1
|
Derks JL, Leblay N, Thunnissen E, van Suylen RJ, den Bakker M, Groen HJM, Smit EF, Damhuis R, van den Broek EC, Charbrier A, Foll M, McKay JD, Fernandez-Cuesta L, Speel EJM, Dingemans AMC. Molecular Subtypes of Pulmonary Large-cell Neuroendocrine Carcinoma Predict Chemotherapy Treatment Outcome. Clin Cancer Res 2018; 24:33-42. [PMID: 29066508 DOI: 10.1158/1078-0432.ccr-17-1921] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/12/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022]
Abstract
Purpose: Previous genomic studies have identified two mutually exclusive molecular subtypes of large-cell neuroendocrine carcinoma (LCNEC): the RB1 mutated (mostly comutated with TP53) and the RB1 wild-type groups. We assessed whether these subtypes have a predictive value on chemotherapy outcome.Experimental Design: Clinical data and tumor specimens were retrospectively obtained from the Netherlands Cancer Registry and Pathology Registry. Panel-consensus pathology revision confirmed the diagnosis of LCNEC in 148 of 232 cases. Next-generation sequencing (NGS) for TP53, RB1, STK11, and KEAP1 genes, as well as IHC for RB1 and P16 was performed on 79 and 109 cases, respectively, and correlated with overall survival (OS) and progression-free survival (PFS), stratifying for non-small cell lung cancer type chemotherapy including platinum + gemcitabine or taxanes (NSCLC-GEM/TAX) and platinum-etoposide (SCLC-PE).Results:RB1 mutation and protein loss were detected in 47% (n = 37) and 72% (n = 78) of the cases, respectively. Patients with RB1 wild-type LCNEC treated with NSCLC-GEM/TAX had a significantly longer OS [9.6; 95% confidence interval (CI), 7.7-11.6 months] than those treated with SCLC-PE [5.8 (5.5-6.1); P = 0.026]. Similar results were obtained for patients expressing RB1 in their tumors (P = 0.001). RB1 staining or P16 loss showed similar results. The same outcome for chemotherapy treatment was observed in LCNEC tumors harboring an RB1 mutation or lost RB1 protein.Conclusions: Patients with LCNEC tumors that carry a wild-type RB1 gene or express the RB1 protein do better with NSCLC-GEM/TAX treatment than with SCLC-PE chemotherapy. However, no difference was observed for RB1 mutated or with lost protein expression. Clin Cancer Res; 24(1); 33-42. ©2017 AACR.
Collapse
|
|
7 |
140 |
2
|
Alcala N, Leblay N, Gabriel AAG, Mangiante L, Hervas D, Giffon T, Sertier AS, Ferrari A, Derks J, Ghantous A, Delhomme TM, Chabrier A, Cuenin C, Abedi-Ardekani B, Boland A, Olaso R, Meyer V, Altmuller J, Le Calvez-Kelm F, Durand G, Voegele C, Boyault S, Moonen L, Lemaitre N, Lorimier P, Toffart AC, Soltermann A, Clement JH, Saenger J, Field JK, Brevet M, Blanc-Fournier C, Galateau-Salle F, Le Stang N, Russell PA, Wright G, Sozzi G, Pastorino U, Lacomme S, Vignaud JM, Hofman V, Hofman P, Brustugun OT, Lund-Iversen M, Thomas de Montpreville V, Muscarella LA, Graziano P, Popper H, Stojsic J, Deleuze JF, Herceg Z, Viari A, Nuernberg P, Pelosi G, Dingemans AMC, Milione M, Roz L, Brcic L, Volante M, Papotti MG, Caux C, Sandoval J, Hernandez-Vargas H, Brambilla E, Speel EJM, Girard N, Lantuejoul S, McKay JD, Foll M, Fernandez-Cuesta L. Integrative and comparative genomic analyses identify clinically relevant pulmonary carcinoid groups and unveil the supra-carcinoids. Nat Commun 2019; 10:3407. [PMID: 31431620 PMCID: PMC6702229 DOI: 10.1038/s41467-019-11276-9] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 07/02/2019] [Indexed: 02/06/2023] Open
Abstract
The worldwide incidence of pulmonary carcinoids is increasing, but little is known about their molecular characteristics. Through machine learning and multi-omics factor analysis, we compare and contrast the genomic profiles of 116 pulmonary carcinoids (including 35 atypical), 75 large-cell neuroendocrine carcinomas (LCNEC), and 66 small-cell lung cancers. Here we report that the integrative analyses on 257 lung neuroendocrine neoplasms stratify atypical carcinoids into two prognostic groups with a 10-year overall survival of 88% and 27%, respectively. We identify therapeutically relevant molecular groups of pulmonary carcinoids, suggesting DLL3 and the immune system as candidate therapeutic targets; we confirm the value of OTP expression levels for the prognosis and diagnosis of these diseases, and we unveil the group of supra-carcinoids. This group comprises samples with carcinoid-like morphology yet the molecular and clinical features of the deadly LCNEC, further supporting the previously proposed molecular link between the low- and high-grade lung neuroendocrine neoplasms.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
120 |
3
|
Friedrich MJ, Neri P, Kehl N, Michel J, Steiger S, Kilian M, Leblay N, Maity R, Sankowski R, Lee H, Barakat E, Ahn S, Weinhold N, Rippe K, Bunse L, Platten M, Goldschmidt H, Müller-Tidow C, Raab MS, Bahlis NJ. The pre-existing T cell landscape determines the response to bispecific T cell engagers in multiple myeloma patients. Cancer Cell 2023; 41:711-725.e6. [PMID: 36898378 DOI: 10.1016/j.ccell.2023.02.008] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/02/2022] [Accepted: 02/08/2023] [Indexed: 03/11/2023]
Abstract
Bispecific T cell engagers (TCEs) have shown promise in the treatment of various cancers, but the immunological mechanism and molecular determinants of primary and acquired resistance to TCEs remain poorly understood. Here, we identify conserved behaviors of bone marrow-residing T cells in multiple myeloma patients undergoing BCMAxCD3 TCE therapy. We show that the immune repertoire reacts to TCE therapy with cell state-dependent clonal expansion and find evidence supporting the coupling of tumor recognition via major histocompatibility complex class I (MHC class I), exhaustion, and clinical response. We find the abundance of exhausted-like CD8+ T cell clones to be associated with clinical response failure, and we describe loss of target epitope and MHC class I as tumor-intrinsic adaptations to TCEs. These findings advance our understanding of the in vivo mechanism of TCE treatment in humans and provide the rationale for predictive immune-monitoring and conditioning of the immune repertoire to guide future immunotherapy in hematological malignancies.
Collapse
|
|
2 |
112 |
4
|
Derks JL, Leblay N, Lantuejoul S, Dingemans AMC, Speel EJM, Fernandez-Cuesta L. New Insights into the Molecular Characteristics of Pulmonary Carcinoids and Large Cell Neuroendocrine Carcinomas, and the Impact on Their Clinical Management. J Thorac Oncol 2018; 13:752-766. [PMID: 29454048 DOI: 10.1016/j.jtho.2018.02.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 01/08/2023]
Abstract
Carcinoids and large cell neuroendocrine carcinomas (LCNECs) are rare neuroendocrine lung tumors. Here we provide an overview of the most updated data on the molecular characteristics of these diseases. Recent genomic studies showed that carcinoids generally contain a low mutational burden and few recurrently mutated genes. Most of the reported mutations occur in chromatin-remodeling genes (e.g., menin 1 gene [MEN1]), and few affect genes of the phosphoinositide 3-kinase (PI3K)-AKT-mechanistic target of rapamycin gene pathway. Aggressive disease has been related to chromothripsis, DNA-repair gene mutations, loss of orthopedia homeobox/CD44, and upregulation of ret proto-oncogene gene (RET) gene expression. In the case of LCNECs, which present with a high mutation burden, two major molecular subtypes have been identified: one with biallelic inactivation of tumor protein p53 gene (TP53) and retinoblastoma gene (RB1), a hallmark of SCLC; and the other one with biallelic inactivation of TP53 and serine/threonine kinase 11 gene (STK11)/kelch like ECH associated protein 1 gene (KEAP1), genes that are frequently mutated in NSCLC. These data, together with the identification of common mutations in the different components of combined LCNEC tumors, provide further evidence of the close molecular relation of LCNEC with other lung tumor types. In terms of therapeutic options, future studies should explore the association between mechanistic target of rapamycin pathway mutations and response to mechanistic target of rapamycin inhibitors in carcinoids. For LCNEC, preliminary data suggest that the two molecular subtypes might have a predictive value for chemotherapy response, but this observation needs to be validated in randomized prospective clinical trials. Finally, delta like Notch canonical ligand 3 inhibitors and immunotherapy may provide alternative options for patient-tailored therapy in LCNEC.
Collapse
|
Review |
7 |
94 |
5
|
Leblay N, Leprêtre F, Le Stang N, Gautier-Stein A, Villeneuve L, Isaac S, Maillet D, Galateau-Sallé F, Villenet C, Sebda S, Goracci A, Byrnes G, McKay JD, Figeac M, Glehen O, Gilly FN, Foll M, Fernandez-Cuesta L, Brevet M. BAP1 Is Altered by Copy Number Loss, Mutation, and/or Loss of Protein Expression in More Than 70% of Malignant Peritoneal Mesotheliomas. J Thorac Oncol 2017; 12:724-733. [PMID: 28034829 DOI: 10.1016/j.jtho.2016.12.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Malignant mesothelioma is a deadly disease that is strongly associated with asbestos exposure. Peritoneal mesotheliomas account for 10% of all the cases. BRCA1 associated protein 1 (BAP1) is a deubiquitinating hydrolase that plays a key role in various cellular processes. Germline and somatic inactivation of BRCA1 associated protein 1 gene (BAP1) is frequent in pleural mesothelioma; however, little is known about its status in peritoneal mesothelioma. METHODS Taking advantage of the extensive French National Network for the Diagnosis of Malignant Pleural Mesothelioma and Rare Peritoneal Tumors and the French National Network for the Treatment of Rare Peritoneal Surface Malignancies, we collected biological material and clinical and epidemiological data for 46 patients with peritoneal mesothelioma. The status of BAP1 was evaluated at the mutational and protein expression levels and combined with our previous data on copy number alterations assessed in the same samples. RESULTS We detected mutations in 32% of the malignant peritoneal mesotheliomas analyzed. In addition, we have previously reported that copy number losses occurred in 42% of the samples included in this series. Overall, 73% of the malignant peritoneal mesotheliomas analyzed carried at least one inactivated BAP1 allele, but only 57% had a complete loss of its protein nuclear expression. Better overall survival was observed for patients with BAP1 mutations (p = 0.04), protein expression loss (p = 0.016), or at least one of these alterations (p = 0.007) independently of tumor histological subtype, age, and sex. CONCLUSIONS As in pleural mesothelioma, inactivation of BAP1 is frequent in peritoneal mesotheliomas. We found that BAP1 protein nuclear expression is a good prognostic factor and a more reliable marker for the complete loss of BAP1 activity than mutation or copy number loss.
Collapse
|
|
8 |
55 |
6
|
Leblay N, Maity R, Hasan F, Neri P. Deregulation of Adaptive T Cell Immunity in Multiple Myeloma: Insights Into Mechanisms and Therapeutic Opportunities. Front Oncol 2020; 10:636. [PMID: 32432039 PMCID: PMC7214816 DOI: 10.3389/fonc.2020.00636] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022] Open
Abstract
Immunotherapy has recently emerged as a promising treatment option for multiple myeloma (MM) patients. Profound immune dysfunction and evasion of immune surveillance are known to characterize MM evolution and disease progression. Along with genomic changes observed in malignant plasma cells, the bone marrow (BM) milieu creates a protective environment sustained by the complex interaction of BM stromal cells (BMSCs) and malignant cells that using bidirectional connections and cytokines released stimulate disease progression, drug resistance and enable immune escape. Local immune suppression and T-cell exhaustion are important mediating factors of clinical outcomes and responses to immune-based approaches. Thus, further characterization of the defects present in the immune system of MM patients is essential to develop novel therapies and to repurpose the existing ones. This review seeks to provide insights into the mechanisms that promote tumor escape, cause inadequate T-cell stimulation and impaired cytotoxicity in MM. Furthermore, it highlights current immunotherapies being used to restore adaptive T-cell immune responses in MM and describes strategies created to escape these multiple immune evasion mechanisms.
Collapse
|
Review |
5 |
20 |
7
|
Ahn S, Leblay N, Neri P. Understanding the Mechanisms of Resistance to T Cell-based Immunotherapies to Develop More Favorable Strategies in Multiple Myeloma. Hemasphere 2021; 5:e575. [PMID: 34095759 PMCID: PMC8171358 DOI: 10.1097/hs9.0000000000000575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/08/2021] [Indexed: 12/14/2022] Open
|
Editorial |
4 |
7 |
8
|
Derks J, Leblay N, van Suylen RJ, Thunnissen E, den Bakker M, Groen HJ, Smit EF, Damhuis R, van de Broek E, Chabrier A, Foll M, McKay J, Fernandez-Cuesta L, Speel EJM, Dingemans AMC. Genetic subtypes of large cell neuroendocrine carcinoma (LCNEC) to predict response to chemotherapy. J Clin Oncol 2017. [DOI: 10.1200/jco.2017.35.15_suppl.9061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
9061 Background: To treat LCNEC with non-small cell lung carcinoma type chemotherapy (NSCLC-ct, i.e. gemcitabine/taxanes or pemetrexed) or small cell lung carcinoma type (SCLC-ct, i.e. platinum-etoposide) is subject of debate. Molecular studies have identified two mutually exclusive subtypes in LCNEC, the co-mutated TP53 and RB1and the STK11/ KEAP1 (predominantly RB1 wildtype(wt)) group. We investigated if overall survival (OS) and progression free survival (PFS) correlates with targeted next-generation sequencing (TNGS) results in LCNEC treated with NSCLC-ct or SCLC-ct. Methods: For this population based retrospective cohort study all diagnoses of stage IV ct treated high grade neuroendocrine carcinomas (NEC, not being SCLC) were retrieved from the Netherlands Cancer Registry and Pathology Registry (PALGA) (2003-2012). Panel-consensus pathology revision of original tumor slides was performed on (N = 230) and TNGS for genes TP53, RB1, STK11 and KEAP1 analyzed with a multi-sample variant caller (Needlestack). Results: LCNEC was consensus diagnosed in 146/230 and 77 passed quality control for TNGS. Mean coverage was 2832x, a mutation(mt) in TP53 was present in 87%, RB1mt in 46%, STK11mt in 13% and KEAP1mt in 18% of sequenced LCNEC. RB1 was co-altered with TP53 in 94% of LCNEC; mutually exclusive to STK11mt (100%) but not KEAP1mt (57%). NSCLC-ct or SCLC-ct was specified in 92% of patients and RB1wt LCNEC treated with NSCLC-ct (n = 22) showed a trend to better OS compared to SCLC-ct (n = 13) (8.5 months (95% confidence interval (CI): [6.3-10.6]) vs. 5.8 [5.5-6.1] months, p = 0.055). Due to reported resistance in NECs we analyzed NSCLC-ct without pemetrexed-ct; OS was significantly longer for NSCLC-ct (n = 15) compared to SCLC-ct (9.6 [7.7-11.6] vs. 5.8 [5.5-6.1] months, p = 0.026). PFS of RB1wt NSCLC-ct treated patients was significantly longer than SCLC-ct (p = 0.044), without pemetrexed (p = 0.018). In patients with RB1mt LCNEC OS/PFS was not significantly different for NSCLC-ct vs. SCLC-ct. Conclusions: In LCNEC with RB1wt, NSCLC-ct correlates with a more favorable outcome compared to SCLC-ct. However, RB1mt LCNEC treated with NSCLC-ct do similarly worse as SCLC-ct. Prospective studies should be initiated.
Collapse
|
|
8 |
6 |
9
|
Elsensohn MH, Leblay N, Dimassi S, Campan-Fournier A, Labalme A, Roucher-Boulez F, Sanlaville D, Lesca G, Bardel C, Roy P. Statistical method to compare massive parallel sequencing pipelines. BMC Bioinformatics 2017; 18:139. [PMID: 28249565 PMCID: PMC5333416 DOI: 10.1186/s12859-017-1552-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 02/16/2017] [Indexed: 02/01/2023] Open
Abstract
Background Today, sequencing is frequently carried out by Massive Parallel Sequencing (MPS) that cuts drastically sequencing time and expenses. Nevertheless, Sanger sequencing remains the main validation method to confirm the presence of variants. The analysis of MPS data involves the development of several bioinformatic tools, academic or commercial. We present here a statistical method to compare MPS pipelines and test it in a comparison between an academic (BWA-GATK) and a commercial pipeline (TMAP-NextGENe®), with and without reference to a gold standard (here, Sanger sequencing), on a panel of 41 genes in 43 epileptic patients. This method used the number of variants to fit log-linear models for pairwise agreements between pipelines. To assess the heterogeneity of the margins and the odds ratios of agreement, four log-linear models were used: a full model, a homogeneous-margin model, a model with single odds ratio for all patients, and a model with single intercept. Then a log-linear mixed model was fitted considering the biological variability as a random effect. Results Among the 390,339 base-pairs sequenced, TMAP-NextGENe® and BWA-GATK found, on average, 2253.49 and 1857.14 variants (single nucleotide variants and indels), respectively. Against the gold standard, the pipelines had similar sensitivities (63.47% vs. 63.42%) and close but significantly different specificities (99.57% vs. 99.65%; p < 0.001). Same-trend results were obtained when only single nucleotide variants were considered (99.98% specificity and 76.81% sensitivity for both pipelines). Conclusions The method allows thus pipeline comparison and selection. It is generalizable to all types of MPS data and all pipelines. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1552-9) contains supplementary material, which is available to authorized users.
Collapse
|
Journal Article |
8 |
4 |
10
|
Derks J, Leblay N, van Suylen R, Thunnissen E, den Bakker M, Groen H, Smit E, Damhuis R, van den Broek E, Charbrier A, Foll M, McKay J, Fernandez-Cuesta L, Speel EJ, Dingemans AM. Genomic subtypes of pulmonary large cell neuroendocrine carcinoma (LCNEC) may predict chemotherapy outcome. Ann Oncol 2017. [DOI: 10.1093/annonc/mdx368.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
|
8 |
1 |
11
|
Leblay N, Ahn S, Tilmont R, Poorebrahim M, Maity R, Lee H, Barakat E, Alberge JB, Sinha S, Jaffer A, Barwick BG, Boise LH, Bahlis N, Neri P. Integrated epigenetic and transcriptional single-cell analysis of t(11;14) multiple myeloma and its BCL2 dependency. Blood 2024; 143:42-56. [PMID: 37729611 PMCID: PMC10797556 DOI: 10.1182/blood.2023020276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
ABSTRACT The translocation t(11;14) occurs in 20% of patients with multiple myeloma (MM) and results in the upregulation of CCND1. Nearly two-thirds of t(11;14) MM cells are BCL2 primed and highly responsive to the oral BCL2 inhibitor venetoclax. Although it is evident that this unique sensitivity to venetoclax depends on the Bcl-2 homology domain 3- proapoptotic protein priming of BCL2, the biology underlying t(11;14) MM dependency on BCL2 is poorly defined. Importantly, the epigenetic regulation of t(11;14) transcriptomes and its impact on gene regulation and clinical response to venetoclax remain elusive. In this study, by integrating assay for transposase-accessible chromatin by sequencing (ATAC-seq) and RNA-seq at the single-cell level in primary MM samples, we have defined the epigenetic regulome and transcriptome associated with t(11;14) MM. A B-cell-like epigenetic signature was enriched in t(11;14) MM, confirming its phylogeny link to B-cell rather than plasma cell biology. Of note, a loss of a B-cell-like epigenetic signature with a gain of canonical plasma cell transcription factors was observed at the time of resistance to venetoclax. In addition, MCL1 and BCL2L1 copy number gains and structural rearrangements were linked to venetoclax resistance in patients with t(11;14) MM. To date, this is the first study in which both single-cell (sc) ATAC-seq and scRNA-seq analysis are integrated into primary MM cells to obtain a deeper resolution of the epigenetic regulome and transcriptome associated with t(11;14) MM biology and venetoclax resistance.
Collapse
|
research-article |
1 |
1 |
12
|
Neri P, Leblay N, Lee H, Gulla A, Bahlis NJ, Anderson KC. Just scratching the surface: novel treatment approaches for multiple myeloma targeting cell membrane proteins. Nat Rev Clin Oncol 2024; 21:590-609. [PMID: 38961233 DOI: 10.1038/s41571-024-00913-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 07/05/2024]
Abstract
A better understanding of the roles of the adaptive and innate immune systems in the oncogenesis of cancers including multiple myeloma (MM) has led to the development of novel immune-based therapies. B cell maturation antigen (BCMA), G protein-coupled receptor family C group 5 member D (GPRC5D) and Fc receptor-like protein 5 (FcRL5, also known as FcRH5) are cell-surface transmembrane proteins expressed by plasma cells, and have been identified as prominent immunotherapeutic targets in MM, with promising activity demonstrated in patients with heavily pretreated relapsed and/or refractory disease. Indeed, since 2020, antibody-drug conjugates, bispecific T cell engagers and autologous chimeric antigen receptor T cells targeting BCMA or GPRC5D have been approved for the treatment of relapsed and/or refractory MM. However, responses to these therapies are not universal, and acquired resistance invariably occurs. In this Review, we discuss the various immunotherapeutic approaches targeting BCMA, GPRC5D and FcRL5 that are currently either available or in clinical development for patients with MM. We also review the mechanisms underlying resistance to such therapies, and discuss potential strategies to overcome these mechanisms and improve patient outcomes.
Collapse
|
Review |
1 |
|
13
|
Lee H, Durante M, Skerget S, Vishwamitra D, Benaoudia S, Ahn S, Poorebrahim M, Barakat E, Jung D, Leblay N, Ziccheddu B, Diamond B, Papadimitriou M, Cohen AD, Landgren O, Neri P, Maura F, Bahlis NJ. Impact of soluble BCMA and non-T-cell factors on refractoriness to BCMA-targeting T-cell engagers in multiple myeloma. Blood 2024; 144:2637-2651. [PMID: 39321344 PMCID: PMC11738017 DOI: 10.1182/blood.2024026212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
ABSTRACT Adoptive T-cell therapy is a promising therapy for multiple myeloma (MM), but its efficacy hinges on understanding the relevant biologic and predictive markers of response. B-cell maturation antigen (BCMA) is a key target antigen in MM with active development of multiple anti-BCMA T-cell engagers (TCEs) and chimeric antigen receptor T-cell therapies. The regulation of surface BCMA expression by MM cells, which leads to shedding of soluble BCMA (sBCMA), has triggered debate about the significance of sBCMA as a predictive marker and its potential impact on treatment outcomes. To address this, we leveraged whole-genome sequencing and in vitro assays to demonstrate that sBCMA may independently predict primary refractoriness to anti-BCMA therapies. In addition to sBCMA, tumor burden and surface BCMA antigen density collectively influenced the anti-BCMA TCE cytotoxic efficacy. Correlative analyses of 163 patients treated with the anti-BCMA TCE teclistamab validated and further underscored the association between elevated baseline sBCMA (>400 ng/mL) and refractoriness. Importantly, increasing the TCE dose, using TCE against alternative targets (eg, GPRC5D), and gamma secretase inhibitors were able to overcome the high sBCMA levels. These findings highlight the importance of taking into account the baseline sBCMA levels, disease burden, and TCE dose intensity when administering anti-BCMA TCEs, thereby offering critical insights for optimizing therapeutic strategies to overcome specific high-risk features and primary anti-BCMA TCE refractoriness.
Collapse
|
research-article |
1 |
|
14
|
Elsensohn M, Leblay N, Dimassi S, Campan-Fourn A, Labalme A, Roucher-Boulez F, Sanlaville D, Lesca G, Bardel C, Roy P. Méthode statistique pour la comparaison de pipelines utilisés dans le séquençage à haut débit. Rev Epidemiol Sante Publique 2016. [DOI: 10.1016/j.respe.2016.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
|
9 |
|
15
|
Avogbe PH, Delhomme T, Leblay N, Le Calvez-Kelm F, Chopard P, Gaborieau V, Scelo G, Abedi-Ardekani B, Zaridze D, Mukeria A, Byrnes G, Brennan P, Fernandez-Cuesta L, Foll M, McKay JD. Abstract 3156: NGS-based screening for TP53 mutations in circulating cell-free DNA: A first step towards early detection of lung cancers. Cancer Res 2016. [DOI: 10.1158/1538-7445.am2016-3156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Background
The US National Lung Cancer Screening Trial (NLST) demonstrated in 2011 that screening with computed tomography (CT) scans could reduce lung cancer mortality by 20%, but with important financial costs and high number of false positives. The identification of novel biomarkers is a need to obtain the maximum benefit from CT screening. Given its economical and minimally invasive nature, screening for somatic mutations in circulating tumor DNA (ctDNA) using next-generation sequencing may complement existing screening tools. However, for application in early detection, variant detection must also be done agnostically, i.e. without prior knowledge from tumour tissue of the mutations expected and unfortunately, most currently available variant callers are not adapted for this task.
Methods
We performed multiplex PCR on circulating free DNA (cfDNA) extracted from the plasma of 35 lung squamous cell carcinoma (SCC) and 64 small-cell carcinoma (SCLC) patients. We additionally included 133 hospital controls to evaluate the specificity of ctDNA. We applied (>10,000X) Ion torrent targeted sequencing on the full-coding region of TP53 since this gene is known to be mutated in more than 70% and 90% of SCC and SCLC, respectively. Each amplification, library preparation, and sequencing was performed in duplicate to control for amplification and sequencing errors. Detecting mutations on ctDNA raises important statistical and bioinformatics challenges as it represents only a small fraction of cfDNA. We therefore developed and applied a method based on the idea that a data-derived model of sequencing errors has the potential to improve our ability to detect low-allelic fraction (AF) somatic variants.
Results
We detected TP53 non-synonymous coding mutations with AFs between 0.04% and 85% (median 1.7%) in 8 (23%) SCC patients, 28 (44%) SCLC patients, and 8 (6%) controls. We estimated odds ratios of 4.6 (p = 0.006) for SCC and 12.0 (p = 6.7×10-10) for SCLC. Observations in controls are surprising, but in this instance there was no information regarding a subsequent cancer diagnosis.
Conclusion
We show that it is possible to detect ctDNA in the cfDNA of lung cancer patients. Since only patients with early stage (I-IIA) SCC tumours were included, these results support the potential utility of the approach for early detection. Nevertheless, if such mutations are found prior to diagnosis has not been explored in a prospective study design with pre-diagnostic plasma samples and individuals without a cancer diagnosis through a follow-up period.
Citation Format: Patrice H. Avogbe, Tiffany Delhomme, Noémie Leblay, Florence Le Calvez-Kelm, Priscilia Chopard, Valérie Gaborieau, Ghislaine Scelo, Behnoush Abedi-Ardekani, David Zaridze, Anush Mukeria, Graham Byrnes, Paul Brennan, Lynnette Fernandez-Cuesta, Matthieu Foll, James D. McKay. NGS-based screening for TP53 mutations in circulating cell-free DNA: A first step towards early detection of lung cancers. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 3156.
Collapse
|
|
9 |
|