1
|
Stark M, Wolfsgruber S, Kleineidam L, Frommann I, Altenstein S, Bartels C, Brosseron F, Buerger K, Burow L, Butryn M, Ewers M, Fliessbach K, Gabelin T, Glanz W, Goerss D, Gref D, Hansen N, Heneka MT, Hinderer P, Incesoy EI, Janowitz D, Kilimann I, Kimmich O, Laske C, Munk MH, Perneczky R, Peters O, Preis L, Priller J, Rauchmann BS, Rostamzadeh A, Roy-Kluth N, Sanzenbacher C, Schneider A, Schott BH, Spottke A, Spruth EJ, Teipel S, Vogt IR, Wiltfang J, Duzel E, Jessen F, Wagner M. Relevance of Minor Neuropsychological Deficits in Patients With Subjective Cognitive Decline. Neurology 2023; 101:e2185-e2196. [PMID: 37821235 PMCID: PMC10663030 DOI: 10.1212/wnl.0000000000207844] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND AND OBJECTIVES To determine the relevance of minor neuropsychological deficits (MNPD) in patients with subjective cognitive decline (SCD) with regard to CSF levels of Alzheimer disease (AD) biomarkers, cognitive decline, and clinical progression to mild cognitive impairment (MCI). METHODS This study included patients with clinical SCD and SCD-free, healthy control (HC) participants with available baseline CSF and/or longitudinal cognitive data from the observational DZNE Longitudinal Cognitive Impairment and Dementia study. We defined MNPD as a performance of at least 0.5SD below the mean on a demographically adjusted total score derived from the Consortium to Establish a Registry for Alzheimer's Disease neuropsychological assessment battery. We compared SCD patients with MNPD and those without MNPD with regard to CSF amyloid-β (Aβ)42/Aβ40, phosphorylated tau (p-tau181), total tau and Aβ42/p-tau181 levels, longitudinal cognitive composite trajectories, and risk of clinical progression to incident MCI (follow-up M ± SD: 40.6 ± 23.7 months). In addition, we explored group differences between SCD and HC in those without MNPD. RESULTS In our sample (N = 672, mean age: 70.7 ± 5.9 years, 50% female), SCD patients with MNPD (n = 55, 12.5% of SCD group) showed significantly more abnormal CSF biomarker levels, increased cognitive decline, and a higher risk of progression to incident MCI (HR: 4.07, 95% CI 2.46-6.74) compared with SCD patients without MNPD (n = 384). MNPD had a positive predictive value of 57.0% (95% CI 38.5-75.4) and a negative predictive value of 86.0% (95% CI 81.9-90.1) for the progression of SCD to MCI within 3 years. SCD patients without MNPD showed increased cognitive decline and a higher risk of incident MCI compared with HC participants without MNPD (n = 215; HR: 4.09, 95% CI 2.07-8.09), while AD biomarker levels did not differ significantly between these groups. DISCUSSION Our results suggest that MNPD are a risk factor for AD-related clinical progression in cognitively normal patients seeking medical counseling because of SCD. As such, the assessment of MNPD could be useful for individual clinical prediction and for AD risk stratification in clinical trials. However, SCD remains a risk factor for future cognitive decline even in the absence of MNPD.
Collapse
|
Observational Study |
2 |
9 |
2
|
Wang X, Freiesleben SD, Schneider LS, Preis L, Priller J, Spruth EJ, Altenstein S, Schneider A, Fliessbach K, Wiltfang J, Hansen N, Jessen F, Rostamzadeh A, Duzel E, Glanz W, Incesoy EI, Buerger K, Janowitz D, Ewers M, Perneczky R, Rauchmann BS, Teipel SJ, Kilimann I, Goerss D, Laske C, Munk MHJ, Spottke A, Roy-Kluth N, Heneka MT, Brosseron F, Wagner M, Wolfsgruber S, Ramirez A, Kleineidam L, Stark M, Peters O. Association of Neurogranin and BACE1 With Clinical Cognitive Decline in Individuals With Subjective Cognitive Decline. Neurology 2024; 103:e209806. [PMID: 39303184 DOI: 10.1212/wnl.0000000000209806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND AND OBJECTIVES CSF biomarkers have immense diagnostic and prognostic potential for Alzheimer disease (AD). However, AD is still diagnosed relatively late in the disease process, sometimes even years after the initial manifestation of cognitive symptoms. Thus, further identification of biomarkers is required to detect related pathology in the preclinical stage and predict cognitive decline. Our study aimed to assess the association of neurogranin and β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) with cognitive decline in individuals with subjective cognitive decline (SCD). METHODS We enrolled participants with available neurogranin and BACE1 measurements in CSF from the DELCODE (DZNE-Longitudinal Cognitive Impairment and Dementia, Germany) cohort. The longitudinal change of Preclinical Alzheimer's Cognitive Composite score was assessed as the primary outcome in participants with SCD and controls. The secondary outcome was defined as conversion of SCD to mild cognitive impairment (MCI) during follow-up. Levels of neurogranin, BACE1, and neurogranin/BACE1 ratio across groups were compared by analysis of covariance after adjustment for demographics. The linear mixed-effects model and Cox regression analysis were applied to evaluate their association with cognitive decline and progression of SCD to MCI, respectively. RESULTS A total of 530 participants (mean age: 70.76 ± 6.01 years, 48.7% female) were analyzed in the study. The rate of cognitive decline was faster in individuals with SCD with higher neurogranin and neurogranin/BACE1 ratio (β = -0.138, SE = 0.065, p = 0.037, and β = -0.293, SE = 0.115, p = 0.013). Higher baseline neurogranin and neurogranin/BACE1 ratio were associated with an increased rate of conversion from SCD to MCI (hazard ratio [HR] 1.35 per SD, 95% CI 1.03-1.77, p = 0.028, and HR 1.53 per SD, 95% CI 1.13-2.07, p = 0.007). In addition, the impact of higher neurogranin levels on accelerating the rate of cognitive decline was more pronounced in the SCD group than in cognitively unimpaired controls (β = -0.077, SE = 0.033, p = 0.020). DISCUSSION Our findings suggest that CSF neurogranin and BACE1 begin to change in the preclinical stage of AD and they are associated with clinical progression in individuals with SCD.
Collapse
|
|
1 |
|
3
|
Sannemann L, Bartels C, Brosseron F, Buerger K, Fliessbach K, Freiesleben SD, Frommann I, Glanz W, Heneka MT, Janowitz D, Kilimann I, Kleineidam L, Lammerding D, Laske C, Munk MHJ, Perneczky R, Peters O, Priller J, Rauchmann BS, Rostamzadeh A, Roy-Kluth N, Schild AK, Schneider A, Schneider LS, Spottke A, Spruth EJ, Teipel S, Wagner M, Wiltfang J, Wolfsgruber S, Duezel E, Jessen F. Symptomatic Clusters Related to Amyloid Positivity in Cognitively Unimpaired Individuals. J Alzheimers Dis 2024; 100:193-205. [PMID: 38848176 DOI: 10.3233/jad-231335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Background The NIA-AA Research Framework on Alzheimer's disease (AD) proposes a transitional stage (stage 2) characterized by subtle cognitive decline, subjective cognitive decline (SCD) and mild neurobehavioral symptoms (NPS). Objective To identify participant clusters based on stage 2 features and assess their association with amyloid positivity in cognitively unimpaired individuals. Methods We included baseline data of N = 338 cognitively unimpaired participants from the DELCODE cohort with data on cerebrospinal fluid biomarkers for AD. Classification into the AD continuum (i.e., amyloid positivity, A+) was based on Aβ42/40 status. Neuropsychological test data were used to assess subtle objective cognitive dysfunction (OBJ), the subjective cognitive decline interview (SCD-I) was used to detect SCD, and the Neuropsychiatric Inventory Questionnaire (NPI-Q) was used to assess NPS. A two-step cluster analysis was carried out and differences in AD biomarkers between clusters were analyzed. Results We identified three distinct participant clusters based on presented symptoms. The highest rate of A+ participants (47.6%) was found in a cluster characterized by both OBJ and SCD. A cluster of participants that presented with SCD and NPS (A+:26.6%) and a cluster of participants with overall few symptoms (A+:19.7%) showed amyloid positivity in a range that was not higher than the expected A+ rate for the age group. Across the full sample, participants with a combination of SCD and OBJ in the memory domain showed a lower Aβ42/ptau181 ratio compared to those with neither SCD nor OBJ. Conclusions The cluster characterized by participants with OBJ and concomitant SCD was enriched for amyloid pathology.
Collapse
|
|
1 |
|
4
|
Menze I, Bernal J, Kaya P, Aki Ç, Pfister M, Geisendörfer J, Yakupov R, Coello RD, Valdés-Hernández MDC, Heneka MT, Brosseron F, Schmid MC, Glanz W, Incesoy EI, Butryn M, Rostamzadeh A, Meiberth D, Peters O, Preis L, Lammerding D, Gref D, Priller J, Spruth EJ, Altenstein S, Lohse A, Hetzer S, Schneider A, Fliessbach K, Kimmich O, Vogt IR, Wiltfang J, Bartels C, Schott BH, Hansen N, Dechent P, Buerger K, Janowitz D, Perneczky R, Rauchmann BS, Teipel S, Kilimann I, Goerss D, Laske C, Munk MH, Sanzenbacher C, Hinderer P, Scheffler K, Spottke A, Roy-Kluth N, Lüsebrink F, Neumann K, Wardlaw J, Jessen F, Schreiber S, Düzel E, Ziegler G. Perivascular space enlargement accelerates in ageing and Alzheimer's disease pathology: evidence from a three-year longitudinal multicentre study. Alzheimers Res Ther 2024; 16:242. [PMID: 39482759 PMCID: PMC11526621 DOI: 10.1186/s13195-024-01603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/15/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Perivascular space (PVS) enlargement in ageing and Alzheimer's disease (AD) and the drivers of such a structural change in humans require longitudinal investigation. Elucidating the effects of demographic factors, hypertension, cerebrovascular dysfunction, and AD pathology on PVS dynamics could inform the role of PVS in brain health function as well as the complex pathophysiology of AD. METHODS We studied PVS in centrum semiovale (CSO) and basal ganglia (BG) computationally over three to four annual visits in 503 participants (255 females; meanage = 70.78 ± 5.78) of the ongoing observational multicentre "DZNE Longitudinal Cognitive Impairment and Dementia Study" (DELCODE) cohort. We analysed data from subjects who were cognitively unimpaired (n = 401), had amnestic mild cognitive impairment (n = 71), or had AD (n = 31). We used linear mixed-effects modelling to test for changes of PVS volumes in relation to cross-sectional and longitudinal age, as well as sex, years of education, hypertension, white matter hyperintensities, AD diagnosis, and cerebrospinal-fluid-derived amyloid (A) and tau (T) status (available for 46.71%; A-T-/A + T-/A + T + n = 143/48/39). RESULTS PVS volumes increased significantly over follow-ups (CSO: B = 0.03 [0.02, 0.05], p < 0.001; BG: B = 0.05 [0.03, 0.07], p < 0.001). PVS enlargement rates varied substantially across subjects and depended on the participant's age, white matter hyperintensities volumes, and amyloid and tau status. PVS volumes were higher across elderly participants, regardless of region of interest (CSO: B = 0.12 [0.02, 0.21], p = 0.017; BG: B = 0.19 [0.09, 0.28], p < 0.001). Faster BG-PVS enlargement related to lower baseline white matter hyperintensities volumes (ρspearman = -0.17, pFDR = 0.001) and was more pronounced in individuals who presented with combined amyloid and tau positivity versus negativity (A + T + > A-T-, pFDR = 0.004) or who were amyloid positive but tau negative (A + T + > A + T-, pFDR = 0.07). CSO-PVS volumes increased at a faster rate with amyloid positivity as compared to amyloid negativity (A + T-/A + T + > A-T-, pFDR = 0.021). CONCLUSION Our longitudinal evidence supports the relevance of PVS enlargement in presumably healthy ageing as well as in AD pathology. We further discuss the region-specific involvement of white matter hyperintensities and neurotoxic waste accumulation in PVS enlargement and the possibility of additional factors contributing to PVS progression. A comprehensive understanding of PVS dynamics could facilitate the understanding of pathological cascades and might inform targeted treatment strategies. TRIAL REGISTRATION German Clinical Trials Register DRKS00007966. Registered 04.05.2015 - retrospectively registered, https://drks.de/search/en/trial/DRKS00007966 .
Collapse
|
Multicenter Study |
1 |
|
5
|
Soch J, Richter A, Kizilirmak JM, Schütze H, Ziegler G, Altenstein S, Brosseron F, Dechent P, Fliessbach K, Freiesleben SD, Glanz W, Gref D, Heneka MT, Hetzer S, Incesoy EI, Kilimann I, Kimmich O, Kleineidam L, Kuhn E, Laske C, Lohse A, Lüsebrink F, Munk MH, Peters O, Preis L, Priller J, Ramirez A, Roeske S, Rostamzadeh A, Roy-Kluth N, Scheffler K, Schmid M, Schneider A, Spottke A, Spruth EJ, Teipel S, Wiltfang J, Jessen F, Wagner M, Düzel E, Schott BH. Single-value brain activity scores reflect both severity and risk across the Alzheimer's continuum. Brain 2024; 147:3789-3803. [PMID: 38743817 PMCID: PMC11531847 DOI: 10.1093/brain/awae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/22/2024] [Accepted: 04/06/2024] [Indexed: 05/16/2024] Open
Abstract
Single-value scores reflecting the deviation from (FADE score) or similarity with (SAME score) prototypical novelty-related and memory-related functional MRI activation patterns in young adults have been proposed as imaging biomarkers of healthy neurocognitive ageing. Here, we tested the utility of these scores as potential diagnostic and prognostic markers in Alzheimer's disease (AD) and risk states like mild cognitive impairment (MCI) or subjective cognitive decline (SCD). To this end, we analysed subsequent memory functional MRI data from individuals with SCD, MCI and AD dementia as well as healthy controls and first-degree relatives of AD dementia patients (AD-rel) who participated in the multi-centre DELCODE study (n = 468). Based on the individual participants' whole-brain functional MRI novelty and subsequent memory responses, we calculated the FADE and SAME scores and assessed their association with AD risk stage, neuropsychological test scores, CSF amyloid positivity and APOE genotype. Memory-based FADE and SAME scores showed a considerably larger deviation from a reference sample of young adults in the MCI and AD dementia groups compared to healthy controls, SCD and AD-rel. In addition, novelty-based scores significantly differed between the MCI and AD dementia groups. Across the entire sample, single-value scores correlated with neuropsychological test performance. The novelty-based SAME score further differed between Aβ-positive and Aβ-negative individuals in SCD and AD-rel, and between ApoE ɛ4 carriers and non-carriers in AD-rel. Hence, FADE and SAME scores are associated with both cognitive performance and individual risk factors for AD. Their potential utility as diagnostic and prognostic biomarkers warrants further exploration, particularly in individuals with SCD and healthy relatives of AD dementia patients.
Collapse
|
Multicenter Study |
1 |
|
6
|
Liebscher M, Dell’Orco A, Doll-Lee J, Buerger K, Dechent P, Ewers M, Fliessbach K, Glanz W, Hetzer S, Janowitz D, Kilimann I, Laske C, Lüsebrink F, Munk M, Perneczky R, Peters O, Preis L, Priller J, Rauchmann B, Rostamzadeh A, Roy-Kluth N, Scheffler K, Schneider A, Schott BH, Spottke A, Spruth E, Teipel S, Wiltfang J, Jessen F, Düzel E, Wagner M, Röske S, Wirth M. Short communication: Lifetime musical activity and resting-state functional connectivity in cognitive networks. PLoS One 2024; 19:e0299939. [PMID: 38696395 PMCID: PMC11065262 DOI: 10.1371/journal.pone.0299939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/20/2024] [Indexed: 05/04/2024] Open
Abstract
BACKGROUND Participation in multimodal leisure activities, such as playing a musical instrument, may be protective against brain aging and dementia in older adults (OA). Potential neuroprotective correlates underlying musical activity remain unclear. OBJECTIVE This cross-sectional study investigated the association between lifetime musical activity and resting-state functional connectivity (RSFC) in three higher-order brain networks: the Default Mode, Fronto-Parietal, and Salience networks. METHODS We assessed 130 cognitively unimpaired participants (≥ 60 years) from the baseline cohort of the DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE) study. Lifetime musical activity was operationalized by the self-reported participation in musical instrument playing across early, middle, and late life stages using the Lifetime of Experiences Questionnaire (LEQ). Participants who reported musical activity during all life stages (n = 65) were compared to controls who were matched on demographic and reserve characteristics (including education, intelligence, socioeconomic status, self-reported physical activity, age, and sex) and never played a musical instrument (n = 65) in local (seed-to-voxel) and global (within-network and between-network) RSFC patterns using pre-specified network seeds. RESULTS Older participants with lifetime musical activity showed significantly higher local RSFC between the medial prefrontal cortex (Default Mode Network seed) and temporal as well as frontal regions, namely the right temporal pole and the right precentral gyrus extending into the superior frontal gyrus, compared to matched controls. There were no significant group differences in global RSFC within or between the three networks. CONCLUSION We show that playing a musical instrument during life relates to higher RSFC of the medial prefrontal cortex with distant brain regions involved in higher-order cognitive and motor processes. Preserved or enhanced functional connectivity could potentially contribute to better brain health and resilience in OA with a history in musical activity. TRIAL REGISTRATION German Clinical Trials Register (DRKS00007966, 04/05/2015).
Collapse
|
research-article |
1 |
|
7
|
Dörner M, Seebach K, Heneka MT, Menze I, von Känel R, Euler S, Schreiber F, Arndt P, Neumann K, Hildebrand A, John AC, Tyndall A, Kirchebner J, Tacik P, Jansen R, Grimm A, Henneicke S, Perosa V, Meuth SG, Peters O, Hellmann-Regen J, Preis L, Priller J, Spruth EJ, Schneider A, Fliessbach K, Wiltfang J, Jessen F, Rostamzadeh A, Glanz W, Schulze JB, Schiebler SLF, Buerger K, Janowitz D, Perneczky R, Rauchmann BS, Teipel S, Kilimann I, Laske C, Munk MH, Spottke A, Roy-Kluth N, Wagner M, Frommann I, Lüsebrink F, Dechent P, Hetzer S, Scheffler K, Kleineidam L, Stark M, Schmid M, Ersözlü E, Brosseron F, Ewers M, Schott BH, Düzel E, Ziegler G, Mattern H, Schreiber S, Bernal J. Inferior Frontal Sulcal Hyperintensities on Brain MRI Are Associated with Amyloid Positivity beyond Age-Results from the Multicentre Observational DELCODE Study. Diagnostics (Basel) 2024; 14:940. [PMID: 38732354 PMCID: PMC11083612 DOI: 10.3390/diagnostics14090940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Inferior frontal sulcal hyperintensities (IFSHs) on fluid-attenuated inversion recovery (FLAIR) sequences have been proposed to be indicative of glymphatic dysfunction. Replication studies in large and diverse samples are nonetheless needed to confirm them as an imaging biomarker. We investigated whether IFSHs were tied to Alzheimer's disease (AD) pathology and cognitive performance. We used data from 361 participants along the AD continuum, who were enrolled in the multicentre DELCODE study. The IFSHs were rated visually based on FLAIR magnetic resonance imaging. We performed ordinal regression to examine the relationship between the IFSHs and cerebrospinal fluid-derived amyloid positivity and tau positivity (Aβ42/40 ratio ≤ 0.08; pTau181 ≥ 73.65 pg/mL) and linear regression to examine the relationship between cognitive performance (i.e., Mini-Mental State Examination and global cognitive and domain-specific performance) and the IFSHs. We controlled the models for age, sex, years of education, and history of hypertension. The IFSH scores were higher in those participants with amyloid positivity (OR: 1.95, 95% CI: 1.05-3.59) but not tau positivity (OR: 1.12, 95% CI: 0.57-2.18). The IFSH scores were higher in older participants (OR: 1.05, 95% CI: 1.00-1.10) and lower in males compared to females (OR: 0.44, 95% CI: 0.26-0.76). We did not find sufficient evidence linking the IFSH scores with cognitive performance after correcting for demographics and AD biomarker positivity. IFSHs may reflect the aberrant accumulation of amyloid β beyond age.
Collapse
|
research-article |
1 |
|
8
|
Haag L, Lancini E, Yakupov R, Ziegler G, Yi YJ, Lüsebrink F, Glanz W, Peters O, Spruth EJ, Altenstein S, Priller J, Schneider LS, Wang X, Preis L, Brosseron F, Roy-Kluth N, Fliessbach K, Wagner M, Wolfsgruber S, Kleineidam L, Ramirez A, Spottke A, Jessen F, Wiltfang J, Schneider A, Hansen N, Rostamzadeh A, Buerger K, Ewers M, Perneczky R, Janowitz D, Rauchmann BS, Teipel S, Kilimann I, Goerss D, Laske C, Munk MH, Heneka M, Dechent P, Hetzer S, Scheffler K, Düzel E, Betts MJ, Hämmerer D. CSF biomarkers are differentially linked to brain areas high and low in noradrenaline, dopamine and serotonin across the Alzheimer's disease spectrum. Brain Commun 2025; 7:fcaf031. [PMID: 39926613 PMCID: PMC11806415 DOI: 10.1093/braincomms/fcaf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/24/2024] [Accepted: 01/23/2025] [Indexed: 02/11/2025] Open
Abstract
Neurotransmitter systems of noradrenaline, dopamine, serotonin and acetylcholine are implicated in cognitive functions such as memory, learning and attention and are known to be altered in neurodegenerative diseases like Alzheimer's disease. Specific brain structures involved in these systems, e.g. the locus coeruleus, the main source of noradrenaline in the cortex, are in fact affected earliest by Alzheimer's disease tau pathology. Preserved volumetric neurotransmitter specific brain areas could therefore be an important neural resource for cognitive reserve in aging. The aim of this study was to determine whether volumes of brain areas known to be high in neurotransmitter receptors are relatively preserved in individuals with lower levels of Alzheimer's disease pathology. Based on the Human Protein Atlas for neurotransmitter receptor distribution, we distinguished between 'areas high and low' in noradrenaline, dopamine, serotonin and acetylcholine and assessed associations of atrophy in those areas with CSF amyloid-ß 42/40, CSF phosphorylated tau protein and cognitive function across healthy controls (n = 122), individuals with subjective cognitive decline (n = 156), mild cognitive impairment or mild Alzheimer's disease dementia (n = 126) using structural equation modelling. CSF pathology markers were inversely correlated and showed a stronger association with disease severity, suggesting distinguishable interrelatedness of these biomarkers depending on the stage of Alzheimer's disease dementia. Across groups, amyloid pathology was linked to atrophy in areas high as well as low in neurotransmitter receptor densities, while tau pathology did not show any significant link to brain area volumes for any of the neurotransmitters. Within disease severity groups, individuals with more amyloid pathology showed more atrophy only in 'areas high in noradrenaline', whereas for dopamine tau pathology was linked to higher volumes in areas low in receptor density possibly indicating compensatory mechanisms. Furthermore, individuals with more tau pathology showed a selective decrease in memory function while amyloid pathology was related to a decline in executive function and language capacity as well as memory function. In summary, our analyses highlight the benefits of investigating disease-relevant factors in Alzheimer's disease using a multivariate multigroup approach. Assessing multivariate dependencies in different disease stages and across individuals revealed selective links of pathologies, cognitive decline and atrophy in particular for areas modulated by noradrenaline, dopamine and serotonin.
Collapse
|
research-article |
1 |
|
9
|
Singh D, Grazia A, Reiz A, Hermann A, Altenstein S, Beichert L, Bernhardt A, Buerger K, Butryn M, Dechent P, Duezel E, Ewers M, Fliessbach K, Freiesleben SD, Glanz W, Hetzer S, Janowitz D, Kilimann I, Kimmich O, Laske C, Levin J, Lohse A, Luesebrink F, Munk M, Perneczky R, Peters O, Preis L, Priller J, Prudlo J, Rauchmann BS, Rostamzadeh A, Roy-Kluth N, Scheffler K, Schneider A, Schneider LS, Schott BH, Spottke A, Spruth EJ, Synofzik M, Wiltfang J, Jessen F, Teipel SJ, Dyrba M. A computational ontology framework for the synthesis of multi-level pathology reports from brain MRI scans. J Alzheimers Dis 2025:13872877251331222. [PMID: 40255031 DOI: 10.1177/13872877251331222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
BackgroundConvolutional neural network (CNN) based volumetry of MRI data can help differentiate Alzheimer's disease (AD) and the behavioral variant of frontotemporal dementia (bvFTD) as causes of cognitive decline and dementia. However, existing CNN-based MRI volumetry tools lack a structured hierarchical representation of brain anatomy, which would allow for aggregating regional pathological information and automated computational inference.ObjectiveDevelop a computational ontology pipeline for quantifying hierarchical pathological abnormalities and visualize summary charts for brain atrophy findings, aiding differential diagnosis.MethodsUsing FastSurfer, we segmented brain regions and measured volume and cortical thickness from MRI scans pooled across multiple cohorts (N = 3433; ADNI, AIBL, DELCODE, DESCRIBE, EDSD, and NIFD), including healthy controls, prodromal and clinical AD cases, and bvFTD cases. Employing the Web Ontology Language (OWL), we built a semantic model encoding hierarchical anatomical information. Additionally, we created summary visualizations based on sunburst plots for visual inspection of the information stored in the ontology.ResultsOur computational framework dynamically estimated and aggregated regional pathological deviations across different levels of neuroanatomy abstraction. The disease similarity index derived from the volumetric and cortical thickness deviations achieved an AUC of 0.88 for separating AD and bvFTD, which was also reflected by distinct atrophy profile visualizations.ConclusionsThe proposed automated pipeline facilitates visual comparison of atrophy profiles across various disease types and stages. It provides a generalizable computational framework for summarizing pathologic findings, potentially enhancing the physicians' ability to evaluate brain pathologies robustly and interpretably.
Collapse
|
|
1 |
|