1
|
Sunny NE, Parks EJ, Browning JD, Burgess SC. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metab 2011; 14:804-10. [PMID: 22152305 PMCID: PMC3658280 DOI: 10.1016/j.cmet.2011.11.004] [Citation(s) in RCA: 485] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/18/2011] [Accepted: 11/11/2011] [Indexed: 12/14/2022]
Abstract
Approximately one-third of the U.S. population has nonalcoholic fatty liver disease (NAFLD), a condition closely associated with insulin resistance and increased risk of liver injury. Dysregulated mitochondrial metabolism is central in these disorders, but the manner and degree of dysregulation are disputed. This study tested whether humans with NAFLD have abnormal in vivo hepatic mitochondrial metabolism. Subjects with low (3.0%) and high (17%) intrahepatic triglyceride (IHTG) were studied using (2)H and (13)C tracers to evaluate systemic lipolysis, hepatic glucose production, and mitochondrial pathways (TCA cycle, anaplerosis, and ketogenesis). Individuals with NAFLD had 50% higher rates of lipolysis and 30% higher rates of gluconeogenesis. There was a positive correlation between IHTG content and both mitochondrial oxidative and anaplerotic fluxes. These data indicate that mitochondrial oxidative metabolism is ~2-fold greater in those with NAFLD, providing a potential link between IHTG content, oxidative stress, and liver damage.
Collapse
|
Case Reports |
14 |
485 |
2
|
Potthoff MJ, Boney-Montoya J, Choi M, He T, Sunny NE, Satapati S, Suino-Powell K, Xu HE, Gerard RD, Finck BN, Burgess SC, Mangelsdorf DJ, Kliewer SA. FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1α pathway. Cell Metab 2011; 13:729-38. [PMID: 21641554 PMCID: PMC3131185 DOI: 10.1016/j.cmet.2011.03.019] [Citation(s) in RCA: 320] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 01/21/2011] [Accepted: 03/28/2011] [Indexed: 12/13/2022]
Abstract
Regulation of hepatic carbohydrate homeostasis is crucial for maintaining energy balance in the face of fluctuating nutrient availability. Here, we show that the hormone fibroblast growth factor 15/19 (FGF15/19), which is released postprandially from the small intestine, inhibits hepatic gluconeogenesis, like insulin. However, unlike insulin, which peaks in serum 15 min after feeding, FGF15/19 expression peaks approximately 45 min later, when bile acid concentrations increase in the small intestine. FGF15/19 blocks the expression of genes involved in gluconeogenesis through a mechanism involving the dephosphorylation and inactivation of the transcription factor cAMP regulatory element-binding protein (CREB). This in turn blunts expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and other genes involved in hepatic metabolism. Overexpression of PGC-1α blocks the inhibitory effect of FGF15/19 on gluconeogenic gene expression. These results demonstrate that FGF15/19 works subsequent to insulin as a postprandial regulator of hepatic carbohydrate homeostasis.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
320 |
3
|
Satapati S, Sunny NE, Kucejova B, Fu X, He TT, Méndez-Lucas A, Shelton JM, Perales JC, Browning JD, Burgess SC. Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver. J Lipid Res 2012; 53:1080-92. [PMID: 22493093 PMCID: PMC3351815 DOI: 10.1194/jlr.m023382] [Citation(s) in RCA: 308] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 03/29/2012] [Indexed: 12/26/2022] Open
Abstract
The manner in which insulin resistance impinges on hepatic mitochondrial function is complex. Although liver insulin resistance is associated with respiratory dysfunction, the effect on fat oxidation remains controversial, and biosynthetic pathways that traverse mitochondria are actually increased. The tricarboxylic acid (TCA) cycle is the site of terminal fat oxidation, chief source of electrons for respiration, and a metabolic progenitor of gluconeogenesis. Therefore, we tested whether insulin resistance promotes hepatic TCA cycle flux in mice progressing to insulin resistance and fatty liver on a high-fat diet (HFD) for 32 weeks using standard biomolecular and in vivo (2)H/(13)C tracer methods. Relative mitochondrial content increased, but respiratory efficiency declined by 32 weeks of HFD. Fasting ketogenesis became unresponsive to feeding or insulin clamp, indicating blunted but constitutively active mitochondrial β-oxidation. Impaired insulin signaling was marked by elevated in vivo gluconeogenesis and anaplerotic and oxidative TCA cycle flux. The induction of TCA cycle function corresponded to the development of mitochondrial respiratory dysfunction, hepatic oxidative stress, and inflammation. Thus, the hepatic TCA cycle appears to enable mitochondrial dysfunction during insulin resistance by increasing electron deposition into an inefficient respiratory chain prone to reactive oxygen species production and by providing mitochondria-derived substrate for elevated gluconeogenesis.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
308 |
4
|
Satapati S, Kucejova B, Duarte JAG, Fletcher JA, Reynolds L, Sunny NE, He T, Nair LA, Livingston KA, Fu X, Merritt ME, Sherry AD, Malloy CR, Shelton JM, Lambert J, Parks EJ, Corbin I, Magnuson MA, Browning JD, Burgess SC. Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver. J Clin Invest 2015; 125:4447-62. [PMID: 26571396 DOI: 10.1172/jci82204] [Citation(s) in RCA: 297] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 10/08/2015] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are critical for respiration in all tissues; however, in liver, these organelles also accommodate high-capacity anaplerotic/cataplerotic pathways that are essential to gluconeogenesis and other biosynthetic activities. During nonalcoholic fatty liver disease (NAFLD), mitochondria also produce ROS that damage hepatocytes, trigger inflammation, and contribute to insulin resistance. Here, we provide several lines of evidence indicating that induction of biosynthesis through hepatic anaplerotic/cataplerotic pathways is energetically backed by elevated oxidative metabolism and hence contributes to oxidative stress and inflammation during NAFLD. First, in murine livers, elevation of fatty acid delivery not only induced oxidative metabolism, but also amplified anaplerosis/cataplerosis and caused a proportional rise in oxidative stress and inflammation. Second, loss of anaplerosis/cataplerosis via genetic knockdown of phosphoenolpyruvate carboxykinase 1 (Pck1) prevented fatty acid-induced rise in oxidative flux, oxidative stress, and inflammation. Flux appeared to be regulated by redox state, energy charge, and metabolite concentration, which may also amplify antioxidant pathways. Third, preventing elevated oxidative metabolism with metformin also normalized hepatic anaplerosis/cataplerosis and reduced markers of inflammation. Finally, independent histological grades in human NAFLD biopsies were proportional to oxidative flux. Thus, hepatic oxidative stress and inflammation are associated with elevated oxidative metabolism during an obesogenic diet, and this link may be provoked by increased work through anabolic pathways.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
297 |
5
|
Sunny NE, Bril F, Cusi K. Mitochondrial Adaptation in Nonalcoholic Fatty Liver Disease: Novel Mechanisms and Treatment Strategies. Trends Endocrinol Metab 2017; 28:250-260. [PMID: 27986466 DOI: 10.1016/j.tem.2016.11.006] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/09/2016] [Accepted: 11/09/2016] [Indexed: 12/11/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is prevalent in patients with obesity or type 2 diabetes. Nonalcoholic steatohepatitis (NASH), encompassing steatosis with inflammation, hepatocyte injury, and fibrosis, predisposes to cirrhosis, hepatocellular carcinoma, and even cardiovascular disease. In rodent models and humans with NAFLD/NASH, maladaptation of mitochondrial oxidative flux is a central feature of simple steatosis to NASH transition. Induction of hepatic tricarboxylic acid cycle closely mirrors the severity of oxidative stress and inflammation in NASH. Reactive oxygen species generation and inflammation are driven by upregulated, but inefficient oxidative flux and accumulating lipotoxic intermediates. Successful therapies for NASH (weight loss alone or with incretin therapy, or pioglitazone) likely attenuate mitochondrial oxidative flux and halt hepatocellular injury. Agents targeting mitochondrial dysfunction may provide a novel treatment strategy for NAFLD.
Collapse
|
Review |
8 |
229 |
6
|
Cusi K, Bril F, Barb D, Polidori D, Sha S, Ghosh A, Farrell K, Sunny NE, Kalavalapalli S, Pettus J, Ciaraldi TP, Mudaliar S, Henry RR. Effect of canagliflozin treatment on hepatic triglyceride content and glucose metabolism in patients with type 2 diabetes. Diabetes Obes Metab 2019; 21:812-821. [PMID: 30447037 DOI: 10.1111/dom.13584] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/06/2018] [Accepted: 11/14/2018] [Indexed: 12/17/2022]
Abstract
AIM To evaluate the impact of the sodium glucose co-transporter 2 inhibitor canagliflozin on intrahepatic triglyceride (IHTG) accumulation and its relationship to changes in body weight and glucose metabolism. MATERIALS AND METHODS In this double-blind, parallel-group, placebo-controlled, 24-week trial subjects with inadequately controlled type 2 diabetes mellitus (T2DM; HbA1c = 7.7% ± 0.7%) from two centres were randomly assigned (1:1) to canagliflozin 300 mg or placebo. We measured IHTG by proton-magnetic resonance spectroscopy (primary outcome), hepatic/muscle/adipose tissue insulin sensitivity during a 2-step euglycaemic insulin clamp, and beta-cell function during a mixed meal tolerance test. Analyses were per protocol. RESULTS Between 8 September 2014-13 June 2016, 56 patients were enrolled. Canagliflozin reduced HbA1c (placebo-subtracted change: -0.71% [-1.08; -0.33]) and body weight (-3.4% [-5.4; -1.4]; both P ≤ 0.001). A numerically larger absolute decrease in IHTG occurred with canagliflozin (-4.6% [-6.4; -2.7]) versus placebo (-2.4% [-4.2; -0.6]; P = 0.09). In patients with non-alcoholic fatty liver disease (n = 37), the decrease in IHTG was -6.9% (-9.5; -4.2) versus -3.8% (-6.3; -1.3; P = 0.05), and strongly correlated with the magnitude of weight loss (r = 0.69, P < 0.001). Body weight loss ≥5% with a ≥30% relative reduction in IHTG occurred more often with canagliflozin (38% vs. 7%, P = 0.009). Hepatic insulin sensitivity improved with canagliflozin (P < 0.01), but not muscle or adipose tissue insulin sensitivity. Beta-cell glucose sensitivity, insulin clearance, and disposition index improved more with canagliflozin (P < 0.05). CONCLUSIONS Canagliflozin improves hepatic insulin sensitivity and insulin secretion and clearance in patients with T2DM. IHTG decreases in proportion to the magnitude of body weight loss, which tended to be greater and occur more often with canagliflozin.
Collapse
|
Randomized Controlled Trial |
6 |
125 |
7
|
Lomonaco R, Sunny NE, Bril F, Cusi K. Nonalcoholic fatty liver disease: current issues and novel treatment approaches. Drugs 2013; 73:1-14. [PMID: 23329465 DOI: 10.1007/s40265-012-0004-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is considered the most common liver disorder in the Western world. It is commonly associated with insulin resistance, obesity, dyslipidaemia, type 2 diabetes mellitus (T2DM) and cardiovascular disease. Nonalcoholic steatohepatitis (NASH) is characterized by steatosis with necroinflammation and eventual fibrosis, which can lead to end-stage liver disease and hepatocellular carcinoma. Its pathogenesis is complex, and involves a state of 'lipotoxicity' in which insulin resistance, with increased free fatty acid release from adipose tissue to the liver, play a key role in the onset of a 'lipotoxic liver disease' and its progression to NASH. The diagnosis of NASH is challenging, as most affected patients are symptom free and the role of routine screening is not clearly established. A complete medical history is important to rule out other causes of fatty liver disease (alcohol abuse, medications, other). Plasma aminotransferase levels and liver ultrasound are helpful in the diagnosis of NAFLD/NASH, but a liver biopsy is often required for a definitive diagnosis. However, there is an active search for plasma biomarkers and imaging techniques that may non-invasively aid in the diagnosis. The treatment of NASH requires a multifaceted approach. The goal is to reverse obesity-associated lipotoxicity and insulin resistance via lifestyle intervention. Although there is no pharmacological agent approved for the treatment of NAFLD, vitamin E (in patients without T2DM) and the thiazolidinedione pioglitazone (in patients with and without T2DM) have shown the most consistent results in randomized controlled trials. This review concentrates on our current understanding of the disease, with a focus on the existing therapeutic approaches and potential future pharmacological developments for NAFLD and NASH.
Collapse
|
Review |
12 |
114 |
8
|
Patterson RE, Kalavalapalli S, Williams CM, Nautiyal M, Mathew JT, Martinez J, Reinhard MK, McDougall DJ, Rocca JR, Yost RA, Cusi K, Garrett TJ, Sunny NE. Lipotoxicity in steatohepatitis occurs despite an increase in tricarboxylic acid cycle activity. Am J Physiol Endocrinol Metab 2016; 310:E484-94. [PMID: 26814015 PMCID: PMC4824140 DOI: 10.1152/ajpendo.00492.2015] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/25/2016] [Indexed: 02/07/2023]
Abstract
The hepatic tricarboxylic acid (TCA) cycle is central to integrating macronutrient metabolism and is closely coupled to cellular respiration, free radical generation, and inflammation. Oxidative flux through the TCA cycle is induced during hepatic insulin resistance, in mice and humans with simple steatosis, reflecting early compensatory remodeling of mitochondrial energetics. We hypothesized that progressive severity of hepatic insulin resistance and the onset of nonalcoholic steatohepatitis (NASH) would impair oxidative flux through the hepatic TCA cycle. Mice (C57/BL6) were fed a high-trans-fat high-fructose diet (TFD) for 8 wk to induce simple steatosis and NASH by 24 wk. In vivo fasting hepatic mitochondrial fluxes were determined by(13)C-nuclear magnetic resonance (NMR)-based isotopomer analysis. Hepatic metabolic intermediates were quantified using mass spectrometry-based targeted metabolomics. Hepatic triglyceride accumulation and insulin resistance preceded alterations in mitochondrial metabolism, since TCA cycle fluxes remained normal during simple steatosis. However, mice with NASH had a twofold induction (P< 0.05) of mitochondrial fluxes (μmol/min) through the TCA cycle (2.6 ± 0.5 vs. 5.4 ± 0.6), anaplerosis (9.1 ± 1.2 vs. 16.9 ± 2.2), and pyruvate cycling (4.9 ± 1.0 vs. 11.1 ± 1.9) compared with their age-matched controls. Induction of the TCA cycle activity during NASH was concurrent with blunted ketogenesis and accumulation of hepatic diacylglycerols (DAGs), ceramides (Cer), and long-chain acylcarnitines, suggesting inefficient oxidation and disposal of excess free fatty acids (FFA). Sustained induction of mitochondrial TCA cycle failed to prevent accretion of "lipotoxic" metabolites in the liver and could hasten inflammation and the metabolic transition to NASH.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
113 |
9
|
Méndez-Lucas A, Duarte J, Sunny NE, Satapati S, He T, Fu X, Bermúdez J, Burgess SC, Perales JC. PEPCK-M expression in mouse liver potentiates, not replaces, PEPCK-C mediated gluconeogenesis. J Hepatol 2013; 59:105-13. [PMID: 23466304 PMCID: PMC3910155 DOI: 10.1016/j.jhep.2013.02.020] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/15/2013] [Accepted: 02/23/2013] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Hepatic gluconeogenesis helps maintain systemic energy homeostasis by compensating for discontinuities in nutrient supply. Liver-specific deletion of cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) abolishes gluconeogenesis from mitochondrial substrates, deregulates lipid metabolism and affects TCA cycle. While the mouse liver almost exclusively expresses PEPCK-C, humans equally present a mitochondrial isozyme (PEPCK-M). Despite clear relevance to human physiology, the role of PEPCK-M and its gluconeogenic potential remain unknown. Here, we test the significance of PEPCK-M in gluconeogenesis and TCA cycle function in liver-specific PEPCK-C knockout and WT mice. METHODS The effects of the overexpression of PEPCK-M were examined by a combination of tracer studies and molecular biology techniques. Partial PEPCK-C re-expression was used as a positive control. Metabolic fluxes were evaluated in isolated livers by NMR using (2)H and (13)C tracers. Gluconeogenic potential, together with metabolic profiling, was investigated in vivo and in primary hepatocytes. RESULTS PEPCK-M expression partially rescued defects in lipid metabolism, gluconeogenesis and TCA cycle function impaired by PEPCK-C deletion, while ∼10% re-expression of PEPCK-C normalized most parameters. When PEPCK-M was expressed in the presence of PEPCK-C, the mitochondrial isozyme amplified total gluconeogenic capacity, suggesting autonomous regulation of oxaloacetate to phosphoenolpyruvate fluxes by the individual isoforms. CONCLUSIONS We conclude that PEPCK-M has gluconeogenic potential per se, and cooperates with PEPCK-C to adjust gluconeogenic/TCA flux to changes in substrate or energy availability, hinting at a role in the regulation of glucose and lipid metabolism in the human liver.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
83 |
10
|
Sunny NE, Kalavalapalli S, Bril F, Garrett TJ, Nautiyal M, Mathew JT, Williams CM, Cusi K. Cross-talk between branched-chain amino acids and hepatic mitochondria is compromised in nonalcoholic fatty liver disease. Am J Physiol Endocrinol Metab 2015; 309:E311-9. [PMID: 26058864 PMCID: PMC4537921 DOI: 10.1152/ajpendo.00161.2015] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/04/2015] [Indexed: 12/20/2022]
Abstract
Elevated plasma branched-chain amino acids (BCAA) in the setting of insulin resistance have been relevant in predicting type 2 diabetes mellitus (T2DM) onset, but their role in the etiology of hepatic insulin resistance remains uncertain. We determined the link between BCAA and dysfunctional hepatic tricarboxylic acid (TCA) cycle, which is a central feature of hepatic insulin resistance and nonalcoholic fatty liver disease (NAFLD). Plasma metabolites under basal fasting and euglycemic hyperinsulinemic clamps (insulin stimulation) were measured in 94 human subjects with varying degrees of insulin sensitivity to identify their relationships with insulin resistance. Furthermore, the impact of elevated BCAA on hepatic TCA cycle was determined in a diet-induced mouse model of NAFLD, utilizing targeted metabolomics and nuclear magnetic resonance (NMR)-based metabolic flux analysis. Insulin stimulation revealed robust relationships between human plasma BCAA and indices of insulin resistance, indicating chronic metabolic overload from BCAA. Human plasma BCAA and long-chain acylcarnitines also showed a positive correlation, suggesting modulation of mitochondrial metabolism by BCAA. Concurrently, mice with NAFLD failed to optimally induce hepatic mTORC1, plasma ketones, and hepatic long-chain acylcarnitines, following acute elevation of plasma BCAA. Furthermore, elevated BCAA failed to induce multiple fluxes through hepatic TCA cycle in mice with NAFLD. Our data suggest that BCAA are essential to mediate efficient channeling of carbon substrates for oxidation through mitochondrial TCA cycle. Impairment of BCAA-mediated upregulation of the TCA cycle could be a significant contributor to mitochondrial dysfunction in NAFLD.
Collapse
|
Clinical Trial |
10 |
81 |
11
|
Sunny NE, Satapati S, Fu X, He T, Mehdibeigi R, Spring-Robinson C, Duarte J, Potthoff MJ, Browning JD, Burgess SC. Progressive adaptation of hepatic ketogenesis in mice fed a high-fat diet. Am J Physiol Endocrinol Metab 2010; 298:E1226-35. [PMID: 20233938 PMCID: PMC2886525 DOI: 10.1152/ajpendo.00033.2010] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hepatic ketogenesis provides a vital systemic fuel during fasting because ketone bodies are oxidized by most peripheral tissues and, unlike glucose, can be synthesized from fatty acids via mitochondrial beta-oxidation. Since dysfunctional mitochondrial fat oxidation may be a cofactor in insulin-resistant tissue, the objective of this study was to determine whether diet-induced insulin resistance in mice results in impaired in vivo hepatic fat oxidation secondary to defects in ketogenesis. Ketone turnover (micromol/min) in the conscious and unrestrained mouse was responsive to induction and diminution of hepatic fat oxidation, as indicated by an eightfold rise during the fed (0.50+/-0.1)-to-fasted (3.8+/-0.2) transition and a dramatic blunting of fasting ketone turnover in PPARalpha(-/-) mice (1.0+/-0.1). C57BL/6 mice made obese and insulin resistant by high-fat feeding for 8 wk had normal expression of genes that regulate hepatic fat oxidation, whereas 16 wk on the diet induced expression of these genes and stimulated the function of hepatic mitochondrial fat oxidation, as indicated by a 40% induction of fasting ketogenesis and a twofold rise in short-chain acylcarnitines. Together, these findings indicate a progressive adaptation of hepatic ketogenesis during high-fat feeding, resulting in increased hepatic fat oxidation after 16 wk of a high-fat diet. We conclude that mitochondrial fat oxidation is stimulated rather than impaired during the initiation of hepatic insulin resistance in mice.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
62 |
12
|
Bequette BJ, Sunny NE, El-Kadi SW, Owens SL. Application of stable isotopes and mass isotopomer distribution analysis to the study of intermediary metabolism of nutrients1. J Anim Sci 2006; 84 Suppl:E50-9. [PMID: 16582092 DOI: 10.2527/2006.8413_supple50x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genomic investigations in animals have begun to reveal the metabolic and physiological functions of genes and protein products. However, a thorough understanding of the genomic roadmaps will require investigative approaches that yield qualitative and quantitative information on the activities, fluxes, and connectivity of pathways involved in nutrient use in farm animals; that is, the metabolic phenotype. Recently, the commercial availability of stable isotope (13C, 15N, 2H)-labeled compounds and highly accurate mass spectrometers has made it possible to probe the details of metabolic pathways involved in macronutrient use. For years, the biological sciences have exploited uniformly 13C-labeled substrates (e.g., glucose, amino acids, nucleic acids) and 13C-mass isotopomer distribution (MID) in their metabolic investigations, whereas their use in the animal sciences is very limited. When [U-13C] substrates are fed, infused, or added to cell incubations, the 13C-skeletons distribute throughout metabolic networks. 13C-Mass isotopomer distribution in intermediates and end products of the pathways provides a signature of the fluxes and activities of pathway enzymes traveled by the precursor molecule. This paper highlights aspects of animal nutrition and metabolism in which [U-13C] substrates and MID can be applied to investigations of amino acid, carbohydrate, and fat metabolism. We will focus on [U-13C] glucose as a tracer in chickens, fish, sheep, and cell cultures to investigate the interconnectivity of the pathways of macronutrient and nucleic acid metabolism, and provide demonstration of the central position of the Krebs cycle in preserving metabolic flexibility via anaplerotic and cataplerotic sequences. Exploitation of this approach in animal sciences offers endless opportunities to provide missing details of the biochemical networks of nutrient use that may prove to be strictly under genomic control.
Collapse
|
|
19 |
51 |
13
|
Cho J, Zhang Y, Park SY, Joseph AM, Han C, Park HJ, Kalavalapalli S, Chun SK, Morgan D, Kim JS, Someya S, Mathews CE, Lee YJ, Wohlgemuth SE, Sunny NE, Lee HY, Choi CS, Shiratsuchi T, Oh SP, Terada N. Mitochondrial ATP transporter depletion protects mice against liver steatosis and insulin resistance. Nat Commun 2017; 8:14477. [PMID: 28205519 PMCID: PMC5316896 DOI: 10.1038/ncomms14477] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 01/04/2017] [Indexed: 12/31/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common metabolic disorder in obese individuals. Adenine nucleotide translocase (ANT) exchanges ADP/ATP through the mitochondrial inner membrane, and Ant2 is the predominant isoform expressed in the liver. Here we demonstrate that targeted disruption of Ant2 in mouse liver enhances uncoupled respiration without damaging mitochondrial integrity and liver functions. Interestingly, liver specific Ant2 knockout mice are leaner and resistant to hepatic steatosis, obesity and insulin resistance under a lipogenic diet. Protection against fatty liver is partially recapitulated by the systemic administration of low-dose carboxyatractyloside, a specific inhibitor of ANT. Targeted manipulation of hepatic mitochondrial metabolism, particularly through inhibition of ANT, may represent an alternative approach in NAFLD and obesity treatment. Adenine nucleotide translocase (ANT) 2 promotes ADP/ATP exchange across the mitochondrial inner membrane. Cho et al. show that liver specific Ant2 deletion increases uncoupled respiration and protects mice against fatty liver and obesity-induced insulin resistance.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
45 |
14
|
Kalavalapalli S, Bril F, Koelmel JP, Abdo K, Guingab J, Andrews P, Li WY, Jose D, Yost RA, Frye RF, Garrett TJ, Cusi K, Sunny NE. Pioglitazone improves hepatic mitochondrial function in a mouse model of nonalcoholic steatohepatitis. Am J Physiol Endocrinol Metab 2018; 315:E163-E173. [PMID: 29634314 PMCID: PMC6139494 DOI: 10.1152/ajpendo.00023.2018] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pioglitazone is effective in improving insulin resistance and liver histology in patients with nonalcoholic steatohepatitis (NASH). Because dysfunctional mitochondrial metabolism is a central feature of NASH, we hypothesized that an important target of pioglitazone would be alleviating mitochondrial oxidative dysfunction. To this end, we studied hepatic mitochondrial metabolism in mice fed high-fructose high-transfat diet (TFD) supplemented with pioglitazone for 20 wk, using nuclear magnetic resonance-based 13C isotopomer analysis. Pioglitazone improved whole body and adipose insulin sensitivity in TFD-fed mice. Furthermore, pioglitazone reduced intrahepatic triglyceride content and fed plasma ketones and hepatic TCA cycle flux, anaplerosis, and pyruvate cycling in mice with NASH. This was associated with a marked reduction in most intrahepatic diacylglycerol classes and, to a lesser extent, some ceramide species (C22:1, C23:0). Considering the cross-talk between mitochondrial function and branched-chain amino acid (BCAA) metabolism, pioglitazone's impact on plasma BCAA profile was determined in a cohort of human subjects. Pioglitazone improved the plasma BCAA concentration profile in patients with NASH. This appeared to be related to an improvement in BCAA degradation in multiple tissues. These results provide evidence that pioglitazone-induced changes in NASH are related to improvements in hepatic mitochondrial oxidative dysfunction and changes in whole body BCAA metabolism.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
42 |
15
|
El-Kadi SW, Baldwin RL, Sunny NE, Owens SL, Bequette BJ. Intestinal protein supply alters amino acid, but not glucose, metabolism by the sheep gastrointestinal tract. J Nutr 2006; 136:1261-9. [PMID: 16614414 DOI: 10.1093/jn/136.5.1261] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study was intended to establish the extent which amino acids (AAs) and glucose are net metabolized by the gastrointestinal tract (GIT) of ruminant sheep when intestinal protein supply is varied. Wether sheep (n = 4, 33 +/- 2.0 kg) were fitted with catheters for measurement of net absorption by the mesenteric (MDV) and portal-drained (PDV) viscera and a catheter inserted into the duodenum for casein infusions. Sheep received a fixed amount of a basal diet that provided adequate metabolizable energy (10.9 MJ/d) but inadequate metabolizable protein (75 g/d) to support 300-g gain per day. Four levels of casein infusion [0 (water), 35, 70, and 105 g/d], each infused for 5.5 d, were assigned to sheep according to a 4 x 4 Latin square design. [methyl-(2)H(3)]leucine was infused (8 h) into the duodenum while [1-(13)C]leucine plus [6-(2)H(2)]glucose were infused (8 h) into a jugular vein. With the exception of glutamate and glutamine, net absorption of AAs increased linearly (P < 0.05, R(2) = 0.46-1.79 for MDV; P < 0.05, R(2) = 0.6-1.58 for PDV) with casein infusion rate. Net absorption by the PDV accounted for <100% of the additional supplies of leucine, valine, and isoleucine (0.6-0.66, P < 0.05) from casein infusion, whereas net absorption by the MDV accounted for 100% of the additional essential AA supply. Glucose absorption (negative) and utilization of arterial glucose supply by the GIT remained unchanged. There was a positive linear (P < 0.05) relation between transfer of plasma urea to the GIT and arterial urea concentration (MDV, P < 0.05, r = 0.90; PDV, P < 0.05, r = 0.93). The ruminant GIT appears to metabolize increasing amounts of the branched-chain AAs and certain nonessential AAs when the intestinal supply of protein is increased.
Collapse
|
Comparative Study |
19 |
39 |
16
|
Kucejova B, Sunny NE, Nguyen AD, Hallac R, Fu X, Peña-Llopis S, Mason RP, Deberardinis RJ, Xie XJ, Debose-Boyd R, Kodibagkar VD, Burgess SC, Brugarolas J. Uncoupling hypoxia signaling from oxygen sensing in the liver results in hypoketotic hypoglycemic death. Oncogene 2011; 30:2147-60. [PMID: 21217781 PMCID: PMC3135264 DOI: 10.1038/onc.2010.587] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As the ultimate electron acceptor in oxidative phosphorylation, oxygen plays a critical role in metabolism. When oxygen levels drop, heterodimeric hypoxia-inducible factor (Hif) transcription factors become active and facilitate adaptation to hypoxia. Hif regulation by oxygen requires the protein von Hippel-Lindau (pVhl) and pVhl disruption results in constitutive Hif activation. The liver is a critical organ for metabolic homeostasis, and Vhl inactivation in hepatocytes results in a Hif-dependent shortening in life span. While albumin-Cre;VhlF/F mice develop hepatic steatosis and impaired fatty acid oxidation, the variable penetrance and unpredictable life expectancy has made the cause of death elusive. Using a system in which Vhl is acutely disrupted and a combination of ex vivo liver perfusion studies and in vivo oxygen measurements, we demonstrate that Vhl is essential for mitochondrial respiration in vivo. Adenovirus-Cre mediated acute Vhl disruption in the liver caused death within days. Deprived of pVhl, livers accumulated tryglicerides and circulating ketone and glucose levels dropped. The phenotype was reminiscent of inborn defects in fatty acid oxidation and of fasted PPARα-deficient mice and while death was unaffected by pharmacologic PPARα activation, it was delayed by glucose administration. Ex vivo liver perfusion analyses and acylcarnitine profiles showed mitochondrial impairment and a profound inhibition of liver ketone and glucose production. By contrast, other mitochondrial functions, such as ureagenesis, were unaffected. Oxygen consumption studies revealed a marked suppression of mitochondrial respiration, which, as determined by magnetic resonance oximetry in live mice, was accompanied by a corresponding increase in liver pO2. Importantly, simultaneous inactivation of Hif-1β suppressed liver steatosis and rescued the mice from death. These data demonstrate that constitutive Hif activation in mice is sufficient to suppress mitochondrial respiration in vivo and that no other pathway exists in the liver that can allow oxygen utilization when Hif is active precluding thereby metabolic collapse.
Collapse
|
Journal Article |
14 |
39 |
17
|
Sunny NE, Owens SL, Baldwin RL, El-Kadi SW, Kohn RA, Bequette BJ. Salvage of blood urea nitrogen in sheep is highly dependent on plasma urea concentration and the efficiency of capture within the digestive tract1,2. J Anim Sci 2007; 85:1006-13. [PMID: 17202392 DOI: 10.2527/jas.2006-548] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aims of this study were 1) to determine whether transfer of blood urea to the gastrointestinal tract (GIT) or the efficiency of capture of urea N within the GIT is more limiting for urea N salvage, and 2) to establish the relationship between plasma urea concentration and recycling of urea N to the GIT. We used an i.v. urea infusion model in sheep to elevate the urea entry rate and plasma concentrations, thus avoiding direct manipulation of the rumen environment that otherwise occurs when feeding additional N. Four growing sheep (28.1 +/- 0.6 kg of BW) were fed a low-protein (6.8% CP, DM basis) diet and assigned to 4 rates of i.v. urea infusion (0, 3.8, 7.5, or 11.3 g of urea N/d; 10-d periods) in a balanced 4 x 4 Latin square design. Nitrogen retention (d 6 to 9), urea kinetics([(15)N2]urea infusion over 80 h), and plasma AA were determined. Urea infusion increased apparent total tract digestibility of N (29.9 to 41.3%) and DM (47.5 to 58.9%), and N retention (1.45 to 5.46 g/d). The plasma urea N entry rate increased (5.1 to 21.8 g/d) with urea infusion, as did the amount of urea N entering the GIT (4.1 to 13.2 g/d). Urea N transfer to the GIT increased with plasma urea concentration, but the increases were smaller at greater concentrations of plasma urea. Anabolic use of urea N within the GIT also increased with urea infusion (1.43 to 2.98 g/d; P = 0.003), but anabolic use as a proportion of GIT entry was low and decreased (35 to 22%; P = 0.003) with urea infusions. Consequently, much (44 to 67%) of the urea N transferred to the GIT returned to the liver for resynthesis of urea (1.8 to 9.2 g/d; P < 0.05). The present results suggest that transfer of blood urea to the GIT is 1) highly related to blood urea concentration, and 2) less limiting for N retention than is the efficiency of capture of recycled urea N by microbes within the GIT.
Collapse
|
|
18 |
37 |
18
|
Satapati S, Kucejova B, Duarte JAG, Fletcher JA, Reynolds L, Sunny NE, He T, Nair LA, Livingston KA, Fu X, Merritt ME, Sherry AD, Malloy CR, Shelton JM, Lambert J, Parks EJ, Corbin I, Magnuson MA, Browning JD, Burgess SC. Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver. J Clin Invest 2016; 126:1605. [PMID: 27035816 PMCID: PMC4811133 DOI: 10.1172/jci86695] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
Published Erratum |
9 |
32 |
19
|
Kalavalapalli S, Bril F, Guingab J, Vergara A, Garrett TJ, Sunny NE, Cusi K. Impact of exenatide on mitochondrial lipid metabolism in mice with nonalcoholic steatohepatitis. J Endocrinol 2019; 241:293-305. [PMID: 31082799 DOI: 10.1530/joe-19-0007] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 04/23/2019] [Indexed: 12/15/2022]
Abstract
Exenatide (Exe) is a glucagon-like peptide (GLP)-1 receptor agonist that enhances insulin secretion and is associated with induction of satiety with weight loss. As mitochondrial dysfunction and lipotoxicity are central features of nonalcoholic steatohepatitis (NASH), we tested whether Exe improved mitochondrial function in this setting. We studied C57BL/6J mice fed for 24 weeks either a control- or high-fructose, high-trans-fat (TFD)-diet (i.e., a NASH model previously validated by our laboratory). For the final 8 weeks, mice were treated with Exe (30 µg/kg/day) or vehicle. Mitochondrial metabolism was assessed by infusion of [13C3]propionate, [3,4-13C2]glucose and NMR-based 13C-isotopomer analysis. Exenatide significantly decreased fasting plasma glucose, free fatty acids and triglycerides, as well as adipose tissue insulin resistance. Moreover, Exe reduced 23% hepatic glucose production, 15% tri-carboxylic acid (TCA) cycle flux, 20% anaplerosis and 17% pyruvate cycling resulting in a significant 31% decrease in intrahepatic triglyceride content (P = 0.02). Exenatide improved the lipidomic profile and decreased hepatic lipid byproducts associated with insulin resistance and lipotoxicity, such as diacylglycerols (TFD: 111 ± 13 vs Exe: 64 ± 13 µmol/g protein, P = 0.03) and ceramides (TFD: 1.6 ± 0.1 vs Exe: 1.3 ± 0.1 µmol/g protein, P = 0.03). Exenatide lowered expression of hepatic lipogenic genes (Srebp1C, Cd36) and genes involved in inflammation and fibrosis (Tnfa, Timp1). In conclusion, in a diet-induced mouse model of NASH, Exe ameliorates mitochondrial TCA cycle flux and significantly decreases insulin resistance, steatosis and hepatocyte lipotoxicity. This may have significant clinical implications to the potential mechanism of action of GLP-1 receptor agonists in patients with NASH. Future studies should elucidate the relative contribution of direct vs indirect mechanisms at play.
Collapse
|
|
6 |
31 |
20
|
Bril F, Kadiyala S, Portillo Sanchez P, Sunny NE, Biernacki D, Maximos M, Kalavalapalli S, Lomonaco R, Suman A, Cusi K. Plasma thyroid hormone concentration is associated with hepatic triglyceride content in patients with type 2 diabetes. J Investig Med 2015; 64:63-8. [PMID: 26755815 DOI: 10.1136/jim-2015-000019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2015] [Indexed: 11/03/2022]
Abstract
The underlying mechanisms responsible for the development and progression of non-alcoholic fatty liver disease (NAFLD) in patients with type 2 diabetes mellitus (T2DM) are unclear. Since the thyroid hormone regulates mitochondrial function in the liver, we designed this study in order to establish the association between plasma free T4 levels and hepatic triglyceride accumulation and histological severity of liver disease in patients with T2DM and NAFLD. This is a cross-sectional study including a total of 232 patients with T2DM. All patients underwent a liver MR spectroscopy ((1)H-MRS) to quantify hepatic triglyceride content, and an oral glucose tolerance test to estimate insulin resistance. A liver biopsy was performed in patients with a diagnosis of NAFLD. Patients were divided into 5 groups according to plasma free T4 quintiles. We observed that decreasing free T4 levels were associated with an increasing prevalence of NAFLD (from 55% if free T4≥1.18 ng/dL to 80% if free T4<0.80 ng/dL, p=0.016), and higher hepatic triglyceride accumulation by (1)H-MRS (p<0.001). However, lower plasma free T4 levels were not significantly associated with more insulin resistance or more severe liver histology (ie, inflammation, ballooning, or fibrosis). Decreasing levels of plasma free T4 are associated with a higher prevalence of NAFLD and increasing levels of hepatic triglyceride content in patients with T2DM. These results suggest that thyroid hormone may play a role in the regulation of hepatic steatosis and support the notion that hypothyroidism may be associated with NAFLD. No NCT number required.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
30 |
21
|
El-Kadi SW, Baldwin RL, McLeod KR, Sunny NE, Bequette BJ. Glutamate is the major anaplerotic substrate in the tricarboxylic acid cycle of isolated rumen epithelial and duodenal mucosal cells from beef cattle. J Nutr 2009; 139:869-75. [PMID: 19282370 DOI: 10.3945/jn.108.103226] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this study, we aimed to determine the contribution of substrates to tricarboxylic acid (TCA) cycle fluxes in rumen epithelial cells (REC) and duodenal mucosal cells (DMC) isolated from Angus bulls (n = 6) fed either a 75% forage (HF) or 75% concentrate (HC) diet. In separate incubations, [(13)C(6)]glucose, [(13)C(5)]glutamate, [(13)C(5)]glutamine, [(13)C(6)]leucine, or [(13)C(5)]valine were added in increasing concentrations to basal media containing SCFA and a complete mixture of amino acids. Lactate, pyruvate, and TCA cycle intermediates were analyzed by GC-MS followed by (13)C-mass isotopomer distribution analysis. Glucose metabolism accounted for 10-19% of lactate flux in REC from HF-fed bulls compared with 27-39% in REC from HC and in DMC from bulls fed both diets (P < 0.05). For both cell types, as concentration increased, an increasing proportion (3-63%) of alpha-ketoglutarate flux derived from glutamate, whereas glutamine contributed <3% (P < 0.05). Although leucine and valine were catabolized to their respective keto-acids, these were not further metabolized to TCA cycle intermediates. Glucose, glutamine, leucine, and valine catabolism by ruminant gastrointestinal tract cells has been previously demonstrated, but in this study, their catabolism via the TCA cycle was limited. Further, although glutamate's contribution to TCA cycle fluxes was considerable, it was apparent that other substrates available in the media also contributed to the maintenance of TCA fluxes. Lastly, the results suggest that diet composition alters glucose, glutamate, and leucine catabolism by the TCA cycle of REC and DMC.
Collapse
|
|
16 |
25 |
22
|
Sunny NE, Bequette BJ. Gluconeogenesis differs in developing chick embryos derived from small compared with typical size broiler breeder eggs. J Anim Sci 2009; 88:912-21. [PMID: 19966165 DOI: 10.2527/jas.2009-2479] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We hypothesized that, as the supply of preformed glucose diminishes during development, the embryo would transition to a greater rate of gluconeogenesis (GNG) and that GNG would be greater in embryos from small vs. typical size eggs. Gluconeogenesis by embryos from small (51.1 +/- 3.46 g) and typical size (65 +/- 4.35 g) broiler breeder eggs was measured by dosing [(13)C(6)]glucose (15 mgxegg(-1)) into the chorio-allantoic fluid for 3 consecutive days to achieve isotopic steady-state before blood collection on embryonic day (e) 12, e14, e16, and e18 (4 to 5 eggsxsize(-1)xd(-1)). The (13)C-Mass isotopomer enrichment of blood glucose was determined by gas chromatography-mass spectrometry. On e14, e16, and e18, but not on e12, embryos from small eggs weighed less (P < 0.05) than typical size eggs. For both sizes of eggs, blood glucose concentration, glucose entry rate (g.d(-1)), and Cori cycling and glucose (13)C-recycling (% of entry rate) increased (P < 0.05) with development. On e12 and e14, rates of glucose entry and Cori cycle flux were greater (P < 0.05) for embryos from small eggs. When standardized to BW (g.100 g of BW(-1)xd(-1)), glucose entry and Cori and non-Cori cycle fluxes were greater for embryos from small eggs. From e12 through e18, blood concentrations of gluconeogenic AA (threonine, glutamine, arginine, proline, isoleucine, and valine) were 25 to 48% less (P < 0.01) in embryos from small eggs. In conclusion, embryos from small eggs exhibit greater rates of GNG earlier in development compared with typical size eggs and, perhaps as a consequence, their reduced embryonic growth may result from diverting greater supplies of AA toward GNG.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
21 |
23
|
Williams CM, McCue MD, Sunny NE, Szejner-Sigal A, Morgan TJ, Allison DB, Hahn DA. Cold adaptation increases rates of nutrient flow and metabolic plasticity during cold exposure in Drosophila melanogaster. Proc Biol Sci 2016; 283:20161317. [PMID: 27605506 PMCID: PMC5031658 DOI: 10.1098/rspb.2016.1317] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/15/2016] [Indexed: 01/24/2023] Open
Abstract
Metabolic flexibility is an important component of adaptation to stressful environments, including thermal stress and latitudinal adaptation. A long history of population genetic studies suggest that selection on core metabolic enzymes may shape life histories by altering metabolic flux. However, the direct relationship between selection on thermal stress hardiness and metabolic flux has not previously been tested. We investigated flexibility of nutrient catabolism during cold stress in Drosophila melanogaster artificially selected for fast or slow recovery from chill coma (i.e. cold-hardy or -susceptible), specifically testing the hypothesis that stress adaptation increases metabolic turnover. Using (13)C-labelled glucose, we first showed that cold-hardy flies more rapidly incorporate ingested carbon into amino acids and newly synthesized glucose, permitting rapid synthesis of proline, a compound shown elsewhere to improve survival of cold stress. Second, using glucose and leucine tracers we showed that cold-hardy flies had higher oxidation rates than cold-susceptible flies before cold exposure, similar oxidation rates during cold exposure, and returned to higher oxidation rates during recovery. Additionally, cold-hardy flies transferred compounds among body pools more rapidly during cold exposure and recovery. Increased metabolic turnover may allow cold-adapted flies to better prepare for, resist and repair/tolerate cold damage. This work illustrates for the first time differences in nutrient fluxes associated with cold adaptation, suggesting that metabolic costs associated with cold hardiness could invoke resource-based trade-offs that shape life histories.
Collapse
|
research-article |
9 |
20 |
24
|
Muyyarikkandy MS, McLeod M, Maguire M, Mahar R, Kattapuram N, Zhang C, Surugihalli C, Muralidaran V, Vavilikolanu K, Mathews CE, Merritt ME, Sunny NE. Branched chain amino acids and carbohydrate restriction exacerbate ketogenesis and hepatic mitochondrial oxidative dysfunction during NAFLD. FASEB J 2020; 34:14832-14849. [PMID: 32918763 DOI: 10.1096/fj.202001495r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/10/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022]
Abstract
Mitochondrial adaptation during non-alcoholic fatty liver disease (NAFLD) include remodeling of ketogenic flux and sustained tricarboxylic acid (TCA) cycle activity, which are concurrent to onset of oxidative stress. Over 70% of obese humans have NAFLD and ketogenic diets are common weight loss strategies. However, the effectiveness of ketogenic diets toward alleviating NAFLD remains unclear. We hypothesized that chronic ketogenesis will worsen metabolic dysfunction and oxidative stress during NAFLD. Mice (C57BL/6) were kept (for 16-wks) on either a low-fat, high-fat, or high-fat diet supplemented with 1.5X branched chain amino acids (BCAAs) by replacing carbohydrate calories (ketogenic). The ketogenic diet induced hepatic lipid oxidation and ketogenesis, and produced multifaceted changes in flux through the individual steps of the TCA cycle. Higher rates of hepatic oxidative fluxes fueled by the ketogenic diet paralleled lower rates of de novo lipogenesis. Interestingly, this metabolic remodeling did not improve insulin resistance, but induced fibrogenic genes and inflammation in the liver. Under a chronic "ketogenic environment," the hepatocyte diverted more acetyl-CoA away from lipogenesis toward ketogenesis and TCA cycle, a milieu which can hasten oxidative stress and inflammation. In summary, chronic exposure to ketogenic environment during obesity and NAFLD has the potential to aggravate hepatic mitochondrial dysfunction.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
5 |
17 |
25
|
Hicks JA, Porter TE, Sunny NE, Liu HC. Delayed Feeding Alters Transcriptional and Post-Transcriptional Regulation of Hepatic Metabolic Pathways in Peri-Hatch Broiler Chicks. Genes (Basel) 2019; 10:genes10040272. [PMID: 30987204 PMCID: PMC6523616 DOI: 10.3390/genes10040272] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/19/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatic fatty acid oxidation of yolk lipoproteins provides the main energy source for chick embryos. Post-hatching these yolk lipids are rapidly exhausted and metabolism switches to a carbohydrate-based energy source. We recently demonstrated that many microRNAs (miRNAs) are key regulators of hepatic metabolic pathways during this metabolic switching. MiRNAs are small non-coding RNAs that post-transcriptionally regulate gene expression in most eukaryotes. To further elucidate the roles of miRNAs in the metabolic switch, we used delayed feeding for 48 h to impede the hepatic metabolic switch. We found that hepatic expression of several miRNAs including miR-33, miR-20b, miR-34a, and miR-454 was affected by delaying feed consumption for 48 h. For example, we found that delayed feeding resulted in increased miR-20b expression and conversely reduced expression of its target FADS1, an enzyme involved in fatty acid synthesis. Interestingly, the expression of a previously identified miR-20b regulator FOXO3 was also higher in delayed fed chicks. FOXO3 also functions in protection of cells from oxidative stress. Delayed fed chicks also had much higher levels of plasma ketone bodies than their normal fed counterparts. This suggests that delayed fed chicks rely almost exclusively on lipid oxidation for energy production and are likely under higher oxidative stress. Thus, it is possible that FOXO3 may function to both limit lipogenesis as well as to help protect against oxidative stress in peri-hatch chicks until the initiation of feed consumption. This is further supported by evidence that the FOXO3-regulated histone deacetylase (HDAC2) was found to recognize the FASN (involved in fatty acid synthesis) chicken promoter in a yeast one-hybrid assay. Expression of FASN mRNA was lower in delayed fed chicks until feed consumption. The present study demonstrated that many transcriptional and post-transcriptional mechanisms, including miRNA, form a complex interconnected regulatory network that is involved in controlling lipid and glucose molecular pathways during the metabolic transition in peri-hatch chicks.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
6 |
10 |