1
|
Qi B, Fraser T, Mugford S, Dobson G, Sayanova O, Butler J, Napier JA, Stobart AK, Lazarus CM. Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat Biotechnol 2004; 22:739-45. [PMID: 15146198 DOI: 10.1038/nbt972] [Citation(s) in RCA: 337] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Accepted: 02/19/2004] [Indexed: 11/09/2022]
Abstract
We report the production of two very long chain polyunsaturated fatty acids, arachidonic acid (AA) and eicosapentaenoic acid (EPA), in substantial quantities in a higher plant. This was achieved using genes encoding enzymes participating in the omega3/6 Delta8 -desaturation biosynthetic pathways for the formation of C20 polyunsaturated fatty acids. Arabidopsis thaliana was transformed sequentially with genes encoding a Delta9 -specific elongating activity from Isochrysis galbana, a Delta8 -desaturase from Euglena gracilis and a Delta5 -desaturase from Mortierella alpina. Instrumental in the successful reconstitution of these C20 polyunsaturated fatty acid biosynthetic pathways was the I. galbana C18-Delta9 -elongating activity, which may bypass rate-limiting steps present in the conventional Delta6 -desaturase/elongase pathways. The accumulation of EPA and AA in transgenic plants is a breakthrough in the search for alternative sustainable sources of fish oils.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analysis
- 8,11,14-Eicosatrienoic Acid/metabolism
- Acetyltransferases/genetics
- Acetyltransferases/metabolism
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arachidonic Acid/analysis
- Arachidonic Acid/biosynthesis
- Arachidonic Acids/analysis
- Arachidonic Acids/biosynthesis
- Biotechnology/methods
- Caulimovirus/genetics
- Chromatography, Gas
- Delta-5 Fatty Acid Desaturase
- Fatty Acid Desaturases/genetics
- Fatty Acid Desaturases/metabolism
- Fatty Acid Elongases
- Fatty Acids/analysis
- Fatty Acids/biosynthesis
- Fatty Acids, Essential/biosynthesis
- Fatty Acids, Omega-3/biosynthesis
- Fatty Acids, Omega-6/biosynthesis
- Fatty Acids, Unsaturated/biosynthesis
- Gas Chromatography-Mass Spectrometry
- Plant Leaves/chemistry
- Plant Leaves/genetics
- Plant Leaves/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plasmids/genetics
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
337 |
2
|
Sayanova O, Smith MA, Lapinskas P, Stobart AK, Dobson G, Christie WW, Shewry PR, Napier JA. Expression of a borage desaturase cDNA containing an N-terminal cytochrome b5 domain results in the accumulation of high levels of delta6-desaturated fatty acids in transgenic tobacco. Proc Natl Acad Sci U S A 1997; 94:4211-6. [PMID: 9108131 PMCID: PMC20606 DOI: 10.1073/pnas.94.8.4211] [Citation(s) in RCA: 226] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/1996] [Accepted: 01/23/1997] [Indexed: 02/04/2023] Open
Abstract
gamma-Linolenic acid (GLA; C18:3 delta(6,9,12)) is a component of the seed oils of evening primrose (Oenothera spp.), borage (Borago officinalis L.), and some other plants. It is widely used as a dietary supplement and for treatment of various medical conditions. GLA is synthesized by a delta6-fatty acid desaturase using linoleic acid (C18:2 delta(9,12)) as a substrate. To enable the production of GLA in conventional oilseeds, we have isolated a cDNA encoding the delta6-fatty acid desaturase from developing seeds of borage and confirmed its function by expression in transgenic tobacco plants. Analysis of leaf lipids from a transformed plant demonstrated the accumulation of GLA and octadecatetraenoic acid (C18:4 delta(6,9,12,15)) to levels of 13.2% and 9.6% of the total fatty acids, respectively. The borage delta6-fatty acid desaturase differs from other desaturase enzymes, characterized from higher plants previously, by the presence of an N-terminal domain related to cytochrome b5.
Collapse
|
research-article |
28 |
226 |
3
|
Ruiz-Lopez N, Haslam RP, Napier JA, Sayanova O. Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:198-208. [PMID: 24308505 PMCID: PMC4253037 DOI: 10.1111/tpj.12378] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/28/2013] [Accepted: 11/04/2013] [Indexed: 05/08/2023]
Abstract
Omega-3 (also called n-3) long-chain polyunsaturated fatty acids (≥C20; LC-PUFAs) are of considerable interest, based on clear evidence of dietary health benefits and the concurrent decline of global sources (fish oils). Generating alternative transgenic plant sources of omega-3 LC-PUFAs, i.e. eicosapentaenoic acid (20:5 n-3, EPA) and docosahexaenoic acid (22:6 n-3, DHA) has previously proved problematic. Here we describe a set of heterologous genes capable of efficiently directing synthesis of these fatty acids in the seed oil of the crop Camelina sativa, while simultaneously avoiding accumulation of undesirable intermediate fatty acids. We describe two iterations: RRes_EPA in which seeds contain EPA levels of up to 31% (mean 24%), and RRes_DHA, in which seeds accumulate up to 12% EPA and 14% DHA (mean 11% EPA and 8% DHA). These omega-3 LC-PUFA levels are equivalent to those in fish oils, and represent a sustainable, terrestrial source of these fatty acids. We also describe the distribution of these non-native fatty acids within C. sativa seed lipids, and consider these data in the context of our current understanding of acyl exchange during seed oil synthesis.
Collapse
|
research-article |
11 |
180 |
4
|
Hamilton ML, Haslam RP, Napier JA, Sayanova O. Metabolic engineering of Phaeodactylum tricornutum for the enhanced accumulation of omega-3 long chain polyunsaturated fatty acids. Metab Eng 2013; 22:3-9. [PMID: 24333273 PMCID: PMC3985434 DOI: 10.1016/j.ymben.2013.12.003] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 11/15/2013] [Accepted: 12/03/2013] [Indexed: 12/01/2022]
Abstract
We have engineered the diatom Phaeodactylum tricornutum to accumulate the high value omega-3 long chain polyunsaturated fatty acid docosahexaenoic acid (DHA). This was achieved by the generation of transgenic strains in which the Δ5-elongase from the picoalga Ostreococcus tauri was expressed to augment the endogenous fatty acid biosynthetic pathway. Expression of the heterologous elongase resulted in an eight-fold increase in docosahexaenoic acid content, representing a marked and valuable change in the fatty acid profile of this microalga. Importantly, DHA was shown to accumulate in triacylglycerols, with several novel triacylglycerol species being detected in the transgenic strains. In a second iteration, co-expression of an acyl-CoA-dependent Δ6-desaturase with the Δ5-elongase further increased DHA levels. Together, this demonstrates for the first time the potential of using iterative metabolic engineering to optimise omega-3 content in algae.
First example of using metabolic engineering in microalgae to modify the accumulation of high value omega-3 long chain polyunsaturated fatty acids. First example of multigene expression in a diatom. Detailed lipidomic analysis of diatom Phaeodactylum tricornutum.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
163 |
5
|
Venegas-Calerón M, Sayanova O, Napier JA. An alternative to fish oils: Metabolic engineering of oil-seed crops to produce omega-3 long chain polyunsaturated fatty acids. Prog Lipid Res 2010; 49:108-19. [DOI: 10.1016/j.plipres.2009.10.001] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 10/13/2009] [Accepted: 10/20/2009] [Indexed: 12/14/2022]
|
|
15 |
150 |
6
|
Beaudoin F, Michaelson LV, Hey SJ, Lewis MJ, Shewry PR, Sayanova O, Napier JA. Heterologous reconstitution in yeast of the polyunsaturated fatty acid biosynthetic pathway. Proc Natl Acad Sci U S A 2000; 97:6421-6. [PMID: 10829069 PMCID: PMC18618 DOI: 10.1073/pnas.110140197] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Caenorhabditis elegans ORF encoding the presumptive condensing enzyme activity of a fatty acid elongase has been characterized functionally by heterologous expression in yeast. This ORF (F56H11. 4) shows low similarity to Saccharomyces cerevisiae genes involved in fatty acid elongation. The substrate specificity of the C. elegans enzyme indicated a preference for Delta(6)-desaturated C18 polyunsaturated fatty acids. Coexpression of this activity with fatty acid desaturases required for the synthesis of C20 polyunsaturated fatty acids resulted in the accumulation of arachidonic acid from linoleic acid and eicosapentaenoic acid from alpha-linolenic acid. These results demonstrate the reconstitution of the n-3 and n-6 polyunsaturated fatty acid biosynthetic pathways. The C. elegans ORF is likely to interact with endogenous components of a yeast elongation system, with the heterologous nematode condensing enzyme F56H11.4 causing a redirection of enzymatic activity toward polyunsaturated C18 fatty acid substrates.
Collapse
|
research-article |
25 |
108 |
7
|
Napier JA, Michaelson LV, Sayanova O. The role of cytochrome b5 fusion desaturases in the synthesis of polyunsaturated fatty acids. Prostaglandins Leukot Essent Fatty Acids 2003; 68:135-43. [PMID: 12538077 DOI: 10.1016/s0952-3278(02)00263-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The biosynthetic pathway of polyunsaturated fatty acids (PUFAs) has been the subject of much interest over the last few years. Significant progress has been made in the identification of the enzymes required for PUFA synthesis; in particular, the fatty acid desaturases which are central to this pathway have now all been identified. These "front-end" desaturases are all members of the cytochrome b(5) fusion desaturase superfamily, since they contain an N-terminal domain that is orthologous to the microsomal cytochrome b(5). Examination of the primary sequence relationships between the various PUFA-specific cytochrome b(5) fusion desaturases and related fusion enzymes allows inferences regarding the evolution of this important enzyme class. More importantly, this knowledge helps underpin our understanding of polyunsaturated fatty acid biosynthesis.
Collapse
|
Review |
22 |
78 |
8
|
Ruiz-Lopez N, Haslam RP, Usher SL, Napier JA, Sayanova O. Reconstitution of EPA and DHA biosynthesis in arabidopsis: iterative metabolic engineering for the synthesis of n-3 LC-PUFAs in transgenic plants. Metab Eng 2013; 17:30-41. [PMID: 23500000 PMCID: PMC3650579 DOI: 10.1016/j.ymben.2013.03.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 01/21/2013] [Accepted: 03/01/2013] [Indexed: 11/19/2022]
Abstract
An iterative approach to optimising the accumulation of non-native long chain polyunsaturated fatty acids in transgenic plants was undertaken in Arabidopsis thaliana. The contribution of a number of different transgene enzyme activities was systematically determined, as was the contribution of endogenous fatty acid metabolism. Successive iterations were informed by lipidomic analysis of neutral, polar and acyl-CoA pools. This approach allowed for a four-fold improvement on levels previously reported for the accumulation of eicosapentaenoic acid in Arabidopsis seeds and also facilitated the successful engineering of the high value polyunsaturated fatty acid docosahexaenoic acid to 10-fold higher levels. Our studies identify the minimal gene set required to direct the efficient synthesis of these fatty acids in transgenic seed oil.
Collapse
Key Words
- ala, α-linolenic acid
- ara, arachidonic acid
- dag, diacylglycerol
- dha, docosahexaenoic acid
- dpa, docosapentaenoic acid
- epa, eicosapentaenoic acid
- gla, γ-linolenic acid
- la, linoleic acid
- lc-pufa, long chain polyunsaturated fatty acid
- pc, phosphatidylcholine
- pe, phosphatidylethanolamine
- pi, phosphatidylinositol
- ps, phosphatidylserine
- sda, stearidonic acid
- tag, triacylglycerol
- desaturase
- elongase
- nutritional enhancement
- omega-3 long chain polyunsaturated fatty acids
- transgenic plants
Collapse
|
research-article |
12 |
77 |
9
|
Ruiz-López N, Sayanova O, Napier JA, Haslam RP. Metabolic engineering of the omega-3 long chain polyunsaturated fatty acid biosynthetic pathway into transgenic plants. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2397-410. [PMID: 22291131 DOI: 10.1093/jxb/err454] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Omega-3 (ω-3) very long chain polyunsaturated fatty acids (VLC-PUFAs) such as eicosapentaenoic acid (EPA; 20:5 Δ5,8,11,14,17) and docosahexaenoic acid (DHA; 22:6 Δ4,7,10,13,16,19) have been shown to have significant roles in human health. Currently the primary dietary source of these fatty acids are marine fish; however, the increasing demand for fish and fish oil (in particular the expansion of the aquaculture industry) is placing enormous pressure on diminishing marine stocks. Such overfishing and concerns related to pollution in the marine environment have directed research towards the development of a viable alternative sustainable source of VLC-PUFAs. As a result, the last decade has seen many genes encoding the primary VLC-PUFA biosynthetic activities identified and characterized. This has allowed the reconstitution of the VLC-PUFA biosynthetic pathway in oilseed crops, producing transgenic plants engineered to accumulate ω-3 VLC-PUFAs at levels approaching those found in native marine organisms. Moreover, as a result of these engineering activities, knowledge of the fundamental processes surrounding acyl exchange and lipid remodelling has progressed. The application of new technologies, for example lipidomics and next-generation sequencing, is providing a better understanding of seed oil biosynthesis and opportunities for increasing the production of unusual fatty acids. Certainly, it is now possible to modify the composition of plant oils successfully, and, in this review, the most recent developments in this field and the challenges of producing VLC-PUFAs in the seed oil of higher plants will be described.
Collapse
|
Review |
13 |
69 |
10
|
Sayanova O, Haslam R, Guschina I, Lloyd D, Christie WW, Harwood JL, Napier JA. A Bifunctional Δ12,Δ15-Desaturase from Acanthamoeba castellanii Directs the Synthesis of Highly Unusual n-1 Series Unsaturated Fatty Acids. J Biol Chem 2006; 281:36533-41. [PMID: 16950768 DOI: 10.1074/jbc.m605158200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The free-living soil protozoon Acanthamoeba castellanii synthesizes a range of polyunsaturated fatty acids, the balance of which can be altered by environmental changes. We have isolated and functionally characterized in yeast a microsomal desaturase from A. castellanii, which catalyzes the sequential conversion of C(16) and C(18) Delta9-monounsaturated fatty acids to di- and tri-unsaturated forms. In the case of C(16) substrates, this bifunctional A. castellanii Delta12,Delta15-desaturase generated a highly unusual fatty acid, hexadecatrienoic acid (16:3Delta(9,12,15)(n-1)). The identification of a desaturase, which can catalyze the insertion of a double bond between the terminal two carbons of a fatty acid represents a new addition to desaturase functionality and plasticity. We have also co-expressed in yeast the A. castellanii bifunctional Delta12,Delta15-desaturase with a microsomal Delta6-desaturase, resulting in the synthesis of the highly unsaturated C(16) fatty acid hexadecatetraenoic acid (16:4Delta(6,9,12,15)(n-1)), previously only reported in marine microorganisms. Our work therefore demonstrates the feasibility of the heterologous synthesis of polyunsaturated fatty acids of the n-1 series. The presence of a bifunctional Delta12,Delta15-desaturase in A. castellanii is also considered with reference to the evolution of desaturases and the lineage of this protist.
Collapse
|
|
19 |
68 |
11
|
Rengel R, Smith RT, Haslam RP, Sayanova O, Vila M, León R. Overexpression of acetyl-CoA synthetase (ACS) enhances the biosynthesis of neutral lipids and starch in the green microalga Chlamydomonas reinhardtii. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.02.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
|
7 |
67 |
12
|
Sayanova O, Mimouni V, Ulmann L, Morant-Manceau A, Pasquet V, Schoefs B, Napier JA. Modulation of lipid biosynthesis by stress in diatoms. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160407. [PMID: 28717017 PMCID: PMC5516116 DOI: 10.1098/rstb.2016.0407] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2017] [Indexed: 12/19/2022] Open
Abstract
Diatoms are responsible for up to 40% of the carbon fixation in our oceans. The fixed carbon is moved through carbon metabolism towards the synthesis of organic molecules that are consumed through interlocking foodwebs, and this process is strongly impacted by the abiotic environment. However, it has become evident that diatoms can be used as 'platform' organisms for the production of high valuable bio-products such as lipids, pigments and carbohydrates where stress conditions can be used to direct carbon metabolism towards the commercial production of these compounds. In the first section of this review, some aspects of carbon metabolism in diatoms and how it is impacted by environmental factors are briefly described. The second section is focused on the biosynthesis of lipids and in particular omega-3 long-chain polyunsaturated fatty acids and how low temperature stress impacts on the production of these compounds. In a third section, we review the recent advances in bioengineering for lipid production. Finally, we discuss new perspectives for designing strains for the sustainable production of high-value lipids.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'.
Collapse
|
Review |
8 |
65 |
13
|
Beaudoin F, Gable K, Sayanova O, Dunn T, Napier JA. A Saccharomyces cerevisiae gene required for heterologous fatty acid elongase activity encodes a microsomal beta-keto-reductase. J Biol Chem 2002; 277:11481-8. [PMID: 11792704 DOI: 10.1074/jbc.m111441200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A number of Saccharomyces cerevisiae membrane-bound oxidoreductases were examined for potential roles in microsomal fatty acid elongation, by assaying heterologous elongating activities in individual deletion mutants. One yeast gene, YBR159w, was identified as being required for activity of both the Caenorhabditis elegans elongase PEA1 (F56H11.4) and the Arabidopsis thaliana elongase FAE1. Ybr159p shows some limited homology to human steroid dehydrogenases and is a member of the short-chain alcohol dehydrogenase superfamily. Disruption of YBR159w is not lethal, in contrast to previous reports, although the mutants are slow growing and display high temperature sensitivity. Both Ybr159p and an Arabidopsis homologue were shown to restore heterologous elongase activities when expressed in ybr159Delta mutants. Biochemical characterization of microsomal preparations from ybr159Delta cells revealed a primary perturbation in beta-ketoacyl reduction, confirming the assignment of YBR159w as encoding a component of the microsomal elongase.
Collapse
|
|
23 |
64 |
14
|
Hamilton ML, Warwick J, Terry A, Allen MJ, Napier JA, Sayanova O. Towards the Industrial Production of Omega-3 Long Chain Polyunsaturated Fatty Acids from a Genetically Modified Diatom Phaeodactylum tricornutum. PLoS One 2015; 10:e0144054. [PMID: 26658738 PMCID: PMC4681182 DOI: 10.1371/journal.pone.0144054] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/12/2015] [Indexed: 11/21/2022] Open
Abstract
The marine diatom Phaeodactylum tricornutum can accumulate up to 30% of the omega-3 long chain polyunsaturated fatty acid (LC-PUFA) eicosapentaenoic acid (EPA) and, as such, is considered a good source for the industrial production of EPA. However, P. tricornutum does not naturally accumulate significant levels of the more valuable omega-3 LC-PUFA docosahexaenoic acid (DHA). Previously, we have engineered P. tricornutum to accumulate elevated levels of DHA and docosapentaenoic acid (DPA) by overexpressing heterologous genes encoding enzyme activities of the LC-PUFA biosynthetic pathway. Here, the transgenic strain Pt_Elo5 has been investigated for the scalable production of EPA and DHA. Studies have been performed at the laboratory scale on the cultures growing in up to 1 L flasks a 3.5 L bubble column, a 550 L closed photobioreactor and a 1250 L raceway pond with artificial illumination. Detailed studies were carried out on the effect of different media, carbon sources and illumination on omega-3 LC-PUFAs production by transgenic strain Pt_Elo5 and wild type P. tricornutum grown in 3.5 L bubble columns. The highest content of DHA (7.5% of total fatty acids, TFA) in transgenic strain was achieved in cultures grown in seawater salts, Instant Ocean (IO), supplemented with F/2 nutrients (F2N) under continuous light. After identifying the optimal conditions for omega-3 LC-PUFA accumulation in the small-scale experiments we compared EPA and DHA levels of the transgenic strain grown in a larger fence-style tubular photobioreactor and a raceway pond. We observed a significant production of DHA over EPA, generating an EPA/DPA/DHA profile of 8.7%/4.5%/12.3% of TFA in cells grown in a photobioreactor, equivalent to 6.4 μg/mg dry weight DHA in a mid-exponentially growing algal culture. Omega-3 LC-PUFAs production in a raceway pond at ambient temperature but supplemented with artificial illumination (110 μmol photons m-2s-1) on a 16:8h light:dark cycle, in natural seawater and F/2 nutrients was 24.8% EPA and 10.3% DHA. Transgenic strain grown in RP produced the highest levels of EPA (12.8%) incorporated in neutral lipids. However, the highest partitioning of DHA in neutral lipids was observed in cultures grown in PBR (7.1%). Our results clearly demonstrate the potential for the development of the transgenic Pt_Elo5 as a platform for the commercial production of EPA and DHA.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
60 |
15
|
Betancor MB, Sprague M, Montero D, Usher S, Sayanova O, Campbell PJ, Napier JA, Caballero MJ, Izquierdo M, Tocher DR. Replacement of Marine Fish Oil with de novo Omega-3 Oils from Transgenic Camelina sativa in Feeds for Gilthead Sea Bream (Sparus aurata L.). Lipids 2016; 51:1171-1191. [PMID: 27590240 PMCID: PMC5418318 DOI: 10.1007/s11745-016-4191-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/19/2016] [Indexed: 02/06/2023]
Abstract
Omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA) are essential components of the diet of all vertebrates. The major dietary source of n-3 LC-PUFA for humans has been fish and seafood but, paradoxically, farmed fish are also reliant on marine fisheries for fish meal and fish oil (FO), traditionally major ingredients of aquafeeds. Currently, the only sustainable alternatives to FO are vegetable oils, which are rich in C18 PUFA, but devoid of the eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) abundant in FO. Two new n-3 LC-PUFA sources obtained from genetically modified (GM) Camelina sativa containing either EPA alone (ECO) or EPA and DHA (DCO) were compared to FO and wild-type camelina oil (WCO) in juvenile sea bream. Neither ECO nor DCO had any detrimental effects on fish performance, although final weight of ECO-fed fish (117 g) was slightly lower than that of FO- and DCO-fed fish (130 and 127 g, respectively). Inclusion of the GM-derived oils enhanced the n-3 LC-PUFA content in fish tissues compared to WCO, although limited biosynthesis was observed indicating accumulation of dietary fatty acids. The expression of genes involved in several lipid metabolic processes, as well as fish health and immune response, in both liver and anterior intestine were altered in fish fed the GM-derived oils. This showed a similar pattern to that observed in WCO-fed fish reflecting the hybrid fatty acid profile of the new oils. Overall the data indicated that the GM-derived oils could be suitable alternatives to dietary FO in sea bream.
Collapse
|
Comparative Study |
9 |
58 |
16
|
Napier JA, Usher S, Haslam RP, Ruiz-Lopez N, Sayanova O. Transgenic plants as a sustainable, terrestrial source of fish oils. EUR J LIPID SCI TECH 2015; 117:1317-1324. [PMID: 26900346 PMCID: PMC4744972 DOI: 10.1002/ejlt.201400452] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 11/21/2022]
Abstract
An alternative, sustainable source of omega‐3 long chain polyunsaturated fatty acids is widely recognized as desirable, helping to reduce pressure on current sources (wild capture fisheries) and providing a de novo source of these health beneficial fatty acids. This review will consider the efforts and progress to develop transgenic plants as terrestrial sources of omega‐3 fish oils, focusing on recent developments and the possible explanations for advances in the field. We also consider the utility of such a source for use in aquaculture, since this industry is the major consumer of oceanic supplies of omega‐3 fish oils. Given the importance of the aquaculture industry in meeting global requirements for healthy foodstuffs, an alternative source of omega‐3 fish oils represents a potentially significant breakthrough for this production system.
Transgenic Camelina seeds engineered to accumulate the omega‐3 fatty acids EPA and DHA, represent a sustainable alternative to fish oils.
Collapse
|
Journal Article |
10 |
56 |
17
|
Dolch LJ, Rak C, Perin G, Tourcier G, Broughton R, Leterrier M, Morosinotto T, Tellier F, Faure JD, Falconet D, Jouhet J, Sayanova O, Beaudoin F, Maréchal E. A Palmitic Acid Elongase Affects Eicosapentaenoic Acid and Plastidial Monogalactosyldiacylglycerol Levels in Nannochloropsis. PLANT PHYSIOLOGY 2017; 173:742-759. [PMID: 27895203 PMCID: PMC5210741 DOI: 10.1104/pp.16.01420] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/24/2016] [Indexed: 05/03/2023]
Abstract
Nannochloropsis species are oleaginous eukaryotes containing a plastid limited by four membranes, deriving from a secondary endosymbiosis. In Nannochloropsis, thylakoid lipids, including monogalactosyldiacylglycerol (MGDG), are enriched in eicosapentaenoic acid (EPA). The need for EPA in MGDG is not understood. Fatty acids are de novo synthesized in the stroma, then converted into very-long-chain polyunsaturated fatty acids (FAs) at the endoplasmic reticulum (ER). The production of MGDG relies therefore on an EPA supply from the ER to the plastid, following an unknown process. We identified seven elongases and five desaturases possibly involved in EPA production in Nannochloropsis gaditana Among the six heterokont-specific saturated FA elongases possibly acting upstream in this pathway, we characterized the highly expressed isoform Δ0-ELO1 Heterologous expression in yeast (Saccharomyces cerevisiae) showed that NgΔ0-ELO1 could elongate palmitic acid. Nannochloropsis Δ0-elo1 mutants exhibited a reduced EPA level and a specific decrease in MGDG In NgΔ0-elo1 lines, the impairment of photosynthesis is consistent with a role of EPA-rich MGDG in nonphotochemical quenching control, possibly providing an appropriate MGDG platform for the xanthophyll cycle. Concomitantly with MGDG decrease, the level of triacylglycerol (TAG) containing medium chain FAs increased. In Nannochloropsis, part of EPA used for MGDG production is therefore biosynthesized by a channeled process initiated at the elongation step of palmitic acid by Δ0-ELO1, thus acting as a committing enzyme for galactolipid production. Based on the MGDG/TAG balance controlled by Δ0-ELO1, this study also provides novel prospects for the engineering of oleaginous microalgae for biotechnological applications.
Collapse
|
research-article |
8 |
53 |
18
|
Tonon T, Sayanova O, Michaelson LV, Qing R, Harvey D, Larson TR, Li Y, Napier JA, Graham IA. Fatty acid desaturases from the microalga Thalassiosira pseudonana. FEBS J 2005; 272:3401-12. [PMID: 15978045 DOI: 10.1111/j.1742-4658.2005.04755.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Analysis of a draft nuclear genome sequence of the diatom Thalassiosira pseudonana revealed the presence of 11 open reading frames showing significant similarity to functionally characterized fatty acid front-end desaturases. The corresponding genes occupy discrete chromosomal locations as determined by comparison with the recently published genome sequence. Phylogenetic analysis showed that two of the T. pseudonana desaturase (Tpdes) sequences grouped with proteobacterial desaturases that lack a fused cytochrome b5 domain. Among the nine remaining gene sequences, temporal expression analysis revealed that seven were expressed in T. pseudonana cells. One of these, TpdesN, was previously characterized as encoding a Delta11-desaturase active on palmitic acid. From the six remaining putative desaturase genes, we report here that three, TpdesI, TpdesO and TpdesK, respectively encode Delta6-, Delta5- and Delta4-desaturases involved in production of the health beneficial polyunsaturated fatty acid DHA (docosahexaenoic acid). Furthermore, we show that one of the remaining genes, TpdesB, encodes a Delta8-sphingolipid desaturase with strong preference for dihydroxylated substrates.
Collapse
|
|
20 |
51 |
19
|
Hamilton ML, Powers S, Napier JA, Sayanova O. Heterotrophic Production of Omega-3 Long-Chain Polyunsaturated Fatty Acids by Trophically Converted Marine Diatom Phaeodactylum tricornutum. Mar Drugs 2016; 14:md14030053. [PMID: 27005636 PMCID: PMC4820307 DOI: 10.3390/md14030053] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 11/25/2022] Open
Abstract
We have created via metabolic engineering a heterotrophic strain of Phaeodactylum tricornutum that accumulates enhanced levels of the high value omega-3 long chain polyunsaturated fatty acid (LC-PUFAs) docosahexaenoic acid (DHA). This was achieved by generation of transgenic strains in which the Δ5-elongase from Ostreococcus tauri was co-expressed with a glucose transporter from the moss Physcomitrella patens. This double transformant has the capacity to grow in the dark in liquid medium supplemented with glucose and accumulate substantial levels of omega-3 LC-PUFAs. The effects of glucose concentrations on growth and LC-PUFA production of wild type and transformed strains cultivated in the light and dark were studied. The highest omega-3 LC-PUFAs accumulation was observed in cultures grown under mixotrophic conditions in the presence of 1% glucose (up to 32.2% of total fatty acids, TFA). Both DHA and EPA are detected at high levels in the neutral lipids of transgenic cells grown under phototrophic conditions, averaging 36.5% and 23.6% of TFA, respectively. This study demonstrates the potential for P. tricornutum to be developed as a viable commercial strain for both EPA and DHA production under mixo- and heterotrophic conditions.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
51 |
20
|
Betancor MB, Sprague M, Sayanova O, Usher S, Campbell PJ, Napier JA, Caballero MJ, Tocher DR. Evaluation of a high-EPA oil from transgenic Camelina sativa in feeds for Atlantic salmon ( Salmo salar L.): Effects on tissue fatty acid composition, histology and gene expression. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2015; 444:1-12. [PMID: 26146421 PMCID: PMC4459488 DOI: 10.1016/j.aquaculture.2015.03.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 05/12/2023]
Abstract
Currently, one alternative for dietary fish oil (FO) in aquafeeds is vegetable oils (VO) that are devoid of omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFAs). Entirely new sources of n-3 LC-PUFA such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids through de novo production are a potential solution to fill the gap between supply and demand of these important nutrients. Camelina sativa was metabolically engineered to produce a seed oil (ECO) with > 20% EPA and its potential to substitute for FO in Atlantic salmon feeds was tested. Fish were fed with one of the three experimental diets containing FO, wild-type camelina oil (WCO) or ECO as the sole lipid sources for 7 weeks. Inclusion of ECO did not affect any of the performance parameters studied and enhanced apparent digestibility of individual n-6 and n-3 PUFA compared to dietary WCO. High levels of EPA were maintained in brain, liver and intestine (pyloric caeca), and levels of DPA and DHA were increased in liver and intestine of fish fed ECO compared to fish fed WCO likely due to increased LC-PUFA biosynthesis based on up-regulation of the genes. Fish fed ECO showed slight lipid accumulation within hepatocytes similar to that with WCO, although not significantly different to fish fed FO. The regulation of a small number of genes could be attributed to the specific effect of ECO (311 features) with metabolism being the most affected category. The EPA oil from transgenic Camelina (ECO) could be used as a substitute for FO, however it is a hybrid oil containing both FO (EPA) and VO (18:2n-6) fatty acid signatures that resulted in similarly mixed metabolic and physiological responses.
Collapse
|
|
10 |
50 |
21
|
Betancor MB, Sprague M, Sayanova O, Usher S, Metochis C, Campbell PJ, Napier JA, Tocher DR. Nutritional Evaluation of an EPA-DHA Oil from Transgenic Camelina sativa in Feeds for Post-Smolt Atlantic Salmon (Salmo salar L.). PLoS One 2016; 11:e0159934. [PMID: 27454884 PMCID: PMC4959691 DOI: 10.1371/journal.pone.0159934] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/11/2016] [Indexed: 01/30/2023] Open
Abstract
Vegetable oils (VO) are possible substitutes for fish oil in aquafeeds but their use is limited by their lack of omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA). However, oilseed crops can be modified to produce n-3 LC-PUFA such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, representing a potential option to fill the gap between supply and demand of these important nutrients. Camelina sativa was metabolically engineered to produce a seed oil with around 15% total n-3 LC-PUFA to potentially substitute for fish oil in salmon feeds. Post-smolt Atlantic salmon (Salmo salar) were fed for 11-weeks with one of three experimental diets containing either fish oil (FO), wild-type Camelina oil (WCO) or transgenic Camelina oil (DCO) as added lipid source to evaluate fish performance, nutrient digestibility, tissue n-3 LC-PUFA, and metabolic impact determined by liver transcriptome analysis. The DCO diet did not affect any of the performance or health parameters studied and enhanced apparent digestibility of EPA and DHA compared to the WCO diet. The level of total n-3 LC-PUFA was higher in all the tissues of DCO-fed fish than in WCO-fed fish with levels in liver similar to those in fish fed FO. Endogenous LC-PUFA biosynthetic activity was observed in fish fed both the Camelina oil diets as indicated by the liver transcriptome and levels of intermediate metabolites such as docosapentaenoic acid, with data suggesting that the dietary combination of EPA and DHA inhibited desaturation and elongation activities. Expression of genes involved in phospholipid and triacylglycerol metabolism followed a similar pattern in fish fed DCO and WCO despite the difference in n-3 LC-PUFA contents.
Collapse
|
research-article |
9 |
50 |
22
|
Usher S, Haslam RP, Ruiz-Lopez N, Sayanova O, Napier JA. Field trial evaluation of the accumulation of omega-3 long chain polyunsaturated fatty acids in transgenic Camelina sativa: Making fish oil substitutes in plants. Metab Eng Commun 2015; 2:93-98. [PMID: 27066395 PMCID: PMC4802427 DOI: 10.1016/j.meteno.2015.04.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/12/2015] [Accepted: 04/28/2015] [Indexed: 11/15/2022] Open
Abstract
The global consumption of fish oils currently exceeds one million tonnes, with the natural de novo source of these important fatty acids forming the base of marine foodwebs. Here we describe the first field-based evaluation of a terrestrial source of these essential nutrients, synthesised in the seeds of transgenic Camelina sativa plants via the heterologous reconstitution of the omega-3 long chain polyunsaturated fatty acid biosynthetic pathway. Our data demonstrate the robust nature of this novel trait, and the feasibility of making fish oils in genetically modified crops. Moreover, to our knowledge, this is the most complex example of plant genetic engineering to undergo environmental release and field evaluation.
First demonstration of field stability of EPA and DHA trait in transgenic plants. Most complex engineered plant trait to undergo field trialling to date. Demonstration of the feasibility of using agriculture to make fish oils.
Collapse
|
Journal Article |
10 |
49 |
23
|
Napier JA, Sayanova O. The production of very-long-chain PUFA biosynthesis in transgenic plants: towards a sustainable source of fish oils. Proc Nutr Soc 2007; 64:387-93. [PMID: 16048673 DOI: 10.1079/pns2005447] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
There is now considerable evidence of the importance of n-3 long-chain PUFA in human health and development. At the same time, the marine fish stocks that serve as the primary sources of these fatty acids are threatened by continued over-exploitation. Thus, there is an urgent need to provide a sustainable alternative source of the n-3 long-chain PUFA normally found in fish oils. The possibility of using transgenic plants genetically engineered to synthesise these important fatty acids has recently been demonstrated. The approaches taken to realise this outcome will be discussed, as will their prospects for providing a sustainable resource for the future.
Collapse
|
|
18 |
46 |
24
|
Popko J, Herrfurth C, Feussner K, Ischebeck T, Iven T, Haslam R, Hamilton M, Sayanova O, Napier J, Khozin-Goldberg I, Feussner I. Metabolome Analysis Reveals Betaine Lipids as Major Source for Triglyceride Formation, and the Accumulation of Sedoheptulose during Nitrogen-Starvation of Phaeodactylum tricornutum. PLoS One 2016; 11:e0164673. [PMID: 27736949 PMCID: PMC5063337 DOI: 10.1371/journal.pone.0164673] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/28/2016] [Indexed: 11/18/2022] Open
Abstract
Oleaginous microalgae are considered as a promising resource for the production of biofuels. Especially diatoms arouse interest as biofuel producers since they are most productive in carbon fixation and very flexible to environmental changes in the nature. Naturally, triacylglycerol (TAG) accumulation in algae only occurs under stress conditions like nitrogen-limitation. We focused on Phaeodactylum strain Pt4 (UTEX 646), because of its ability to grow in medium with low salinity and therefore being suited when saline water is less available or for wastewater cultivation strategies. Our data show an increase in neutral lipids during nitrogen-depletion and predominantly 16:0 and 16:1(n-7) accumulated in the TAG fraction. The molecular species composition of TAG suggests a remodeling primarily from the betaine lipid diacylglyceroltrimethylhomoserine (DGTS), but a contribution of the chloroplast galactolipid monogalactosyldiacylglycerol (MGDG) cannot be excluded. Interestingly, the acyl-CoA pool is rich in 20:5(n-3) and 22:6(n-3) in all analyzed conditions, but these fatty acids are almost excluded from TAG. Other metabolites most obviously depleted under nitrogen-starvation were amino acids, lyso-phospholipids and tricarboxylic acid (TCA) cycle intermediates, whereas sulfur-containing metabolites as dimethylsulfoniopropionate, dimethylsulfoniobutyrate and methylsulfate as well as short acyl chain carnitines, propanoyl-carnitine and butanoyl-carnitine increased upon nitrogen-starvation. Moreover, the Calvin cycle may be de-regulated since sedoheptulose accumulated after nitrogen-depletion. Together the data provide now the basis for new strategies to improve lipid production and storage in Phaeodactylum strain Pt4.
Collapse
|
Journal Article |
9 |
46 |
25
|
Sayanova O, Beaudoin F, Libisch B, Castel A, Shewry PR, Napier JA. Mutagenesis and heterologous expression in yeast of a plant Delta6-fatty acid desaturase. JOURNAL OF EXPERIMENTAL BOTANY 2001; 52:1581-1585. [PMID: 11457919 DOI: 10.1093/jexbot/52.360.1581] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Membrane-bound microsomal fatty acid desaturases are known to have three conserved histidine boxes, comprising a total of up to eight histidine residues. Recently, a number of deviations from this consensus have been reported, with the substitution of a glutamine for the first histidine residue of the third histidine box being present in the so called 'front end' desaturases. These enzymes are also characterized by the presence of a cytochrome b5 domain at the protein N-terminus. Site-directed mutagenesis has been used to probe the functional importance of a number of amino acid residues which comprise the third histidine box of a 'front end' desaturase, the borage Delta6-fatty acid desaturase. This showed that the variant glutamine in the third histidine box is essential for enzyme activity and that histidine is not able to substitute for this residue.
Collapse
|
|
24 |
46 |