Growing Bacterium Vibrio natriegens. J Vis Exp 2019:10.3791/59495. [PMID: 30933074 PMCID: PMC6512795 DOI: 10.3791/59495] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The marine bacterium Vibrio natriegens has garnered considerable attention as an emerging microbial host for biotechnology due to its fast growth rate. A general protocol is described for the preparation of V. natriegens crude cell extracts using common laboratory equipment. This high yielding protocol has been specifically optimized for user accessibility and reduced cost. Cell-free protein synthesis (CFPS) can be carried out in small scale 10 μL batch reactions in either a 96- or 384-well format and reproducibly yields concentrations of > 260 μg/mL super folder GFP (sfGFP) within 3 h. Overall, crude cell extract preparation and CFPS can be achieved in 1-2 full days by a single user. This protocol can be easily integrated into existing protein synthesis pipelines to facilitate advances in bio-production and synthetic biology applications.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
10 |
8
|
Ostrov N, Wingler LM, Cornish VW. Gene assembly and combinatorial libraries in S. cerevisiae via reiterative recombination. Methods Mol Biol 2013; 978:187-203. [PMID: 23423898 DOI: 10.1007/978-1-62703-293-3_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
While mutagenesis of single genes is now common practice in molecular biology, engineering multiple target genes still requires complex cloning techniques and thus is limited to expert laboratories. Here, we describe "Reiterative Recombination," a user-friendly DNA assembly technique in Saccharomyces cerevisiae for the integration of an indefinite number of DNA fragments sequentially into the yeast genome. The high efficiency of chromosomal integration can further be utilized for the assembly of large combinatorial libraries for metabolic engineering.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
5 |
9
|
Ostrov N, Gazit E. Genetic Engineering of Biomolecular Scaffolds for the Fabrication of Organic and Metallic Nanowires. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200906831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
|
15 |
2 |
10
|
Ostrov N, Fichman G, Adler-Abramovich L, Gazit E. FtsZ Cytoskeletal Filaments as a Template for Metallic Nanowire Fabrication. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2015; 15:556-561. [PMID: 26328401 DOI: 10.1166/jnn.2015.9203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Supramolecular protein assemblies can serve as templates for the fabrication of inorganic nanowires due to their morphological reproducibility and innate proclivity to form well-ordered structures. Amongst the variety of naturally occurring nano-scale assemblies, cytoskeletal fibers from diverse biological sources represent a unique family of scaffolds for biomimetics as they efficiently self-assemble in vitro in a controllable manner to form stable filaments. Here, we harness the bacterial FtsZ filament system as a scaffold for protein-based metal nanowires, and further demonstrate the control of wire alignment with the use of an external magnetic field. Due to the ease at which the bacterial FtsZ is overexpressed and purified, as well as the extensive studies of its ultrastructural properties and physiological significance, FtsZ filaments are an ideal substrate for large-scale production and chemical manipulation. Using a biologically compatible electroless metal deposition technique initiated by adsorption of platinum as a surface catalyst, we demonstrate the coating of assembled FtsZ filaments with iron, nickel, gold, and copper to fabricate continuous nanowires with diameters ranging from 10-50 nm. Organic-inorganic hybrid wires were analyzed using high-resolution field-emission-gun transmission and scanning electron microscopy, and confirmed by energy-dispersive elemental analysis. We also achieved alignment of ferrofluid-coated FtsZ filaments using an external magnetic field. Overall, we provide evidence for the robustness of the FtsZ filament system as a molecular scaffold, and offer an efficient, biocompatible procedure for facile bottom-up assembly of metallic wires on biological templates. We believe that bottom-up fabrication methods as reported herein significantly contribute to the expanding toolkit available for the incorporation of biological materials in nano-scale devices for electronic and electromechanical applications.
Collapse
|
|
10 |
|
11
|
Nyerges A, Chiappino-Pepe A, Budnik B, Baas-Thomas M, Flynn R, Yan S, Ostrov N, Liu M, Wang M, Zheng Q, Hu F, Chen K, Rudolph A, Chen D, Ahn J, Spencer O, Ayalavarapu V, Tarver A, Harmon-Smith M, Hamilton M, Blaby I, Yoshikuni Y, Hajian B, Jin A, Kintses B, Szamel M, Seregi V, Shen Y, Li Z, Church GM. Synthetic genomes unveil the effects of synonymous recoding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.16.599206. [PMID: 38915524 PMCID: PMC11195188 DOI: 10.1101/2024.06.16.599206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Engineering the genetic code of an organism provides the basis for (i) making any organism safely resistant to natural viruses and (ii) preventing genetic information flow into and out of genetically modified organisms while (iii) allowing the biosynthesis of genetically encoded unnatural polymers1-4. Achieving these three goals requires the reassignment of multiple of the 64 codons nature uses to encode proteins. However, synonymous codon replacement-recoding-is frequently lethal, and how recoding impacts fitness remains poorly explored. Here, we explore these effects using whole-genome synthesis, multiplexed directed evolution, and genome-transcriptome-translatome-proteome co-profiling on multiple recoded genomes. Using this information, we assemble a synthetic Escherichia coli genome in seven sections using only 57 codons to encode proteins. By discovering the rules responsible for the lethality of synonymous recoding and developing a data-driven multi-omics-based genome construction workflow that troubleshoots synthetic genomes, we overcome the lethal effects of 62,007 synonymous codon swaps and 11,108 additional genomic edits. We show that synonymous recoding induces transcriptional noise including new antisense RNAs, leading to drastic transcriptome and proteome perturbation. As the elimination of select codons from an organism's genetic code results in the widespread appearance of cryptic promoters, we show that synonymous codon choice may naturally evolve to minimize transcriptional noise. Our work provides the first genome-scale description of how synonymous codon changes influence organismal fitness and paves the way for the construction of functional genomes that provide genetic firewalls from natural ecosystems and safely produce biopolymers, drugs, and enzymes with an expanded chemistry.
Collapse
|
Preprint |
1 |
|
12
|
Baas-Thomas MS, Oehm SB, Ostrov N, Church GM. Characterization of ColE1 Production for Robust tolC Plate Dual-Selection in E. coli. ACS Synth Biol 2022; 11:2009-2014. [PMID: 35666547 PMCID: PMC9208019 DOI: 10.1021/acssynbio.2c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Bacterial selection
is an indispensable tool for E. coli genetic
engineering. Marker genes allow for mutant isolation even
at low editing efficiencies. TolC is an especially
useful E. coli marker: its presence can be selected
for with sodium dodecyl sulfate, while its absence can be selected
for with the bactericidal protein ColE1. However, utilization of this
selection system is greatly limited by the lack of commercially available
ColE1 protein. Here, we provide a simple, plate-based, ColE1 negative-selection
protocol that does not require purification of ColE1. Using agar plates
containing a nonpurified lysate from a ColE1-production strain, we
achieved a stringent negative selection with an escape rate of 10–7. Using this powerful negative-selection assay, we
then performed the scarless deletion of multiple, large genomic loci
(>10 kb), screening only 12 colonies each. We hope this accessible
protocol for ColE1 production will lower the barrier of entry for
any lab that wishes to harness tolC’s dual
selection for genetic engineering.
Collapse
|
|
3 |
|