1
|
Goshi N, Morgan RK, Lein PJ, Seker E. A primary neural cell culture model to study neuron, astrocyte, and microglia interactions in neuroinflammation. J Neuroinflammation 2020; 17:155. [PMID: 32393376 PMCID: PMC7216677 DOI: 10.1186/s12974-020-01819-z] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Background Interactions between neurons, astrocytes, and microglia critically influence neuroinflammatory responses to insult in the central nervous system. In vitro astrocyte and microglia cultures are powerful tools to study specific molecular pathways involved in neuroinflammation; however, in order to better understand the influence of cellular crosstalk on neuroinflammation, new multicellular culture models are required. Methods Primary cortical cells taken from neonatal rats were cultured in a serum-free “tri-culture” medium formulated to support neurons, astrocytes, and microglia, or a “co-culture” medium formulated to support only neurons and astrocytes. Caspase 3/7 activity and morphological changes were used to quantify the response of the two culture types to different neuroinflammatory stimuli mimicking sterile bacterial infection (lipopolysaccharide (LPS) exposure), mechanical injury (scratch), and seizure activity (glutamate-induced excitotoxicity). The secreted cytokine profile of control and LPS-exposed co- and tri-cultures were also compared. Results The tri-culture maintained a physiologically relevant representation of neurons, astrocytes, and microglia for 14 days in vitro, while the co-cultures maintained a similar population of neurons and astrocytes, but lacked microglia. The continuous presence of microglia did not negatively impact the overall health of the neurons in the tri-culture, which showed reduced caspase 3/7 activity and similar neurite outgrowth as the co-cultures, along with an increase in the microglia-secreted neurotrophic factor IGF-1 and a significantly reduced concentration of CX3CL1 in the conditioned media. LPS-exposed tri-cultures showed significant astrocyte hypertrophy, increase in caspase 3/7 activity, and the secretion of a number of pro-inflammatory cytokines (e.g., TNF, IL-1α, IL-1β, and IL-6), none of which were observed in LPS-exposed co-cultures. Following mechanical trauma, the tri-culture showed increased caspase 3/7 activity, as compared to the co-culture, along with increased astrocyte migration towards the source of injury. Finally, the microglia in the tri-culture played a significant neuroprotective role during glutamate-induced excitotoxicity, with significantly reduced neuron loss and astrocyte hypertrophy in the tri-culture. Conclusions The tri-culture consisting of neurons, astrocytes, and microglia more faithfully mimics in vivo neuroinflammatory responses than standard mono- and co-cultures. This tri-culture can be a useful tool to study neuroinflammation in vitro with improved accuracy in predicting in vivo neuroinflammatory phenomena.
Collapse
|
Journal Article |
5 |
143 |
2
|
Tamaki H, Akamine T, Goshi N, Kurata H, Sakou T. Effects of exercise training and etidronate treatment on bone mineral density and trabecular bone in ovariectomized rats. Bone 1998; 23:147-53. [PMID: 9701474 DOI: 10.1016/s8756-3282(98)00075-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study was designed to assess the effects of exercise training (Tr) following an etidronate treatment (E) on bone mineral density (BMD) of the femur and trabecular bone of the tibia in ovariectomized (ovx) rats. Female Wistar rats were ovariectomized (ovx) or sham-operated (sham) at 15 weeks of age and divided into five experimental groups: sham; ovx; ovx + E; ovx + Tr; ovx + E + Tr. Etidronate treatment of 5 mg/kg, 5 days/week was administered for 2 weeks and exercised on a treadmill for 30 m/min, 60 min/day, 5 days/week for 10 weeks. BMD of the femur and the trabecular bone area of the proximal tibia were significantly (p < 0.05) higher in E and/or Tr compared to ovx groups. However, the cortical region was not affected significantly by ovariectomy. The area partially filled with the trabecular bone at the constant width was observed only in the E rats. The number of osteoclasts in E group was significantly lower (p < 0.05) than in the ovx and ovx + Tr groups. The ovx + Tr rats had a higher number of osteoblasts (p < 0.05) than the ovx and ovx + E groups. There was a significant interaction between ovx + Tr and ovx + E on BMD in the proximal region of the femur (p < 0.05) and trabecular bone area of the tibia (p < 0.001). These results suggest that the etidronate treatment for 2 weeks beforehand influenced the effects of subsequent exercise training on maintaining the BMD in the proximal femur and the trabecular bone area of the tibia.
Collapse
|
Comparative Study |
27 |
30 |
3
|
Vomero M, Castagnola E, Ordonez JS, Carli S, Zucchini E, Maggiolini E, Gueli C, Goshi N, Ciarpella F, Cea C, Fadiga L, Ricci D, Kassegne S, Stieglitz T. Incorporation of Silicon Carbide and Diamond‐Like Carbon as Adhesion Promoters Improves In Vitro and In Vivo Stability of Thin‐Film Glassy Carbon Electrocorticography Arrays. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/adbi.201700081] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
|
8 |
23 |
4
|
Goshi N, Kim H, Girardi G, Gardner A, Seker E. Electrophysiological Activity of Primary Cortical Neuron-Glia Mixed Cultures. Cells 2023; 12:cells12050821. [PMID: 36899957 PMCID: PMC10001406 DOI: 10.3390/cells12050821] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Neuroinflammation plays a central role in many neurological disorders, ranging from traumatic brain injuries to neurodegeneration. Electrophysiological activity is an essential measure of neuronal function, which is influenced by neuroinflammation. In order to study neuroinflammation and its electrophysiological fingerprints, there is a need for in vitro models that accurately capture the in vivo phenomena. In this study, we employed a new tri-culture of primary rat neurons, astrocytes, and microglia in combination with extracellular electrophysiological recording techniques using multiple electrode arrays (MEAs) to determine the effect of microglia on neural function and the response to neuroinflammatory stimuli. Specifically, we established the tri-culture and its corresponding neuron-astrocyte co-culture (lacking microglia) counterpart on custom MEAs and monitored their electrophysiological activity for 21 days to assess culture maturation and network formation. As a complementary assessment, we quantified synaptic puncta and averaged spike waveforms to determine the difference in excitatory to inhibitory neuron ratio (E/I ratio) of the neurons. The results demonstrate that the microglia in the tri-culture do not disrupt neural network formation and stability and may be a better representation of the in vivo rat cortex due to its more similar E/I ratio as compared to more traditional isolated neuron and neuron-astrocyte co-cultures. In addition, only the tri-culture displayed a significant decrease in both the number of active channels and spike frequency following pro-inflammatory lipopolysaccharide exposure, highlighting the critical role of microglia in capturing electrophysiological manifestations of a representative neuroinflammatory insult. We expect the demonstrated technology to assist in studying various brain disease mechanisms.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
7 |
5
|
Matuda S, Kodama J, Goshi N, Takase C, Nakano K, Nakagawa S, Ohta S. A polypeptide derived from mitochondrial dihydrolipoamide succinyltransferase is located on the plasma membrane in skeletal muscle. Biochem Biophys Res Commun 1997; 241:151-6. [PMID: 9405249 DOI: 10.1006/bbrc.1997.7784] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dihydrolipoamide succinyltransferase (DLST) is the core-enzyme of 2-oxoglutarate dehydrogenase complex which is located in mitochondria. In this study, several tissues from rat and human were immunostained with an affinity-purified anti-DLST antibody. Of the tissues examined, the plasma membrane of skeletal muscle was immunostained with the antibody besides mitochondria. Furthermore, subcellular fractionation analysis coupled with Western blotting demonstrated that the antigen of the anti-DLST antibody is distributed on the plasma membrane fraction in addition to the mitochondria fraction in skeletal muscle and that it is free from the complex. The molecular weight of the polypeptide bound to the plasma membrane was about 20 kilodaltons (kDa). The polypeptide was purified by immunoprecipitation and its N-terminal amino-acid sequence was determined. The amino-acid sequence exactly corresponded to a part of DLST. Northern blots revealed the presence of mRNA corresponding to the 20 kDa protein. We are the first to report that a mitochondrial protein is also present on the plasma membrane in skeletal muscle as well as in mitochondria.
Collapse
|
|
28 |
6 |
6
|
Goshi N, Girardi G, da Costa Souza F, Gardner A, Lein PJ, Seker E. Influence of microchannel geometry on device performance and electrophysiological recording fidelity during long-term studies of connected neural populations. LAB ON A CHIP 2022; 22:3961-3975. [PMID: 36111641 PMCID: PMC9639432 DOI: 10.1039/d2lc00683a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Compartmentalized microfluidic neural cell culture platforms, which physically separate axons from the neural soma using a series of microchannels, have been used for studying a wide range of pathological conditions and basic neuroscience questions. While each study has different experimental needs, the fundamental design of these devices has largely remained unchanged and a systematic study to establish long-term neural cultures in this format is lacking. Here, we investigate the influence of microchannel geometry and cell seeding density on device performance particularly in the context of long-term studies of synaptically-connected, yet fluidically-isolated neural populations of neurons and glia. Of the different experimental parameters, the microchannel height was the principal determinant of device performance, where the other parameters offer additional degrees of freedom in customizing such devices for specific applications. We condense the effects of these parameters into design rules and demonstrate their utility in engineering a microfluidic neural culture platform with integrated microelectrode arrays. The engineered device successfully recorded from primary rat cortical cells for 59 days in vitro with more than on order of magnitude enhancement in signal-to-noise ratio in the microchannels.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
6 |
7
|
Goshi N, Narenji A, Bui C, Mokili JL, Kassegne S. Investigation Into the Effects of Nucleotide Content on the Electrical Characteristics of DNA Plasmid Molecular Wires. IEEE Trans Nanobioscience 2017; 15:585-594. [PMID: 27824579 DOI: 10.1109/tnb.2016.2596243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study, we investigate the effect of nucleotide content on the conductivity of plasmid length DNA molecular wires covalently bound to high aspect-ratio gold electrodes. The DNA wires were all between [Formula: see text] in length (>6000bp), and contained either 39%, 53%, or 64% GC base-pairs. We compared the current-voltage (I-V) and frequency-impedance characteristics of the DNA wires with varying GC content, and observed statistically significantly higher conductivity in DNA wires containing higher GC content in both AC and DC measurement methods. Additionally, we noted that the conductivity decreased as a function of time for all DNA wires, with the impedance at 100 Hz nearly doubling over a period of seven days. All readings were taken in humidity and temperature controlled environments on DNA wires suspended above an insulative substrate, thus minimizing the effect of experimental and environmental factors as well as potential for nonlinear alternate DNA confirmations. While other groups have studied the effect of GC content on the conductivity of nanoscale DNA molecules (<50bp), we were able to demonstrate that nucleotide content can affect the conductivity of micrometer length DNA wires at scales that may be required during the fabrication of DNA-based electronics. Furthermore, our results provide further evidence that many of the charge transfer theories developed from experiments using nanoscale DNA molecules may still be applicable for DNA wires at the micro scale.
Collapse
|
Journal Article |
8 |
4 |
8
|
Girardi G, Zumpano D, Goshi N, Raybould H, Seker E. Cultured Vagal Afferent Neurons as Sensors for Intestinal Effector Molecules. BIOSENSORS 2023; 13:601. [PMID: 37366967 DOI: 10.3390/bios13060601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
The gut-brain axis embodies the bi-directional communication between the gastrointestinal tract and the central nervous system (CNS), where vagal afferent neurons (VANs) serve as sensors for a variety of gut-derived signals. The gut is colonized by a large and diverse population of microorganisms that communicate via small (effector) molecules, which also act on the VAN terminals situated in the gut viscera and consequently influence many CNS processes. However, the convoluted in vivo environment makes it difficult to study the causative impact of the effector molecules on VAN activation or desensitization. Here, we report on a VAN culture and its proof-of-principle demonstration as a cell-based sensor to monitor the influence of gastrointestinal effector molecules on neuronal behavior. We initially compared the effect of surface coatings (poly-L-lysine vs. Matrigel) and culture media composition (serum vs. growth factor supplement) on neurite growth as a surrogate of VAN regeneration following tissue harvesting, where the Matrigel coating, but not the media composition, played a significant role in the increased neurite growth. We then used both live-cell calcium imaging and extracellular electrophysiological recordings to show that the VANs responded to classical effector molecules of endogenous and exogenous origin (cholecystokinin serotonin and capsaicin) in a complex fashion. We expect this study to enable platforms for screening various effector molecules and their influence on VAN activity, assessed by their information-rich electrophysiological fingerprints.
Collapse
|
|
2 |
1 |
9
|
Goshi N, Lam D, Bogguri C, George VK, Sebastian A, Cadena J, Leon NF, Hum NR, Weilhammer DR, Fischer NO, Enright HA. Direct effects of prolonged TNF-α and IL-6 exposure on neural activity in human iPSC-derived neuron-astrocyte co-cultures. Front Cell Neurosci 2025; 19:1512591. [PMID: 40012566 PMCID: PMC11860967 DOI: 10.3389/fncel.2025.1512591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/29/2025] [Indexed: 02/28/2025] Open
Abstract
Cognitive impairment is one of the many symptoms reported by individuals suffering from long-COVID and other post-viral infection disorders such as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). A common factor among these conditions is a sustained immune response and increased levels of inflammatory cytokines. Tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) are two such cytokines that are elevated in patients diagnosed with long-COVID and ME/CFS. In this study, we characterized the changes in neural functionality, secreted cytokine profiles, and gene expression in co-cultures of human iPSC-derived neurons and primary astrocytes in response to prolonged exposure to TNF-α and IL-6. We found that exposure to TNF-α produced both a concentration-independent and concentration-dependent response in neural activity. Burst duration was significantly reduced within a few days of exposure regardless of concentration (1 pg/mL - 100 ng/mL) but returned to baseline after 7 days. Treatment with low concentrations of TNF-α (e.g., 1 and 25 pg/mL) did not lead to changes in the secreted cytokine profile or gene expression but still resulted in significant changes to electrophysiological features such as interspike interval and burst duration. Conversely, treatment with high concentrations of TNF-α (e.g., 10 and 100 ng/mL) led to reduced spiking activity, which may be correlated to changes in neural health, gene expression, and increases in inflammatory cytokine secretion (e.g., IL-1β, IL-4, and CXCL-10) that were observed at higher TNF-α concentrations. Prolonged exposure to IL-6 led to changes in bursting features, with significant reduction in the number of spikes in bursts across a wide range of treatment concentrations (i.e., 1 pg/mL-10 ng/mL). In combination, the addition of IL-6 appears to counteract the changes to neural function induced by low concentrations of TNF-α, while at high concentrations of TNF-α the addition of IL-6 had little to no effect. Conversely, the changes to electrophysiological features induced by IL-6 were lost when the cultures were co-stimulated with TNF-α regardless of the concentration, suggesting that TNF-α may play a more pronounced role in altering neural function. These results indicate that increased concentrations of key inflammatory cytokines associated with long-COVID can directly impact neural function and may be a component of the cognitive impairment associated with long-COVID and other post-viral infection disorders.
Collapse
|
research-article |
1 |
|
10
|
Fukushima O, Goshi N, Koda M, Tokudome M. Ultrastructural localization of ATP-hydrolyzing enzyme activity at high alkaline pH in bone cells. Okajimas Folia Anat Jpn 1984; 61:253-65. [PMID: 6152044 DOI: 10.2535/ofaj1936.61.4_253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
|
41 |
|
11
|
Kim H, Le B, Goshi N, Zhu K, Grodzki AC, Lein PJ, Zhao M, Seker E. Primary cortical cell tri-culture to study effects of amyloid-β on microglia function and neuroinflammatory response. J Alzheimers Dis 2024; 102:730-741. [PMID: 39501607 PMCID: PMC11758989 DOI: 10.1177/13872877241291142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
BACKGROUND Microglia play a critical role in neurodegenerative disorders, such as Alzheimer's disease, where alterations in microglial function may result in pathogenic amyloid-β (Aβ) accumulation, chronic neuroinflammation, and deleterious effects on neuronal function. However, studying these complex factors in vivo, where numerous confounding processes exist, is challenging, and until recently, in vitro models have not allowed sustained culture of critical cell types in the same culture. OBJECTIVE We employed a rat primary tri-culture (neurons, astrocytes, and microglia) model and compared it to co-culture (neurons and astrocytes) and mono-culture (microglia) to study microglial function (i.e., motility and Aβ clearance) and proteomic response to exogenous Aβ. METHODS The cultures were exposed to fluorescently-labeled Aβ (FITC-Aβ) particles for varying durations. Epifluorescence microscopy images were analyzed to quantify the number of FITC-Aβ particles and assess cytomorphological features. Cytokine profiles from conditioned media were obtained. Live-cell imaging was employed to extract microglia motility parameters. RESULTS FITC-Aβ particles were more effectively cleared in the tri-culture compared to the co-culture. This was attributed to microglia engulfing FITC-Aβ particles, as confirmed via epifluorescence and confocal microscopy. FITC-Aβ treatment significantly increased microglia size, but had no significant effect on neuronal surface coverage or astrocyte size. Upon FITC-Aβ treatment, there was a significant increase in proinflammatory cytokines in tri-culture, but not in co-culture. Aβ treatment altered microglia motility evident as a swarming-like motion. CONCLUSIONS The results suggest that neuron-astrocyte-microglia interactions influence microglia function and highlight the utility of the tri-culture model for studies of neuroinflammation, neurodegeneration, and cell-cell communication.
Collapse
|
research-article |
1 |
|
12
|
Goshi N, Girardi G, Kim H, Seker E. Experiential Learning in a Biomedical Device Engineering Course: Proposal Development and Raw Research Data-Based Assignments. BIOMEDICAL ENGINEERING EDUCATION 2022; 3:1-7. [PMID: 36531592 PMCID: PMC9734624 DOI: 10.1007/s43683-022-00094-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022]
Abstract
There is a need for novel teaching approaches to train biomedical engineers that are conversant across disciplines and have the technical skills to address interdisciplinary scientific and technological challenges. Here, we describe a graduate-level miniaturized biomedical device engineering course that has been taught over the last decade in in-person, remote, and hybrid formats. The course employs experiential learning components, including a proposal development and review that mimic the National Institutes of Health process and technical assignments that use raw research data to simulate a research experience. The effectiveness of the course was measured via pre-/post-course concept inventory surveys as well as course evaluations with targeted questions on the learning instruments. Statistical comparison of pre-/post-course survey scores suggests that the course was effective in students achieving the learning objectives, and comparison of relative increase in pre-/post-course survey scores across different instruction formats (i.e., in-person, remote, hybrid) showed minimal difference, suggesting that the teaching elements are readily transferrable to remote instruction. Supplementary Information The online version contains supplementary material available at 10.1007/s43683-022-00094-z.
Collapse
|
research-article |
3 |
|
13
|
Goshi N, Morgan RK, Lein PJ, Seker E. Correction to: A primary neural cell culture model to study neuron, astrocyte, and microglia interactions in neuroinflammation. J Neuroinflammation 2022; 19:49. [PMID: 35151333 PMCID: PMC8840776 DOI: 10.1186/s12974-022-02391-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
|
3 |
|
14
|
Hagiwara M, Nishimura K, Goshi N, Yanagida T, Ibaraki K. [Ocular observations in generalized cytomegalic inclusion disease]. NIHON GANKA KIYO 1969; 20:727-30. [PMID: 4310997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
|
56 |
|
15
|
Goshi N, Oh M, Habu K. [Light and electron microscopic study on the vascular system of the red lymph node in goats]. KUMAMOTO IGAKKAI ZASSHI. THE JOURNAL OF THE KUMAMOTO MEDICAL SOCIETY 1970; 44:422-32. [PMID: 5468257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
|
55 |
|
16
|
Kim H, Le B, Goshi N, Zhu K, Grodzki AC, Lein PJ, Zhao M, Seker E. Rat primary cortical cell tri-culture to study effects of amyloid-beta on microglia function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.584736. [PMID: 38558989 PMCID: PMC10979983 DOI: 10.1101/2024.03.15.584736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Introduction The etiology and progression of sporadic Alzheimer's Disease (AD) have been studied for decades. One proposed mechanism is that amyloid-beta (Aβ) proteins induce neuroinflammation, synapse loss, and neuronal cell death. Microglia play an especially important role in Aβ clearance, and alterations in microglial function due to aging or disease may result in Aβ accumulation and deleterious effects on neuronal function. However, studying these complex factors in vivo , where numerous confounding processes exist, is challenging, and until recently, in vitro models have not allowed sustained culture of microglia, astrocytes and neurons in the same culture. Here, we employ a tri-culture model of rat primary neurons, astrocytes, and microglia and compare it to co-culture (neurons and astrocytes) and mono-culture enriched for microglia to study microglial function (i.e., motility and Aβ clearance) and proteomic response to exogenous Aβ. Methods We established cortical co-culture (neurons and astrocytes), tri-culture (neurons, astrocytes, and microglia), and mono-culture (microglia) from perinatal rat pups. On days in vitro (DIV) 7 - 14, the cultures were exposed to fluorescently-labeled Aβ (FITC-Aβ) particles for varying durations. Images were analyzed to determine the number of FITC-Aβ particles after specific lengths of exposure. A group of cells were stained for βIII-tubulin, GFAP, and Iba1 for morphological analysis via quantitative fluorescence microscopy. Cytokine profiles from conditioned media were obtained. Live-cell imaging with images acquired every 5 minutes for 4 hours was employed to extract microglia motility parameters (e.g., Euclidean distance, migration speed, directionality ratio). Results and discussion FITC-Aβ particles were more effectively cleared in the tri-culture compared to the co-culture. This was attributed to microglia engulfing FITC-Aβ particles, as confirmed via epifluorescence and confocal microscopy. Adding FITC-Aβ significantly increased the size of microglia, but had no significant effect on neuronal surface coverage or astrocyte size. Analysis of the cytokine profile upon FITC-Aβ addition revealed a significant increase in proinflammatory cytokines (TNF-α, IL-1α, IL-1β, IL-6) in tri-culture, but not co-culture. In addition, Aβ addition altered microglia motility marked by swarming-like motion with decreased Euclidean distance yet unaltered speed. These results highlight the importance of cell-cell communication in microglia function (e.g., motility and Aβ clearance) and the utility of the tri-culture model to further investigate microglia dysfunction in AD.
Collapse
|
Preprint |
1 |
|
17
|
Goshi N, Meguri S, Sugiyama M, Tokudome M. [Decrease of activities of adenosine triphosphatase (ATPase) and alkaline phosphatase in osteoclasts during the process of fixation and decalcification (author's transl)]. KAIBOGAKU ZASSHI. JOURNAL OF ANATOMY 1980; 55:241-50. [PMID: 6447981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
English Abstract |
45 |
|
18
|
Lugogo N, Gilbert I, Gandhi H, Pollack M, Surmont F, Tkacz J, Moore-Schiltz L, Goshi N, Lanz M. P215 DIFFERENCES IN EXACERBATION PATTERNS AND SHORT-ACTING BETA2-AGONIST USE IN PATIENTS WITH MILD VS MODERATE/SEVERE ASTHMA. Ann Allergy Asthma Immunol 2020. [DOI: 10.1016/j.anai.2020.08.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
|
5 |
|
19
|
Goshi N, Oh M. [Fine structure of the lymph sinus of the lymph node]. KUMAMOTO IGAKKAI ZASSHI. THE JOURNAL OF THE KUMAMOTO MEDICAL SOCIETY 1970; 44:412-21. [PMID: 4914575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
|
55 |
|
20
|
Goshi N, Scott BL. Variation in acid phosphatase distribution during developmental stages of the osteoclast. J Dent Res 1971; 50:1500-1. [PMID: 5289062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
|
54 |
|
21
|
You DJ, Gorman BM, Goshi N, Hum NR, Sebastian A, Kim YH, Enright HA, Buchholz BA. Eucalyptus Wood Smoke Extract Elicits a Dose-Dependent Effect in Brain Endothelial Cells. Int J Mol Sci 2024; 25:10288. [PMID: 39408618 PMCID: PMC11476751 DOI: 10.3390/ijms251910288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
The frequency, duration, and size of wildfires have been increasing, and the inhalation of wildfire smoke particles poses a significant risk to human health. Epidemiological studies have shown that wildfire smoke exposure is positively associated with cognitive and neurological dysfunctions. However, there is a significant gap in knowledge on how wildfire smoke exposure can affect the blood-brain barrier and cause molecular and cellular changes in the brain. Our study aims to determine the acute effect of smoldering eucalyptus wood smoke extract (WSE) on brain endothelial cells for potential neurotoxicity in vitro. Primary human brain microvascular endothelial cells (HBMEC) and immortalized human brain endothelial cell line (hCMEC/D3) were treated with different doses of WSE for 24 h. WSE treatment resulted in a dose-dependent increase in IL-8 in both HBMEC and hCMEC/D3. RNA-seq analyses showed a dose-dependent upregulation of genes involved in aryl hydrocarbon receptor (AhR) and nuclear factor erythroid 2-related factor 2 (NRF2) pathways and a decrease in tight junction markers in both HBMEC and hCMEC/D3. When comparing untreated controls, RNA-seq analyses showed that HBMEC have a higher expression of tight junction markers compared to hCMEC/D3. In summary, our study found that 24 h WSE treatment increases IL-8 production dose-dependently and decreases tight junction markers in both HBMEC and hCMEC/D3 that may be mediated through the AhR and NRF2 pathways, and HBMEC could be a better in vitro model for studying the effect of wood smoke extract or particles on brain endothelial cells.
Collapse
|
research-article |
1 |
|
22
|
Lanz M, Gilbert I, Goshi N, Gandhi H, Moore-Schiltz L, Lucci M, Tkacz J, Lugogo N. P230 DEMOGRAPHICS, TREATMENT PATTERNS, AND MORBIDITY IN PATIENTS WITH EXERCISE-INDUCED BRONCHOCONSTRICTION: AN ADMINISTRATIVE CLAIMS DATA ANALYSIS. Ann Allergy Asthma Immunol 2019. [DOI: 10.1016/j.anai.2019.08.296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
|
6 |
|