Park B, Kim JY, Riffey OF, Walsh TJ, Johnson J, Donohoe DR. Crosstalk between butyrate oxidation in colonocyte and butyrate-producing bacteria.
iScience 2024;
27:110853. [PMID:
39310762 PMCID:
PMC11416512 DOI:
10.1016/j.isci.2024.110853]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/01/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
The composition of gut microbiota, including butyrate-producing bacteria (BPB), is influenced by diet and physiological conditions. As such, given the importance of butyrate as an energetic substrate in colonocytes, it is unclear whether utilization of this substrate by the host would enhance BPB levels, thus defining a host-microbiome mutualistic relationship based on cellular metabolism. Here, it is shown through using a mouse model that lacks short-chain acyl dehydrogenase (SCAD), which is the first enzyme in the beta-oxidation pathway for short-chain fatty acids (SCFAs), that there is a significant diminishment in BPB at the phylum, class, species, and genus level compared to mice that have SCAD. Furthermore, SCAD-deficient mice do not show a prebiotic response from dietary fiber. Thus, oxidation of SCFAs by the host, which includes butyrate, is important in promoting BPB. These data help define the functional importance of diet-microbiome-host interactions toward microbiome composition, as it relates to function.
Collapse