1
|
Abolhassani H, Avcin T, Bahceciler N, Balashov D, Bata Z, Bataneant M, Belevtsev M, Bernatowska E, Bidló J, Blazsó P, Boisson B, Bolkov M, Bondarenko A, Boyarchuk O, Bundschu A, Casanova JL, Chernishova L, Ciznar P, Csürke I, Erdős M, Farkas H, Fomina DS, Galal N, Goda V, Guner SN, Hauser P, Ilyina NI, Iremadze T, Iritsyan S, Ismaili-Jaha V, Jesenak M, Kelecic J, Keles S, Kindle G, Kondratenko IV, Kostyuchenko L, Kovzel E, Kriván G, Kuli-Lito G, Kumánovics G, Kurjane N, Latysheva EA, Latysheva TV, Lázár I, Markelj G, Markovic M, Maródi L, Mammadova V, Medvecz M, Miltner N, Mironska K, Modell F, Modell V, Mosdósi B, Mukhina AA, Murdjeva M, Műzes G, Nabieva U, Nasrullayeva G, Naumova E, Nagy K, Onozó B, Orozbekova B, Pac M, Pagava K, Pampura AN, Pasic S, Petrosyan M, Petrovic G, Pocek L, Prodeus AP, Reisli I, Ress K, Rezaei N, Rodina YA, Rumyantsev AG, Sciuca S, Sediva A, Serban M, Sharapova S, Shcherbina A, Sitkauskiene B, Snimshchikova I, Spahiu-Konjusha S, Szolnoky M, Szűcs G, Toplak N, Tóth B, Tsyvkina G, Tuzankina I, Vlasova E, Volokha A. Care of patients with inborn errors of immunity in thirty J Project countries between 2004 and 2021. Front Immunol 2022; 13:1032358. [PMID: 36605210 PMCID: PMC9809467 DOI: 10.3389/fimmu.2022.1032358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/11/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION The J Project (JP) physician education and clinical research collaboration program was started in 2004 and includes by now 32 countries mostly in Eastern and Central Europe (ECE). Until the end of 2021, 344 inborn errors of immunity (IEI)-focused meetings were organized by the JP to raise awareness and facilitate the diagnosis and treatment of patients with IEI. RESULTS In this study, meeting profiles and major diagnostic and treatment parameters were studied. JP center leaders reported patients' data from 30 countries representing a total population of 506 567 565. Two countries reported patients from JP centers (Konya, Turkey and Cairo University, Egypt). Diagnostic criteria were based on the 2020 update of classification by the IUIS Expert Committee on IEI. The number of JP meetings increased from 6 per year in 2004 and 2005 to 44 and 63 in 2020 and 2021, respectively. The cumulative number of meetings per country varied from 1 to 59 in various countries reflecting partly but not entirely the population of the respective countries. Altogether, 24,879 patients were reported giving an average prevalence of 4.9. Most of the patients had predominantly antibody deficiency (46,32%) followed by patients with combined immunodeficiencies (14.3%). The percentages of patients with bone marrow failure and phenocopies of IEI were less than 1 each. The number of patients was remarkably higher that those reported to the ESID Registry in 13 countries. Immunoglobulin (IgG) substitution was provided to 7,572 patients (5,693 intravenously) and 1,480 patients received hematopoietic stem cell therapy (HSCT). Searching for basic diagnostic parameters revealed the availability of immunochemistry and flow cytometry in 27 and 28 countries, respectively, and targeted gene sequencing and new generation sequencing was available in 21 and 18 countries. The number of IEI centers and experts in the field were 260 and 690, respectively. We found high correlation between the number of IEI centers and patients treated with intravenous IgG (IVIG) (correlation coefficient, cc, 0,916) and with those who were treated with HSCT (cc, 0,905). Similar correlation was found when the number of experts was compared with those treated with HSCT. However, the number of patients treated with subcutaneous Ig (SCIG) only slightly correlated with the number of experts (cc, 0,489) and no correlation was found between the number of centers and patients on SCIG (cc, 0,174). CONCLUSIONS 1) this is the first study describing major diagnostic and treatment parameters of IEI care in countries of the JP; 2) the data suggest that the JP had tremendous impact on the development of IEI care in ECE; 3) our data help to define major future targets of JP activity in various countries; 4) we suggest that the number of IEI centers and IEI experts closely correlate to the most important treatment parameters; 5) we propose that specialist education among medical professionals plays pivotal role in increasing levels of diagnostics and adequate care of this vulnerable and still highly neglected patient population; 6) this study also provides the basis for further analysis of more specific aspects of IEI care including genetic diagnostics, disease specific prevalence, newborn screening and professional collaboration in JP countries.
Collapse
|
research-article |
3 |
3 |
2
|
Mázló A, Kovács R, Miltner N, Tóth M, Veréb Z, Szabó K, Bacskai I, Pázmándi K, Apáti Á, Bíró T, Bene K, Rajnavölgyi É, Bácsi A. MSC-like cells increase ability of monocyte-derived dendritic cells to polarize IL-17-/IL-10-producing T cells via CTLA-4. iScience 2021; 24:102312. [PMID: 33855282 PMCID: PMC8027231 DOI: 10.1016/j.isci.2021.102312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/17/2021] [Accepted: 03/11/2021] [Indexed: 11/30/2022] Open
Abstract
Mesenchymal stromal cell-like (MSCl) cells generated from human embryonic stem cells are considered to be an eligible cell line to model the immunomodulatory behavior of mesenchymal stromal cells (MSCs) in vitro. Dendritic cells (DCs) are essential players in the maintenance and restoration of the sensitive balance between tolerance and immunity. Here, the effects of MSCl cells on the in vitro differentiation of human monocytes into DCs were investigated. MSCl cells promote the differentiation of CTLA-4 expressing DCs via the production of all-trans retinoic acid (ATRA) functioning as a ligand of RARα, a key nuclear receptor in DC development. These semi-matured DCs exhibit an ability to activate allogeneic, naive T cells and polarize them into IL-10 + IL-17 + double-positive T helper cells in a CTLA-4-dependent manner. Mapping the molecular mechanisms of MSC-mediated indirect modulation of DC differentiation may help to expand MSCs' clinical application in cell-free therapies.
Mesenchymal stromal cell-like cells alter moDC differentiation via RARα activation Mesenchymal stromal cell-like cells express genes known to play role in ATRA synthesis MoDCs, differentiated in the presence of MSCl-derived factors, express CTLA-4 CTLA-4+ moDCs are able to induce polarization of IL-10- and IL-17-producing helper T cells
Collapse
|
Journal Article |
4 |
2 |
3
|
Miltner N, Kalló G, Csősz É, Miczi M, Nagy T, Mahdi M, Mótyán JA, Tőzsér J. Identification of SARS-CoV-2 Main Protease (Mpro) Cleavage Sites Using Two-Dimensional Electrophoresis and In Silico Cleavage Site Prediction. Int J Mol Sci 2023; 24:ijms24043236. [PMID: 36834648 PMCID: PMC9965337 DOI: 10.3390/ijms24043236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a crucial role in its life cycle. The Mpro-mediated limited proteolysis of the viral polyproteins is necessary for the replication of the virus, and cleavage of the host proteins of the infected cells may also contribute to viral pathogenesis, such as evading the immune responses or triggering cell toxicity. Therefore, the identification of host substrates of the viral protease is of special interest. To identify cleavage sites in cellular substrates of SARS-CoV-2 Mpro, we determined changes in the HEK293T cellular proteome upon expression of the Mpro using two-dimensional gel electrophoresis. The candidate cellular substrates of Mpro were identified by mass spectrometry, and then potential cleavage sites were predicted in silico using NetCorona 1.0 and 3CLP web servers. The existence of the predicted cleavage sites was investigated by in vitro cleavage reactions using recombinant protein substrates containing the candidate target sequences, followed by the determination of cleavage positions using mass spectrometry. Unknown and previously described SARS-CoV-2 Mpro cleavage sites and cellular substrates were also identified. Identification of target sequences is important to understand the specificity of the enzyme, as well as aiding the improvement and development of computational methods for cleavage site prediction.
Collapse
|
research-article |
2 |
2 |
4
|
Miltner N, Linkner TR, Ambrus V, Al-Muffti AS, Ahmad H, Mótyán JA, Benkő S, Tőzsér J, Mahdi M. Early suppression of antiviral host response and protocadherins by SARS-CoV-2 Spike protein in THP-1-derived macrophage-like cells. Front Immunol 2022; 13:999233. [PMID: 36341352 PMCID: PMC9634736 DOI: 10.3389/fimmu.2022.999233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/05/2022] [Indexed: 12/03/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease-19 (COVID-19). The spike protein (S) of SARS-CoV-2 plays a crucial role in mediating viral infectivity; hence, in an extensive effort to curb the pandemic, many urgently approved vaccines rely on the expression of the S protein, aiming to induce a humoral and cellular response to protect against the infection. Given the very limited information about the effects of intracellular expression of the S protein in host cells, we aimed to characterize the early cellular transcriptomic changes induced by expression of the S protein in THP-1-derived macrophage-like cells. Results showed that a wide variety of genes were differentially expressed, products of which are mainly involved in cell adhesion, homeostasis, and most notably, antiviral and immune responses, depicted by significant downregulation of protocadherins and type I alpha interferons (IFNAs). While initially, the levels of IFNAs were higher in the medium of S protein expressing cells, the downregulation observed on the transcriptomic level might have been reflected by no further increase of IFNA cytokines beyond the 5 h time-point, compared to the mock control. Our study highlights the intrinsic pathogenic role of the S protein and sheds some light on the potential drawbacks of its utilization in the context of vaccination strategies.
Collapse
|
|
3 |
|