1
|
Gobbo OL, Sjaastad K, Radomski MW, Volkov Y, Prina-Mello A. Magnetic Nanoparticles in Cancer Theranostics. Theranostics 2015; 5:1249-63. [PMID: 26379790 PMCID: PMC4568452 DOI: 10.7150/thno.11544] [Citation(s) in RCA: 269] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 07/15/2015] [Indexed: 12/18/2022] Open
Abstract
In a report from 2008, The International Agency for Research on Cancer predicted a tripled cancer incidence from 1975, projecting a possible 13-17 million cancer deaths worldwide by 2030. While new treatments are evolving and reaching approval for different cancer types, the main prevention of cancer mortality is through early diagnosis, detection and treatment of malignant cell growth. The last decades have seen a development of new imaging techniques now in widespread clinical use. The development of nano-imaging through fluorescent imaging and magnetic resonance imaging (MRI) has the potential to detect and diagnose cancer at an earlier stage than with current imaging methods. The characteristic properties of nanoparticles result in their theranostic potential allowing for simultaneous detection of and treatment of the disease. This review provides state of the art of the nanotechnological applications for cancer therapy. Furthermore, it advances a novel concept of personalized nanomedical theranostic therapy using iron oxide magnetic nanoparticles in conjunction with MRI imaging. Regulatory and industrial perspectives are also included to outline future perspectives in nanotechnological cancer research.
Collapse
|
Review |
10 |
269 |
2
|
Gobbo OL, O'Mara SM. Impact of enriched-environment housing on brain-derived neurotrophic factor and on cognitive performance after a transient global ischemia. Behav Brain Res 2004; 152:231-41. [PMID: 15196790 DOI: 10.1016/j.bbr.2003.10.017] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2003] [Revised: 10/01/2003] [Accepted: 10/04/2003] [Indexed: 10/26/2022]
Abstract
Environmental enrichment promotes structural and functional changes in the brain, including enhanced learning and memory performance in rodents. Transient global cerebral ischemia (15 min) causes specific damage to dorsal hippocampal area CA1 pyramidal cells of the rat concomitantly with cognitive deficits. Thus, we investigated if environmental enrichment can protect rats against the cognitive and neurological consequences of transient ischemia. We evaluated the impairment of learning and memory with three tasks: odour discrimination, object exploration and spatial learning. Contrary to expectation, we found that the enriched environment improved performances for both ischemic and sham rats in odour discrimination and object exploration tasks compared with standard condition housed rats. After exposure to an enriched environment, ischemic rats performed better in the water maze than those in the standard housing conditions. However, exposure to an enriched environment does not protect against actual loss of CA1 pyramidal cells. Brain-derived neurotrophic factor (BDNF) levels were increased in environmental enrichment animals compared to those housed in standard conditions. We conclude that environmental enrichment has positive effects that are independent of the effects of ischemic brain lesions.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
120 |
3
|
Campbell M, Hanrahan F, Gobbo OL, Kelly ME, Kiang AS, Humphries MM, Nguyen AT, Ozaki E, Keaney J, Blau CW, Kerskens CM, Cahalan SD, Callanan JJ, Wallace E, Grant GA, Doherty CP, Humphries P. Targeted suppression of claudin-5 decreases cerebral oedema and improves cognitive outcome following traumatic brain injury. Nat Commun 2012; 3:849. [DOI: 10.1038/ncomms1852] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 04/18/2012] [Indexed: 02/04/2023] Open
|
|
13 |
86 |
4
|
Gobbo OL, O'Mara SM. Exercise, but not environmental enrichment, improves learning after kainic acid-induced hippocampal neurodegeneration in association with an increase in brain-derived neurotrophic factor. Behav Brain Res 2004; 159:21-6. [PMID: 15794993 DOI: 10.1016/j.bbr.2004.09.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Revised: 09/24/2004] [Accepted: 09/29/2004] [Indexed: 11/17/2022]
Abstract
Previous studies have suggested that exercise in a running wheel can be neuroprotective, perhaps due to, among others, gene-expression changes after exercise, increases in trophic proteins and/or enhanced cardiovascular responsivity. Here we ask whether physical exercise or environmental enrichment provide protection after brain damage, especially in terms of recovery of cognitive function. To evaluate the neuroprotective effect of these conditions, we used the kainic acid (KA) model of neuronal injury. Systemically-administered KA induces excitotoxicity by overstimulation of glutamate receptors, resulting in neuronal death by necrosis and apoptosis. Our results show that exercise, but not enriched environment, prior to KA-induced brain damage, improved behavioural performance in both Morris watermaze and object exploration tasks. However, prior exercise did not decrease to control levels the hyperactivity normally seen in KA-treated animals, as measured by ambulation in the open field. Furthermore, both exercise and enriched environment did not protect against neuron loss in CA1, CA2 and CA3 areas of the hippocampus, despite a substantial increase in brain-derived neutrophic factor (BDNF) levels in dentate gyrus of the exercise and KA-treated animals.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
84 |
5
|
Gobbo OL, O'Mara SM. Post-treatment, but not pre-treatment, with the selective cyclooxygenase-2 inhibitor celecoxib markedly enhances functional recovery from kainic acid-induced neurodegeneration. Neuroscience 2004; 125:317-27. [PMID: 15062975 DOI: 10.1016/j.neuroscience.2004.01.045] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2004] [Indexed: 11/29/2022]
Abstract
We have investigated the role of inflammation in the excitotoxicity induced by overstimulation of glutamate receptors using kainic acid, an important tool for studying functions related to excitatory amino acid transmission and for producing neuronal death, especially in areas CA1 and CA3 of the hippocampus. We hypothesised that by inhibiting one of the major components of the neuroinflammation response, after kainic acid injection, that there would be less inflammation and therefore a reduction in cell loss, an enhancement of cognitive function (using spatial learning and object exploration tasks) or both. We examined brain-derived neurotrophic factor levels, expecting that there would be a correlation between its level and subsequent recovery. Our results confirmed our hypothesis: the kainic acid injected-rats treated with celecoxib (after kainic injection) performed better in the spatial and non-spatial tasks than the kainic acid-treated group. However, there was not any improvement if celecoxib was given before kainic acid treatment, underlining also the importance of the production of prostaglandin at the beginning of inflammation.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
77 |
6
|
Piot-Grosjean O, Wahl F, Gobbo O, Stutzmann JM. Assessment of sensorimotor and cognitive deficits induced by a moderate traumatic injury in the right parietal cortex of the rat. Neurobiol Dis 2001; 8:1082-93. [PMID: 11741403 DOI: 10.1006/nbdi.2001.0450] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to set-up a battery of behavioral tests to assess sensorimotor and cognitive deficits following a moderate traumatic brain injury (TBI) in rats. Coordinated walking ability was evaluated in an accelerated rotarod test. Vestibulomotor function and fine motor coordination were assessed by using a beam-walking task. Rotarod and beam-walking performances were both altered in injured rats compared to sham-operated and control rats. A more pronounced and longer-lasting deficit was measured in the beam-walking test. Cognitive function was studied by using the Lashley maze paradigm. A spatial localization deficit was significant for 4 weeks posttrauma in TBI rats. The beam-walking task and the Lashley maze are robust and sensitive methods in detecting sensorimotor and cognitive impairment after TBI in rats, respectively. These tests are proposed for evaluating the ability of new pharmacological agents to improve the functional recovery after a TBI in rats.
Collapse
|
|
24 |
52 |
7
|
Gaspar MM, Radomska A, Gobbo OL, Bakowsky U, Radomski MW, Ehrhardt C. Targeted delivery of transferrin-conjugated liposomes to an orthotopic model of lung cancer in nude rats. J Aerosol Med Pulm Drug Deliv 2012; 25:310-8. [PMID: 22857016 DOI: 10.1089/jamp.2011.0928] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer death worldwide. Pulmonary anticancer therapy might offer several advantages over systemic delivery, leading to an increased exposure of the lung tumor to the drug, while minimizing side effects, due to regional containment. Here, we studied if a combination of inhalation therapy and drug targeting holds potential as an even more efficient lung cancer therapy. METHODS Transferrin (Tf )-conjugated PEG liposomes loaded with doxorubicin (DOX) were administered using an intracorporeal nebulizing catheter to an orthotopic lung cancer model established in athymic Rowett nude rats. Different DOX formulations and doses (0.2 and 0.4 mg/kg) were tested and the influence on tumor progression and life span of rats was evaluated in comparison with the i.v. administration of Tf-PEG-liposomes loaded with DOX at a therapeutic dose of 2 mg/kg. RESULTS Rats in the untreated control group showed significant weight loss 2 weeks after tumor induction and died between days 19 and 29. Lungs of these animals showed multiple foci of neoplastic deposits, ranging up to 20 mm replacing the entire lobe. Empty Tf-liposomes showed a significant effect on survival time. This might be caused by the secondary cytotoxicity via stimulation of pulmonary macrophages. All animal treated intravenously also perished before the end of the study. No significant (p<0.05) improvement in survival was observed between the groups treated with aerosols of free drug, DOX encapsulated in plain and in Tf-modified liposomes. However, more animals survived in the Tf-liposome groups than in the other treatment regimes, and their lung tissue generally had fewer and smaller tumors. Nevertheless, the size of the groups, and the duration of the trial render it impossible to come to a definite conclusion. CONCLUSIONS Drug targeting demonstrated potential for improving the aerosol treatment of lung cancer.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
44 |
8
|
Spirou SV, Costa Lima SA, Bouziotis P, Vranješ-Djurić S, Efthimiadou EΚ, Laurenzana A, Barbosa AI, Garcia-Alonso I, Jones C, Jankovic D, Gobbo OL. Recommendations for In Vitro and In Vivo Testing of Magnetic Nanoparticle Hyperthermia Combined with Radiation Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E306. [PMID: 29734795 PMCID: PMC5977320 DOI: 10.3390/nano8050306] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/22/2018] [Accepted: 04/29/2018] [Indexed: 12/23/2022]
Abstract
Magnetic nanoparticle (MNP)-mediated hyperthermia (MH) coupled with radiation therapy (RT) is a novel approach that has the potential to overcome various practical difficulties encountered in cancer treatment. In this work, we present recommendations for the in vitro and in vivo testing and application of the two treatment techniques. These recommendations were developed by the members of Working Group 3 of COST Action TD 1402: Multifunctional Nanoparticles for Magnetic Hyperthermia and Indirect Radiation Therapy ("Radiomag"). The purpose of the recommendations is not to provide definitive answers and directions but, rather, to outline those tests and considerations that a researcher must address in order to perform in vitro and in vivo studies. The recommendations are divided into 5 parts: (a) in vitro evaluation of MNPs; (b) in vitro evaluation of MNP-cell interactions; (c) in vivo evaluation of the MNPs; (d) MH combined with RT; and (e) pharmacokinetic studies of MNPs. Synthesis and characterization of the MNPs, as well as RT protocols, are beyond the scope of this work.
Collapse
|
Review |
7 |
42 |
9
|
Campbell M, Humphries MM, Kiang AS, Nguyen ATH, Gobbo OL, Tam LCS, Suzuki M, Hanrahan F, Ozaki E, Farrar GJ, Kenna PF, Humphries P. Systemic low-molecular weight drug delivery to pre-selected neuronal regions. EMBO Mol Med 2011; 3:235-45. [PMID: 21374818 PMCID: PMC3377070 DOI: 10.1002/emmm.201100126] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 02/04/2011] [Accepted: 02/07/2011] [Indexed: 01/23/2023] Open
Abstract
We describe a procedure for controlled, periodic, reversible modulation of selected regions of the blood–brain barrier (BBB) or the inner-blood–retina barrier (iBRB) based on incorporation into an AAV-2/9 vector of a doxycycline-inducible gene encoding shRNA targeting claudin-5, one of 30 or so proteins constituting the BBB and iBRB. The vector may be introduced stereotaxically into pre-selected regions of the brain or into the retina, rendering these regions permeable to low-molecular weight compounds up to approximately 1 kDa for the period of time during which the inducing agent, doxycycline, is administered in drinking water, but excluding potentially toxic higher molecular weight materials. We report on the use of barrier modulation in tandem with systemic drug therapy to prevent retinal degeneration and to suppress laser-induced choroidal neovascularization (CNV), the latter being the hallmark pathology associated with the exudative, or wet, form of age-related macular degeneration (AMD). These observations constitute the basis of a minimally invasive systemic therapeutic modality for retinal diseases, including retinitis pigmentosa and AMD, where, in early stage disease, the iBRB is intact and impervious to systemically administered drugs.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
39 |
10
|
Tewes F, Gobbo OL, Ehrhardt C, Healy AM. Amorphous Calcium Carbonate Based-Microparticles for Peptide Pulmonary Delivery. ACS APPLIED MATERIALS & INTERFACES 2016; 8:1164-1175. [PMID: 26692360 DOI: 10.1021/acsami.5b09023] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Amorphous calcium carbonate (ACC) is known to interact with proteins, for example, in biogenic ACC, to form stable amorphous phases. The control of amorphous/crystalline and inorganic/organic ratios in inhalable calcium carbonate microparticles may enable particle properties to be adapted to suit the requirements of dry powders for pulmonary delivery by oral inhalation. For example, an amorphous phase can immobilize and stabilize polypeptides in their native structure and amorphous and crystalline phases have different mechanical properties. Therefore, inhalable composite microparticles made of inorganic (i.e., calcium carbonate and calcium formate) and organic (i.e., hyaluronan (HA)) amorphous and crystalline phases were investigated for peptide and protein pulmonary aerosol delivery. The crystalline/amorphous ratio and polymorphic form of the inorganic component was altered by changing the microparticle drying rate and by changing the ammonium carbonate and HA initial concentration. The bioactivity of the model peptide, salmon calcitonin (sCT), coprocessed with alpha-1-antitrypsin (AAT), a model protein with peptidase inhibitor activity, was maintained during processing and the microparticles had excellent aerodynamic properties, making them suitable for pulmonary aerosol delivery. The bioavailability of sCT after aerosol delivery as sCT and AAT-loaded composite microparticles to rats was 4-times higher than that of sCT solution.
Collapse
|
|
9 |
36 |
11
|
Amaro MI, Tewes F, Gobbo O, Tajber L, Corrigan OI, Ehrhardt C, Healy AM. Formulation, stability and pharmacokinetics of sugar-based salmon calcitonin-loaded nanoporous/nanoparticulate microparticles (NPMPs) for inhalation. Int J Pharm 2015; 483:6-18. [DOI: 10.1016/j.ijpharm.2015.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/01/2015] [Indexed: 11/28/2022]
|
|
10 |
35 |
12
|
Dunleavy M, Shinoda S, Schindler C, Ewart C, Dolan R, Gobbo OL, Kerskens CM, Henshall DC. Experimental neonatal status epilepticus and the development of temporal lobe epilepsy with unilateral hippocampal sclerosis. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:330-42. [PMID: 19948825 DOI: 10.2353/ajpath.2010.090119] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hippocampal sclerosis is a common pathological finding in patients with temporal lobe epilepsy, including children, but a causal relationship to early-life seizures remains in question. Neonatal status epilepticus in animals can result in neuronal death within the hippocampus, although macroscopic features of hippocampal shrinkage are not evident at adulthood. Here, we examined electrophysiological and pathological consequences of focally evoked status epilepticus triggered by intra-amygdala microinjection of kainic acid in postnatal day 10 rat pups. Neonatal status epilepticus resulted in extensive neuronal death in the ipsilateral hippocampal CA1 and CA3 subfields and hilus, as assessed by DNA fragmentation and Fluoro-Jade B staining 72 hours later. The contralateral hippocampus was not significantly damaged. Histopathology at P55/P65 revealed unilateral hippocampal sclerosis (grade IV, modified Wyler/Watson scale) comprising >50% CA1 and CA3 neuron loss and astrogliosis. Additional features included hydrocephalus ex vacuo, modest dentate granule cell layer widening, and altered neuropeptide Y immunoreactivity indicative of synaptic rearrangement. Hippocampal atrophy was also evident on magnetic resonance imaging. Depth electrode recordings at adulthood detected spontaneous seizures that involved the ipsilateral hippocampus and amygdala. A significant positive correlation was found between hippocampal pathology grade and both frequency and duration of epileptic seizures at adulthood. The current study demonstrates that experimental neonatal status epilepticus can result in classical unilateral hippocampal sclerosis and temporal lobe epilepsy.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
32 |
13
|
Erthal LCS, Gobbo OL, Ruiz-Hernandez E. Biocompatible copolymer formulations to treat glioblastoma multiforme. Acta Biomater 2021; 121:89-102. [PMID: 33227487 DOI: 10.1016/j.actbio.2020.11.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022]
Abstract
The treatment for glioblastoma multiforme (GBM) has not changed for more than 20 years while the prognosis for the patients is still poor and most of them survive less than 1 year after diagnosis. The standard of care for GBM is comprised of surgical resection followed by radiotherapy and oral chemotherapy with temozolomide. The placement of carmustine wafers in the brain after tumour removal is added in cases of recurrent glioma. Significant research is underway to improve the GBM therapy outcome and patient quality of life. Biomaterials are in the front line of the research focus for new treatment options. Specially, biocompatible polymers have been proposed in hydrogel-based formulations aiming at injectable and localized therapies. These formulations can comprise many different pharmacological agents such as chemotherapeutic drugs, nanoparticles, cells, nucleic acids, and diagnostic agents. In this manuscript, we review the most recent formulations developed and tested both in vitro and in vivo using different types of hydrogels. Firstly, we describe three common types of thermo-responsive polymers addressing the advantages and drawbacks of their formulations. Then, we focus on formulations specifically developed for GBM treatment.
Collapse
|
Review |
4 |
29 |
14
|
Gaspar MM, Gobbo O, Ehrhardt C. Generation of liposome aerosols with the Aeroneb Pro and the AeroProbe nebulizers. J Liposome Res 2010; 20:55-61. [DOI: 10.3109/08982100903085150] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
|
15 |
28 |
15
|
Edge D, Shortt CM, Gobbo OL, Teughels S, Prina-Mello A, Volkov Y, MacEneaney P, Radomski MW, Markos F. Pharmacokinetics and bio-distribution of novel super paramagnetic iron oxide nanoparticles (SPIONs) in the anaesthetized pig. Clin Exp Pharmacol Physiol 2016; 43:319-26. [PMID: 26707795 DOI: 10.1111/1440-1681.12533] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 11/29/2022]
Abstract
Manufactured nanomaterials have a variety of medical applications, including diagnosis and targeted treatment of cancer. A series of experiments were conducted to determine the pharmacokinetic, biodistribution and biocompatibility of two novel magnetic nanoparticles (MNPs) in the anaesthetized pig. Dimercaptosuccinic acid (DMSA) coated superparamagnetic iron oxide nanoparticles (MF66-labelled 12 nm, core nominal diameter and OD15 15 nm); at 0.5, or 2.0 mg/kg) were injected intravenously. Particles induced a dose-dependent decrease in blood pressure following administration which recovered to control levels several minutes after injection. Blood samples were collected for a 5-h period and stored for determination of particle concentration using particle electron paramagnetic resonance (pEPR). Organs were harvested post-mortem for magnetic resonance imaging (MRI at 1.5 T field strength) and histology. OD15 (2.0 mg/kg) MNP had a plasma half-life of approximately 15 min. Both doses of the MF66 (0.5 and 2.0 mg/kg) MNP were below detection limits. MNP accumulation was observed primarily in the liver and spleen with MRI scans which was confirmed by histology. MRI also showed that both MNPs were present in the lungs. The results show that further modifications may be required to improve the biocompatibility of these particles for use as diagnostic and therapeutic agents.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
26 |
16
|
Gobbo OL, Wetterling F, Vaes P, Teughels S, Markos F, Edge D, Shortt CM, Crosbie-Staunton K, Radomski MW, Volkov Y, Prina-Mello A. Biodistribution and pharmacokinetic studies of SPION using particle electron paramagnetic resonance, MRI and ICP-MS. Nanomedicine (Lond) 2015; 10:1751-60. [DOI: 10.2217/nnm.15.22] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: Superparamagnetic iron oxide nanoparticles (SPIONs) may play an important role in nanomedicine by serving as drug carriers and imaging agents. In this study, we present the biodistribution and pharmacokinetic properties of SPIONs using a new detection method, particle electron paramagnetic resonance (pEPR). Materials & methods: The pEPR technique is based on a low-field and low-frequency electron paramagnetic resonance. pEPR was compared with inductively coupled plasma mass spectrometry and MRI, in in vitro and in vivo. Results: The pEPR, inductively coupled plasma mass spectrometry and MRI results showed a good correlation between the techniques. Conclusion: The results indicate that pEPR can be used to detect SPIONs in both preclinical and clinical studies.
Collapse
|
|
10 |
25 |
17
|
Tewes F, Gobbo OL, Amaro MI, Tajber L, Corrigan OI, Ehrhardt C, Healy AM. Evaluation of HPβCD-PEG microparticles for salmon calcitonin administration via pulmonary delivery. Mol Pharm 2011; 8:1887-98. [PMID: 21882837 DOI: 10.1021/mp200231c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For therapeutic peptides, the lung represents an attractive, noninvasive route into the bloodstream. To achieve optimal bioavailability and control their fast rate of absorption, peptides can be protected by coprocessing with polymers such as polyethylene glycol (PEG). Here, we formulated and characterized salmon calcitonin (sCT)-loaded microparticles using linear or branched PEG (L-PEG or B-PEG) and hydroxypropyl-beta-cyclodextrin (HPβCD) for pulmonary administration. Mixtures of sCT, L-PEG or B-PEG and HPβCD were co-spray dried. Based on the particle properties, the best PEG:HPβCD ratio was 1:1 w:w for both PEGs. In the sCT-loaded particles, the L-PEG was more crystalline than B-PEG. Thus, L-PEG-based particles had lower surface free energy and better aerodynamic behavior than B-PEG-based particles. However, B-PEG-based particles provided better protection against chemical degradation of sCT. A decrease in sCT permeability, measured across Calu-3 bronchial epithelial monolayers, occurred when the PEG and HPβCD concentrations were both 1.6 wt %. This was attributed to an increase in buffer viscosity, caused by the two excipients. sCT pharmacokinetic profiles in Wistar rats were evaluated using a 2-compartment model after iv injection or lung insufflation. The maximal sCT plasma concentration was reached within 3 min following nebulization of sCT solution. L-PEG and B-PEG-based microparticles were able to increase T(max) to 20 ± 1 min and 18 ± 8 min, respectively. Furthermore, sCT absolute bioavailability after L-PEG-based microparticle aerosolization at 100 μg/kg was 2.3 times greater than for the nebulized sCT solution.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
25 |
18
|
Colgan NC, Cronin MM, Gobbo OL, O'Mara SM, O'Connor WT, Gilchrist MD. Quantitative MRI Analysis of Brain Volume Changes due to Controlled Cortical Impact. J Neurotrauma 2010; 27:1265-74. [DOI: 10.1089/neu.2009.1267] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
|
15 |
20 |
19
|
Kelly ME, Blau CW, Griffin KM, Gobbo OL, Jones JFX, Kerskens CM. Quantitative functional magnetic resonance imaging of brain activity using bolus-tracking arterial spin labeling. J Cereb Blood Flow Metab 2010; 30:913-22. [PMID: 20068581 PMCID: PMC2949184 DOI: 10.1038/jcbfm.2009.284] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) is the most widely used method for mapping neural activity in the brain. The interpretation of altered BOLD signals is problematic when cerebral blood flow (CBF) or cerebral blood volume change because of aging and/or neurodegenerative diseases. In this study, a recently developed quantitative arterial spin labeling (ASL) approach, bolus-tracking ASL (btASL), was applied to an fMRI experiment in the rat brain. The mean transit time (MTT), capillary transit time (CTT), relative cerebral blood volume of labeled water (rCBV(lw)), relative cerebral blood flow (rCBF), and perfusion coefficient in the forelimb region of the somatosensory cortex were quantified during neuronal activation and in the resting state. The average MTT and CTT were 1.939+/-0.175 and 1.606+/-0.106 secs, respectively, in the resting state. Both times decreased significantly to 1.616+/-0.207 and 1.305+/-0.201 secs, respectively, during activation. The rCBV(lw), rCBF, and perfusion coefficient increased on average by a factor of 1.123+/-0.006, 1.353+/-0.078, and 1.479+/-0.148, respectively, during activation. In contrast to BOLD techniques, btASL yields physiologically relevant indices of the functional hyperemia that accompanies neuronal activation.
Collapse
|
research-article |
15 |
19 |
20
|
Swaminathan J, Gobbo OL, Tewes F, Healy AM, Ehrhardt C. Encapsulation into PEG-Liposomes Does Not Improve the Bioavailability of Pulmonary Delivered Salmon Calcitonin. J Aerosol Med Pulm Drug Deliv 2014; 27:1-11. [DOI: 10.1089/jamp.2013.1049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
|
11 |
14 |
21
|
Fernández Y, Movellan J, Foradada L, Giménez V, García‐Aranda N, Mancilla S, Armiñán A, Borgos SE, Hyldbakk A, Bogdanska A, Gobbo OL, Prina‐Mello A, Ponti J, Calzolai L, Zagorodko O, Gallon E, Niño‐Pariente A, Paul A, Schwartz Jr S, Abasolo I, Vicent MJ. In Vivo Antitumor and Antimetastatic Efficacy of a Polyacetal-Based Paclitaxel Conjugate for Prostate Cancer Therapy. Adv Healthc Mater 2022; 11:e2101544. [PMID: 34706167 DOI: 10.1002/adhm.202101544] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/25/2021] [Indexed: 12/12/2022]
Abstract
Prostate cancer (PCa), one of the leading causes of cancer-related deaths, currently lacks effective treatment for advanced-stage disease. Paclitaxel (PTX) is a highly active chemotherapeutic drug and the first-line treatment for PCa; however, conventional PTX formulation causes severe hypersensitivity reactions and limits PTX use at high concentrations. In the pursuit of high molecular weight, biodegradable, and pH-responsive polymeric carriers, one conjugates PTX to a polyacetal-based nanocarrier to yield a tert-Ser-PTX polyacetal conjugate. tert-Ser-PTX conjugate provides sustained release of PTX over 2 weeks in a pH-responsive manner while also obtaining a degree of epimerization of PTX to 7-epi-PTX. Serum proteins stabilize tert-Ser-PTX, with enhanced stability in human serum versus PBS (pH 7.4). In vitro efficacy assessments in PCa cells demonstrate IC50 values above those for the free form of PTX due to the differential cell trafficking modes; however, in vivo tolerability assays demonstrate that tert-Ser-PTX significantly reduces the systemic toxicities associated with free PTX treatment. tert-Ser-PTX also effectively inhibits primary tumor growth and hematologic, lymphatic, and coelomic dissemination, as confirmed by in vivo and ex vivo bioluminescence imaging and histopathological evaluations in mice carrying orthotopic LNCaP tumors. Overall, the results suggest the application of tert-Ser-PTX as a robust antitumor/antimetastatic treatment for PCa.
Collapse
|
|
3 |
12 |
22
|
Gobbo OL, Petit F, Gurden H, Dhenain M. In vivo detection of excitotoxicity by manganese-enhanced MRI: comparison with physiological stimulation. Magn Reson Med 2011; 68:234-40. [PMID: 22127903 DOI: 10.1002/mrm.23210] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 07/27/2011] [Accepted: 08/17/2011] [Indexed: 11/11/2022]
Abstract
Manganese-enhanced MRI (MEMRI) is a powerful technique for the in vivo monitoring of brain function in animals. Manganese enters into cells through calcium channels, i.e., voltage-gated calcium channels and activated glutamate receptors (e.g., N-methyl-D-aspartate receptors). N-methyl-D-aspartate receptors are activated both in normal physiological and pathophysiological conditions. Consistent with these mechanisms, we showed that in the olfactory bulb, the MEMRI signal strongly increases when excitotoxic mechanisms are induced by an administration of a N-methyl-D-aspartate receptor agonist, quinolinate. We found that the intensity of the MEMRI signal in excitotoxic conditions is similar to the odor-evoked signal in normal physiological conditions. Finally, we showed that the dynamics of the MEMRI signal are determined by the early phase of manganese in the olfactory bulb. Overall, these data show that, in addition to physiological studies, MEMRI can be used as an in vivo method to follow-up the dynamics of excitotoxic events.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
10 |
23
|
Stavropoulou AP, Theodosiou M, Sakellis E, Boukos N, Papanastasiou G, Wang C, Tavares A, Corral CA, Gournis D, Chalmpes N, Gobbo OL, Efthimiadou EK. Bimetallic gold-platinum nanoparticles as a drug delivery system coated with a new drug to target glioblastoma. Colloids Surf B Biointerfaces 2022; 214:112463. [PMID: 35316703 DOI: 10.1016/j.colsurfb.2022.112463] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 01/04/2023]
Abstract
A drug delivery nanosystem of noble bimetallic nanoparticles (NPs) which consists of Au NPs capped with Pt NPs (Au@Pt NPs) is constructed and functionalised with a quinazoline based small molecule (Au@Pt@Q NPs), acting as a theranostic agent against glioblastoma. Two different hydrothermal synthetic procedures for bimetallic Au@Pt NPs are presented and the resulting nanostructures are fully characterised by means of spectroscopic and microscopic methods. The imaging and targeting capacity of the new drug delivery system is assessed through fluorescent optical microscopy and cytotoxicity evaluations. The constructed Au@Pt NPs consist a monodispersed colloidal solution of 25 nm with photoluminescent, fluorescent and X-Ray absorption properties that confirm their diagnostic potential. Haemolysis testing demonstrated that Au@Pt NPs are biocompatible and fluorescent microscopy confirmed their entering the cells. Cytological evaluation of the NPs through MTT assay showed that they do not inhibit the proliferation of control cell line HEK293, whereas they are toxic in U87MG, U251 and D54 glioblastoma cell lines; rendering them selective targeting agents for treating glioblastoma.
Collapse
|
|
3 |
8 |
24
|
Erthal LCS, Shi Y, Sweeney KJ, Gobbo OL, Ruiz-Hernandez E. Nanocomposite formulation for a sustained release of free drug and drug-loaded responsive nanoparticles: an approach for a local therapy of glioblastoma multiforme. Sci Rep 2023; 13:5094. [PMID: 36991081 PMCID: PMC10060267 DOI: 10.1038/s41598-023-32257-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Malignant gliomas are a type of primary brain tumour that originates in glial cells. Among them, glioblastoma multiforme (GBM) is the most common and the most aggressive brain tumour in adults, classified as grade IV by the World Health Organization. The standard care for GBM, known as the Stupp protocol includes surgical resection followed by oral chemotherapy with temozolomide (TMZ). This treatment option provides a median survival prognosis of only 16-18 months to patients mainly due to tumour recurrence. Therefore, enhanced treatment options are urgently needed for this disease. Here we show the development, characterization, and in vitro and in vivo evaluation of a new composite material for local therapy of GBM post-surgery. We developed responsive nanoparticles that were loaded with paclitaxel (PTX), and that showed penetration in 3D spheroids and cell internalization. These nanoparticles were found to be cytotoxic in 2D (U-87 cells) and 3D (U-87 spheroids) models of GBM. The incorporation of these nanoparticles into a hydrogel facilitates their sustained release in time. Moreover, the formulation of this hydrogel containing PTX-loaded responsive nanoparticles and free TMZ was able to delay tumour recurrence in vivo after resection surgery. Therefore, our formulation represents a promising approach to develop combined local therapies against GBM using injectable hydrogels containing nanoparticles.
Collapse
|
research-article |
2 |
8 |
25
|
Gobbo OL, O'Mara SM. Combining exercise and cyclooxygenase-2 inhibition does not ameliorate learning deficits after brain insult, despite an increase in BDNF levels. Brain Res 2005; 1046:224-9. [PMID: 15885662 DOI: 10.1016/j.brainres.2005.03.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 03/22/2005] [Accepted: 03/29/2005] [Indexed: 10/25/2022]
Abstract
Neurodegeneration can produce behavioral impairments. Previously, we have found that inhibition of cyclooxygenase-2 activity or physical activity was neuroprotective during kainic-acid-induced neural loss. Here, we investigated the combined effect of exercise pre-insult and cyclooxygenase inhibitor treatment post-kainate-induced brain damage. However, in spite of an increase in BDNF levels, the combination did not improve behavioral performance in Morris watermaze and object exploration tasks.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
7 |