1
|
Debaene F, Bœuf A, Wagner-Rousset E, Colas O, Ayoub D, Corvaïa N, Van Dorsselaer A, Beck A, Cianférani S. Innovative Native MS Methodologies for Antibody Drug Conjugate Characterization: High Resolution Native MS and IM-MS for Average DAR and DAR Distribution Assessment. Anal Chem 2014; 86:10674-83. [DOI: 10.1021/ac502593n] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
|
11 |
132 |
2
|
Wagner-Rousset E, Janin-Bussat MC, Colas O, Excoffier M, Ayoub D, Haeuw JF, Rilatt I, Perez M, Corvaïa N, Beck A. Antibody-drug conjugate model fast characterization by LC-MS following IdeS proteolytic digestion. MAbs 2014; 6:273-85. [PMID: 24135617 PMCID: PMC3929440 DOI: 10.4161/mabs.26773] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Here we report the design and production of an antibody-fluorophore conjugate (AFC) as a non-toxic model of an antibody-drug conjugate (ADC). This AFC is based on the conjugation of dansyl sulfonamide ethyl amine (DSEA )-linker maleimide on interchain cysteines of trastuzumab used as a reference antibody. The resulting AFC was first characterized by routine analytical methods (SEC, SDS-PAGE, CE-SDS, HIC and native MS), resulting in similar chromatograms,electropherograms and mass spectra to those reported for hinge Cys-linked ADCs. IdeS digestion of the AFC was then performed, followed by reduction and analysis by liquid chromatography coupled to mass spectrometry analysis. Dye loading and distribution on light chain and Fd fragments were calculated, as well as the average dye to antibody ratio (DAR) for both monomeric and multimeric species. In addition, by analyzing the Fc fragment in the same run, full glycoprofiling and demonstration of the absence of additional conjugation was easily achieved. As for naked antibodies and Fc-fusion proteins, IdeS proteolytic digestion may rapidly become a reference analytical method at all stages of ADC discovery, preclinical and clinical development. The method can be routinely used for comparability assays, formulation, process scale-up and transfer, and to define critical quality attributes in a quality-by-design approach.
Collapse
|
Journal Article |
11 |
102 |
3
|
Marcoux J, Champion T, Colas O, Wagner-Rousset E, Corvaïa N, Van Dorsselaer A, Beck A, Cianférani S. Native mass spectrometry and ion mobility characterization of trastuzumab emtansine, a lysine-linked antibody drug conjugate. Protein Sci 2015; 24:1210-23. [PMID: 25694334 DOI: 10.1002/pro.2666] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/12/2015] [Accepted: 02/12/2015] [Indexed: 01/08/2023]
Abstract
Antibody-drug conjugates (ADCs) are biochemotherapeutics consisting of a cytotoxic chemical drug linked covalently to a monoclonal antibody. Two main classes of ADCs, namely cysteine and lysine conjugates, are currently available on the market or involved in clinical trials. The complex structure and heterogeneity of ADCs makes their biophysical characterization challenging. For cysteine conjugates, hydrophobic interaction chromatography is the gold standard technique for studying drug distribution, the naked antibody content, and the average drug to antibody ratio (DAR). For lysine ADC conjugates on the other hand, which are not amenable to hydrophobic interaction chromatography because of their higher heterogeneity, denaturing mass spectrometry (MS) and UV/Vis spectroscopy are the most powerful approaches. We report here the use of native MS and ion mobility (IM-MS) for the characterization of trastuzumab emtansine (T-DM1, Kadcyla(®)). This lysine conjugate is currently being considered for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer, and combines the anti-HER2 antibody trastuzumab (Herceptin(®)), with the cytotoxic microtubule-inhibiting maytansine derivative, DM1. We show that native MS combined with high-resolution measurements and/or charge reduction is beneficial in terms of the accurate values it provides of the average DAR and the drug load profiles. The use of spectral deconvolution is discussed in detail. We report furthermore the use of native IM-MS to directly determine DAR distribution profiles and average DAR values, as well as a molecular modeling investigation of positional isomers in T-DM1.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
96 |
4
|
Beck A, Debaene F, Diemer H, Wagner-Rousset E, Colas O, Van Dorsselaer A, Cianférani S. Cutting-edge mass spectrometry characterization of originator, biosimilar and biobetter antibodies. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:285-297. [PMID: 25800010 DOI: 10.1002/jms.3554] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/18/2014] [Accepted: 11/24/2014] [Indexed: 06/04/2023]
Abstract
The approval process for antibody biosimilars relies primarily on comprehensive analytical data to establish comparability and high similarity with the originator. Mass spectrometry (MS) in combination with liquid chromatography (LC) and electrophoretic methods are the corner stone for comparability and biosimilarity evaluation. In this special feature we report head-to-head comparison of trastuzumab and cetuximab with corresponding biosimilar and biobetter candidates based on cutting-edge mass spectrometry techniques such as native MS and ion-mobility MS at different levels (top, middle and bottom). In addition, we discuss the advantages and the limitations of sample preparation and enzymatic digestion, middle-up and -down strategies and the use of hydrogen/deuterium exchange followed by MS (HDX-MS). Last but not least, emerging separation methods combined to MS such as capillary zone electrophoresis-tandem MS (CESI-MS/MS), electron transfer dissociation (ETD), top down-sequencing (TDS) and high-resolution MS (HR-MS) that complete the panel of state-of-the-art MS-based options for comparability and biosimilarity evaluation are presented.
Collapse
|
|
10 |
94 |
5
|
Beck A, Terral G, Debaene F, Wagner-Rousset E, Marcoux J, Janin-Bussat MC, Colas O, Van Dorsselaer A, Cianférani S. Cutting-edge mass spectrometry methods for the multi-level structural characterization of antibody-drug conjugates. Expert Rev Proteomics 2016; 13:157-83. [PMID: 26653789 DOI: 10.1586/14789450.2016.1132167] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Antibody drug conjugates (ADCs) are highly cytotoxic drugs covalently attached via conditionally stable linkers to monoclonal antibodies (mAbs) and are among the most promising next-generation empowered biologics for cancer treatment. ADCs are more complex than naked mAbs, as the heterogeneity of the conjugates adds to the inherent microvariability of the biomolecules. The development and optimization of ADCs rely on improving their analytical and bioanalytical characterization by assessing several critical quality attributes, namely the distribution and position of the drug, the amount of naked antibody, the average drug to antibody ratio, and the residual drug-linker and related product proportions. Here brentuximab vedotin (Adcetris) and trastuzumab emtansine (Kadcyla), the first and gold-standard hinge-cysteine and lysine drug conjugates, respectively, were chosen to develop new mass spectrometry (MS) methods and to improve multiple-level structural assessment protocols.
Collapse
|
Review |
9 |
86 |
6
|
Wagner-Rousset E, Bednarczyk A, Bussat MC, Colas O, Corvaïa N, Schaeffer C, Van Dorsselaer A, Beck A. The way forward, enhanced characterization of therapeutic antibody glycosylation: comparison of three level mass spectrometry-based strategies. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 872:23-37. [PMID: 18672411 DOI: 10.1016/j.jchromb.2008.03.032] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 01/28/2008] [Accepted: 03/29/2008] [Indexed: 12/11/2022]
Abstract
Glycosylation which plays a crucial role in the pharmacological properties of therapeutic monoclonal antibodies (MAbs) is influenced by several factors like production systems, selected clonal population and manufacturing processes. Efficient analytical methods are therefore required in order to characterize glycosylation at different stages of MAbs discovery and production. Three mass spectrometry (MS)-based strategies were compared to analyze N-glycosylation of MAbs either expressed in murine myeloma (NS0) or Chinese Hamster Ovary (CHO) cell lines, the two current main production systems used for therapeutic MAbs. First a top-down approach was used on intact and reduced MAbs by liquid chromatography coupled to an electrospray ionization-time of flight mass spectrometer (LC-ESI-TOF), which provided fast and accurate profiles of MAbs glycosylation patterns for routine controls. Secondly, after digestion of the antibody with the peptide N-glycosidase F (PNGase F) enzyme, released N-linked glycans were directly analyzed by electrospray ionization-tandem mass spectrometry (ESI-MS/MS) without any prior derivatization, which gave precise details on the structure of the most abundant glycoforms. Finally, a bottom-up approach on tryptic glycopeptides using a nanoLC-Chip-MS/MS ion trap (IT) system equipped with a graphitized carbon column was investigated. Data were compared to those obtained with a more classical C18 reversed phase column showing that this last method is well suited to detect low abundant glycoforms and to provide in one shot information regarding both the oligosaccharide structure and the amino acid sequence of its peptide moiety.
Collapse
|
Journal Article |
17 |
78 |
7
|
Ehkirch A, D’Atri V, Rouviere F, Hernandez-Alba O, Goyon A, Colas O, Sarrut M, Beck A, Guillarme D, Heinisch S, Cianferani S. An Online Four-Dimensional HIC×SEC-IM×MS Methodology for Proof-of-Concept Characterization of Antibody Drug Conjugates. Anal Chem 2018; 90:1578-1586. [DOI: 10.1021/acs.analchem.7b02110] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
|
7 |
57 |
8
|
Debaene F, Wagner-Rousset E, Colas O, Ayoub D, Corvaïa N, Van Dorsselaer A, Beck A, Cianférani S. Time Resolved Native Ion-Mobility Mass Spectrometry to Monitor Dynamics of IgG4 Fab Arm Exchange and “Bispecific” Monoclonal Antibody Formation. Anal Chem 2013; 85:9785-92. [DOI: 10.1021/ac402237v] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
|
12 |
57 |
9
|
Goyon A, D’Atri V, Colas O, Fekete S, Beck A, Guillarme D. Characterization of 30 therapeutic antibodies and related products by size exclusion chromatography: Feasibility assessment for future mass spectrometry hyphenation. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1065-1066:35-43. [DOI: 10.1016/j.jchromb.2017.09.027] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/12/2017] [Accepted: 09/17/2017] [Indexed: 11/30/2022]
|
|
8 |
57 |
10
|
Ehkirch A, Hernandez-Alba O, Colas O, Beck A, Guillarme D, Cianférani S. Hyphenation of size exclusion chromatography to native ion mobility mass spectrometry for the analytical characterization of therapeutic antibodies and related products. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1086:176-183. [DOI: 10.1016/j.jchromb.2018.04.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 01/06/2023]
|
|
7 |
56 |
11
|
Goyon A, Beck A, Colas O, Sandra K, Guillarme D, Fekete S. Evaluation of size exclusion chromatography columns packed with sub-3μm particles for the analysis of biopharmaceutical proteins. J Chromatogr A 2016; 1498:80-89. [PMID: 27914608 DOI: 10.1016/j.chroma.2016.11.056] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/11/2016] [Accepted: 11/26/2016] [Indexed: 11/19/2022]
Abstract
The aim of this study was to evaluate the practical possibilities and limitations of several recently introduced size exclusion chromatographic (SEC) columns of 150×4.6mm, sub-3μm (Agilent AdvanceBioSEC 2.7μm, Tosoh TSKgel UP-SW3000 2.0μm, Phenomenex Yarra SEC X-150 1.8μm and Waters Acquity BEH200 1.7μm) for the separation of biopharmaceutical proteins. For this purpose, some model proteins were tested, as well as several commercial therapeutic monoclonal antibodies (mAbs) and antibody-drug-conjugates (ADCs). Calibration curves were drawn to highlight the applicability of these new SEC columns for the separation of mAbs, ADCs and their aggregates, despite some differences in their nominal pore diameter (vary from 150 to 300Å). The kinetic performance (van Deemter curves and kinetic pots) was evaluated. Columns packed with 1.7-2.0μm particles improved the plate count by a factor of 1.5-2 compared to 2.7μm particles, which is in agreement with theoretical expectations. Finally, possible secondary hydrophobic and/or electrostatic interactions between the SEC stationary phases and biopharmaceutical proteins were systematically studied. Significant differences in nonspecific interactions were observed, with hydrophobic interactions generally exerting more influence than electrostatic interactions. The use of a novel bond chemistry with the AdvanceBioSEC column was found highly effective to limit non-specific interactions and pave the way to further improvements for column provider. At the end, the average resolutions achieved on the four sub-3μm SEC columns between monomer and dimer structures were comparable for ten approved mAbs products.
Collapse
|
Journal Article |
9 |
55 |
12
|
Resemann A, Jabs W, Wiechmann A, Wagner E, Colas O, Evers W, Belau E, Vorwerg L, Evans C, Beck A, Suckau D. Full validation of therapeutic antibody sequences by middle-up mass measurements and middle-down protein sequencing. MAbs 2016; 8:318-30. [PMID: 26760197 PMCID: PMC4966597 DOI: 10.1080/19420862.2015.1128607] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The regulatory bodies request full sequence data assessment both for innovator and biosimilar monoclonal antibodies (mAbs). Full sequence coverage is typically used to verify the integrity of the analytical data obtained following the combination of multiple LC-MS/MS datasets from orthogonal protease digests (so called “bottom-up” approaches). Top-down or middle-down mass spectrometric approaches have the potential to minimize artifacts, reduce overall analysis time and provide orthogonality to this traditional approach. In this work we report a new combined approach involving middle-up LC-QTOF and middle-down LC-MALDI in-source decay (ISD) mass spectrometry. This was applied to cetuximab, panitumumab and natalizumab, selected as representative US Food and Drug Administration- and European Medicines Agency-approved mAbs. The goal was to unambiguously confirm their reference sequences and examine the general applicability of this approach. Furthermore, a new measure for assessing the integrity and validity of results from middle-down approaches is introduced – the “Sequence Validation Percentage.” Full sequence data assessment of the 3 antibodies was achieved enabling all 3 sequences to be fully validated by a combination of middle-up molecular weight determination and middle-down protein sequencing. Three errors in the reference amino acid sequence of natalizumab, causing a cumulative mass shift of only −2 Da in the natalizumab Fd domain, were corrected as a result of this work.
Collapse
|
Journal Article |
9 |
51 |
13
|
Bobaly B, D'Atri V, Goyon A, Colas O, Beck A, Fekete S, Guillarme D. Protocols for the analytical characterization of therapeutic monoclonal antibodies. II - Enzymatic and chemical sample preparation. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1060:325-335. [PMID: 28666223 DOI: 10.1016/j.jchromb.2017.06.036] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/15/2017] [Accepted: 06/18/2017] [Indexed: 01/06/2023]
Abstract
The analytical characterization of therapeutic monoclonal antibodies and related proteins usually incorporates various sample preparation methodologies. Indeed, quantitative and qualitative information can be enhanced by simplifying the sample, thanks to the removal of sources of heterogeneity (e.g. N-glycans) and/or by decreasing the molecular size of the tested protein by enzymatic or chemical fragmentation. These approaches make the sample more suitable for chromatographic and mass spectrometric analysis. Structural elucidation and quality control (QC) analysis of biopharmaceutics are usually performed at intact, subunit and peptide levels. In this paper, general sample preparation approaches used to attain peptide, subunit and glycan level analysis are overviewed. Protocols are described to perform tryptic proteolysis, IdeS and papain digestion, reduction as well as deglycosylation by PNGase F and EndoS2 enzymes. Both historical and modern sample preparation methods were compared and evaluated using rituximab and trastuzumab, two reference therapeutic mAb products approved by Food and Drug Administration (FDA) and European Medicines Agency (EMA). The described protocols may help analysts to develop sample preparation methods in the field of therapeutic protein analysis.
Collapse
|
Journal Article |
8 |
51 |
14
|
Giorgetti J, D'Atri V, Canonge J, Lechner A, Guillarme D, Colas O, Wagner-Rousset E, Beck A, Leize-Wagner E, François YN. Monoclonal antibody N-glycosylation profiling using capillary electrophoresis - Mass spectrometry: Assessment and method validation. Talanta 2017; 178:530-537. [PMID: 29136858 DOI: 10.1016/j.talanta.2017.09.083] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/20/2017] [Accepted: 09/28/2017] [Indexed: 01/08/2023]
Abstract
Characterization of therapeutic proteins represents a major challenge for analytical sciences due to their heterogeneity caused by post-translational modifications (PTM). Among these PTM, glycosylation which is possibly the most prominent, require comprehensive identification because of their major influence on protein structure and effector functions of monoclonal antibodies (mAbs). As a consequence, glycosylation profiling must be deeply characterized. For this application, several analytical methods such as separation-based or MS-based methods, were evaluated. However, no CE-ESI-MS approach has been assessed and validated. Here, we illustrate how the use of CE-ESI-MS method permits the comprehensive characterization of mAbs N-glycosylation at the glycopeptide level to perform relative quantitation of N-glycan species. Validation of the CE-ESI-MS method in terms of robustness and reproducibility was demonstrated through the relative quantitation of glycosylation profiles for ten different mAbs produced in different cell lines. Glycosylation patterns obtained for each mAbs were compared to Hydrophilic Interaction Chromatography of 2-aminobenzamide labelled glycans with fluorescence detector (HILIC-FD) analysis considered as a reference method. Very similar glycoprofiling were obtained with the CE-ESI-MS and HILIC-FD demonstrating the attractiveness of CE-ESI-MS method to characterize and quantify the glycosylation heterogeneity of a wide range of therapeutic mAbs with high accuracy and precision.
Collapse
|
Journal Article |
8 |
45 |
15
|
Botzanowski T, Erb S, Hernandez-Alba O, Ehkirch A, Colas O, Wagner-Rousset E, Rabuka D, Beck A, Drake PM, Cianférani S. Insights from native mass spectrometry approaches for top- and middle- level characterization of site-specific antibody-drug conjugates. MAbs 2017; 9:801-811. [PMID: 28406343 DOI: 10.1080/19420862.2017.1316914] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Antibody-drug conjugates (ADCs) have emerged as a family of compounds with promise as efficient immunotherapies. First-generation ADCs were generated mostly via reactions on either lysine side-chain amines or cysteine thiol groups after reduction of the interchain disulfide bonds, resulting in heterogeneous populations with a variable number of drug loads per antibody. To control the position and the number of drug loads, new conjugation strategies aiming at the generation of more homogeneous site-specific conjugates have been developed. We report here the first multi-level characterization of a site-specific ADC by state-of-the-art mass spectrometry (MS) methods, including native MS and its hyphenation to ion mobility (IM-MS). We demonstrate the versatility of native MS methodologies for site-specific ADC analysis, with the unique ability to provide several critical quality attributes within one single run, along with a direct snapshot of ADC homogeneity/heterogeneity without extensive data interpretation. The capabilities of native IM-MS to directly access site-specific ADC conformational information are also highlighted. Finally, the potential of these techniques for assessing an ADC's heterogeneity/homogeneity is illustrated by comparing the analytical characterization of a site-specific DAR4 ADC to that of first-generation ADCs. Altogether, our results highlight the compatibility, versatility, and benefits of native MS approaches for the analytical characterization of all types of ADCs, including site-specific conjugates. Thus, we envision integrating native MS and IM-MS approaches, even in their latest state-of-the-art forms, into workflows that benchmark bioconjugation strategies.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
40 |
16
|
Ayoub D, Bertaccini D, Diemer H, Wagner-Rousset E, Colas O, Cianférani S, Van Dorsselaer A, Beck A, Schaeffer-Reiss C. Characterization of the N-Terminal Heterogeneities of Monoclonal Antibodies Using In-Gel Charge Derivatization of α-Amines and LC-MS/MS. Anal Chem 2015; 87:3784-90. [DOI: 10.1021/ac504427k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
|
10 |
26 |
17
|
Sarrut M, Fekete S, Janin-Bussat MC, Colas O, Guillarme D, Beck A, Heinisch S. Analysis of antibody-drug conjugates by comprehensive on-line two-dimensional hydrophobic interaction chromatography x reversed phase liquid chromatography hyphenated to high resolution mass spectrometry. II- Identification of sub-units for the characterization of even and odd load drug species. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1032:91-102. [DOI: 10.1016/j.jchromb.2016.06.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/20/2016] [Accepted: 06/27/2016] [Indexed: 12/22/2022]
|
|
9 |
22 |
18
|
Wagner-Rousset E, Fekete S, Morel-Chevillet L, Colas O, Corvaïa N, Cianférani S, Guillarme D, Beck A. Development of a fast workflow to screen the charge variants of therapeutic antibodies. J Chromatogr A 2017; 1498:147-154. [DOI: 10.1016/j.chroma.2017.02.065] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 01/13/2017] [Accepted: 02/26/2017] [Indexed: 12/20/2022]
|
|
8 |
21 |
19
|
Goyon A, Francois YN, Colas O, Beck A, Veuthey JL, Guillarme D. High-resolution separation of monoclonal antibodies mixtures and their charge variants by an alternative and generic CZE method. Electrophoresis 2018; 39:2083-2090. [DOI: 10.1002/elps.201800131] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/27/2018] [Accepted: 05/07/2018] [Indexed: 11/06/2022]
|
|
7 |
21 |
20
|
Wagner E, Colas O, Chenu S, Goyon A, Murisier A, Cianferani S, François Y, Fekete S, Guillarme D, D’Atri V, Beck A. Determination of size variants by CE-SDS for approved therapeutic antibodies: Key implications of subclasses and light chain specificities. J Pharm Biomed Anal 2020; 184:113166. [DOI: 10.1016/j.jpba.2020.113166] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/06/2020] [Accepted: 02/09/2020] [Indexed: 12/27/2022]
|
|
5 |
19 |
21
|
Deslignière E, Botzanowski T, Diemer H, Cooper-Shepherd DA, Wagner-Rousset E, Colas O, Béchade G, Giles K, Hernandez-Alba O, Beck A, Cianférani S. High-Resolution IMS-MS to Assign Additional Disulfide Bridge Pairing in Complementarity-Determining Regions of an IgG4 Monoclonal Antibody. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2505-2512. [PMID: 34437803 DOI: 10.1021/jasms.1c00151] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Monoclonal antibodies (mAbs) have taken on an increasing importance for the treatment of various diseases, including cancers and immunological disorders. Disulfide bonds play a pivotal role in therapeutic antibody structure and activity relationships. Disulfide connectivity and cysteine-related variants are considered as critical quality attributes that must be monitored during mAb manufacturing and storage, as non-native disulfide bridges and aggregates might be responsible for loss of biological function and immunogenicity. The presence of cysteine residues in the complementarity-determining regions (CDRs) is rare in human antibodies but may be critical for the antigen-binding or deleterious for therapeutic antibody development. Consequently, in-depth characterization of their disulfide network is a prerequisite for mAb developability assessment. Mass spectrometry (MS) techniques represent powerful tools for accurate identification of disulfide connectivity. We report here on the MS-based characterization of an IgG4 comprising two additional cysteine residues in the CDR of its light chain. Classical bottom-up approaches after trypsin digestion first allowed identification of a dipeptide containing two disulfide bridges. To further investigate the conformational heterogeneity of the disulfide-bridged dipeptide, we performed ion mobility spectrometry-mass spectrometry (IMS-MS) experiments. Our results highlight benefits of high resolution IMS-MS to tackle the conformational landscape of disulfide peptides generated after trypsin digestion of a humanized IgG4 mAb under development. By comparing arrival time distributions of the mAb-collected and synthetic peptides, cyclic IMS afforded unambiguous assessment of disulfide bonds. In addition to classical peptide mapping, qualitative high-resolution IMS-MS can be of great interest to identify disulfide bonds within therapeutic mAbs.
Collapse
|
|
4 |
17 |
22
|
Botzanowski T, Hernandez-Alba O, Malissard M, Wagner-Rousset E, Deslignière E, Colas O, Haeuw JF, Beck A, Cianférani S. Middle Level IM–MS and CIU Experiments for Improved Therapeutic Immunoglobulin Subclass Fingerprinting. Anal Chem 2020; 92:8827-8835. [DOI: 10.1021/acs.analchem.0c00293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
|
5 |
8 |
23
|
Butré CI, D'Atri V, Diemer H, Colas O, Wagner E, Beck A, Cianferani S, Guillarme D, Delobel A. Interlaboratory Evaluation of a User-Friendly Benchtop Mass Spectrometer for Multiple-Attribute Monitoring Studies of a Monoclonal Antibody. Molecules 2023; 28:molecules28062855. [PMID: 36985827 PMCID: PMC10053224 DOI: 10.3390/molecules28062855] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
In the quest to market increasingly safer and more potent biotherapeutic proteins, the concept of the multi-attribute method (MAM) has emerged from biopharmaceutical companies to boost the quality-by-design process development. MAM strategies rely on state-of-the-art analytical workflows based on liquid chromatography coupled to mass spectrometry (LC-MS) to identify and quantify a selected series of critical quality attributes (CQA) in a single assay. Here, we aimed at evaluating the repeatability and robustness of a benchtop LC-MS platform along with bioinformatics data treatment pipelines for peptide mapping-based MAM studies using standardized LC-MS methods, with the objective to benchmark MAM methods across laboratories, taking nivolumab as a case study. Our results evidence strong interlaboratory consistency across LC-MS platforms for all CQAs (i.e., deamidation, oxidation, lysine clipping and glycosylation). In addition, our work uniquely highlights the crucial role of bioinformatics postprocessing in MAM studies, especially for low-abundant species quantification. Altogether, we believe that MAM has fostered the development of routine, robust, easy-to-use LC-MS platforms for high-throughput determination of major CQAs in a regulated environment.
Collapse
|
|
2 |
8 |
24
|
Terral G, Champion T, Debaene F, Colas O, Bourguet M, Wagner-Rousset E, Corvaia N, Beck A, Cianferani S. Epitope characterization of anti-JAM-A antibodies using orthogonal mass spectrometry and surface plasmon resonance approaches. MAbs 2017; 9:1317-1326. [PMID: 28933642 DOI: 10.1080/19420862.2017.1380762] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Junctional adhesion molecule-A (JAM-A) is an adherens and tight junction protein expressed by endothelial and epithelial cells and associated with cancer progression. We present here the extensive characterization of immune complexes involving JAM-A antigen and three monoclonal antibodies (mAbs), including hz6F4-2, a humanized version of anti-tumoral 6F4 mAb identified by a functional and proteomic approach in our laboratory. A specific workflow that combines orthogonal approaches has been designed to determine binding stoichiometries along with JAM-A epitope mapping determination at high resolution for these three mAbs. Native mass spectrometry experiments revealed different binding stoichiometries and affinities, with two molecules of JAM-A being able to bind to hz6F4-2 and F11 Fab, while only one JAM-A was bound to J10.4. Surface plasmon resonance indirect competitive binding assays suggested epitopes located in close proximity for hz6F4-2 and F11. Finally, hydrogen-deuterium exchange mass spectrometry was used to precisely identify epitopes for all mAbs. The results obtained by orthogonal biophysical approaches showed a clear correlation between the determined epitopes and JAM-A binding characteristics, allowing the basis for molecular recognition of JAM-A by hz6F4-2 to be definitively established for the first time. Taken together, our results highlight the power of MS-based structural approaches for epitope mapping and mAb conformational characterization.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
7 |
25
|
Lardeux H, Duivelshof BL, Colas O, Beck A, McCalley DV, Guillarme D, D’Atri V. Alternative mobile phase additives for the characterization of protein biopharmaceuticals in liquid chromatography – Mass spectrometry. Anal Chim Acta 2021; 1156:338347. [DOI: 10.1016/j.aca.2021.338347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
|
|
4 |
4 |