1
|
Hryhorowicz S, Walczak M, Zakerska-Banaszak O, Słomski R, Skrzypczak-Zielińska M. Pharmacogenetics of Cannabinoids. Eur J Drug Metab Pharmacokinet 2018; 43:1-12. [PMID: 28534260 PMCID: PMC5794848 DOI: 10.1007/s13318-017-0416-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although the application of medical marijuana and cannabinoid drugs is controversial, it is a part of modern-day medicine. The list of diseases in which cannabinoids are promoted as a treatment is constantly expanding. Cases of significant improvement in patients with a very poor prognosis of glioma or epilepsy have already been described. However, the occurrence of side effects is still difficult to estimate, and the current knowledge of the therapeutic effects of cannabinoids is still insufficient. In our opinion, the answers to many questions and concerns regarding the medical use of cannabis can be provided by pharmacogenetics. Knowledge based on proteins and molecules involved in the transport, action, and metabolism of cannabinoids in the human organism leads us to predict candidate genes which variations are responsible for the presence of the therapeutic and side effects of medical marijuana and cannabinoid-based drugs. We can divide them into: receptor genes-CNR1, CNR2, TRPV1, and GPR55, transporters-ABCB1, ABCG2, SLC6A, biotransformation, biosynthesis, and bioactivation proteins encoded by CYP3A4, CYP2C19, CYP2C9, CYP2A6, CYP1A1, COMT, FAAH, COX2, ABHD6, ABHD12 genes, and also MAPK14. This review organizes the current knowledge in the context of cannabinoids pharmacogenetics according to individualized medicine and cannabinoid drugs therapy.
Collapse
|
Review |
7 |
60 |
2
|
Mikstacki A, Zakerska-Banaszak O, Skrzypczak-Zielinska M, Tamowicz B, Prendecki M, Dorszewska J, Molinska-Glura M, Waszak M, Slomski R. The effect of UGT1A9, CYP2B6 and CYP2C9 genes polymorphism on individual differences in propofol pharmacokinetics among Polish patients undergoing general anaesthesia. J Appl Genet 2016; 58:213-220. [PMID: 27826892 PMCID: PMC5391385 DOI: 10.1007/s13353-016-0373-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/14/2016] [Accepted: 10/17/2016] [Indexed: 11/04/2022]
Abstract
Propofol (2,6-diisopropylphenol) is one of the safest and most commonly used anaesthetic agents for intravenous general anaesthesia. However, in clinical practice, a large inter-individual variability in response to propofol is observed. To limit the risk of adverse effects, pharmacogenetic investigations are recommended. The aim of our study was to verify the impact of genetic changes c.516G>T in the CYP2B6, c.98T>C in the UGT1A9 and c.1075A>C in the CYP2C9 genes on the individual propofol pharmacokinetic profile in the Polish patients undergoing general anaesthesia. Eighty-five patients from the Department of Anaesthesiology and Intensive Therapy, Regional Hospital in Poznan, Poland, anaesthetised with propofol for surgery, were enrolled in the study. We have genotyped CYP2B6, UGT1A9 and CYP2C9 polymorphisms with the use of pyrosequencing. HPLC measurements of propofol plasma concentration were applied for a pharmacokinetic analysis of the anaesthetic. We identified poor (20), intermediate (42) and rapid (23) metabolisers of propofol, which constituted 24%, 49% and 27% of the group, respectively. Homozygotes c.516 T/T in the CYP2B6 gene were statistically more often found in the rapid metabolisers group (p < 0.05). However, polymorphisms c.98T>C in the UGT1A9 and c.1075A>C in the CYP2C9 genes did not affect the pharmacokinetic profile of propofol. The mean propofol retention time (MRT) correlated with the patient’s body mass index (BMI) (p < 0.05). From all the analysed changes, only polymorphism c.516G>T in the CYP2B6 gene and BMI affect the metabolism rate of propofol and may play an important role in the optimisation of propofol anaesthesia.
Collapse
|
Journal Article |
9 |
17 |
3
|
Vestergaard MV, Allin KH, Eriksen C, Zakerska-Banaszak O, Arasaradnam RP, Alam MT, Kristiansen K, Brix S, Jess T. Gut microbiota signatures in inflammatory bowel disease. United European Gastroenterol J 2024; 12:22-33. [PMID: 38041519 PMCID: PMC10859715 DOI: 10.1002/ueg2.12485] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/10/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), affect millions of people worldwide with increasing incidence. OBJECTIVES Several studies have shown a link between gut microbiota composition and IBD, but results are often limited by small sample sizes. We aimed to re-analyze publicly available fecal microbiota data from IBD patients. METHODS We extracted original fecal 16S rRNA amplicon sequencing data from 45 cohorts of IBD patients and healthy individuals using the BioProject database at the National Center for Biotechnology Information. Unlike previous meta-analyses, we merged all study cohorts into a single dataset, including sex, age, geography, and disease information, based on which microbiota signatures were analyzed, while accounting for varying technical platforms. RESULTS Among 2518 individuals in the combined dataset, we discovered a hitherto unseen number of genera associated with IBD. A total of 77 genera associated with CD, of which 38 were novel associations, and a total of 64 genera associated with UC, of which 28 represented novel associations. Signatures were robust across different technical platforms and geographic locations. Reduced alpha diversity in IBD compared to healthy individuals, in CD compared to UC, and altered microbiota composition (beta diversity) in UC and especially in CD as compared to healthy individuals were found. CONCLUSIONS Combining original microbiota data from 45 cohorts, we identified a hitherto unseen large number of genera associated with IBD. Identification of microbiota features robustly associated with CD and UC may pave the way for the identification of new treatment targets.
Collapse
|
|
1 |
10 |
4
|
Mikstacki A, Zakerska-Banaszak O, Skrzypczak-Zielinska M, Tamowicz B, Szalata M, Slomski R. Glutathione S-transferase as a toxicity indicator in general anesthesia: genetics and biochemical function. J Clin Anesth 2014; 27:73-9. [PMID: 25468579 DOI: 10.1016/j.jclinane.2014.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/23/2014] [Accepted: 07/25/2014] [Indexed: 12/24/2022]
Abstract
General anesthesia may lead in patients to unexpected and adverse reactions including toxicity. Glutathione S-transferases (GSTs) are enzymes responsible for the detoxification process of anesthetic agents. Plasma and urine GST measurements are used in multiple studies as a hepatocellular integrity or renal injury indicator. The importance of GST enzyme measurements in monitoring the hepatotoxic and nephrotoxic effect in anesthetized patients is presented. The biochemical function and specific properties of GST render it a prognostic biomarker. This review demonstrates that GST can be valuable and promising toxicity indicator in patients undergoing general anesthesia.
Collapse
|
Review |
11 |
9 |
5
|
Skrzypczak-Zielinska M, Borun P, Bartkowiak-Kaczmarek A, Zakerska-Banaszak O, Walczak M, Dobrowolska A, Kurzawski M, Waszak M, Lipinski D, Plawski A, Slomski R. A Simple Method for TPMT and ITPA Genotyping Using Multiplex HRMA for Patients Treated with Thiopurine Drugs. Mol Diagn Ther 2016; 20:493-9. [PMID: 27307154 PMCID: PMC5021755 DOI: 10.1007/s40291-016-0217-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Thiopurine methyltransferase (TPMT) and inosine triphosphatase (ITPA) are crucial enzymes involved in the metabolism of thiopurine drugs: azathioprine and 6-mercaptopurine, used in the treatment of leukemia or inflammatory bowel diseases (IBD). The activity in these enzymes correlates with the genetic polymorphism of the TPMT and ITPA genes, respectively, which determines an individual reaction and dosing of thiopurines. Three main TPMT alleles: TPMT*2 (c.238G>C), TPMT*3A (c.460G>A, c.719A>G) and TPMT*3C (c.719A>G) account for 80-95 % of inherited TPMT deficiency in different populations in the world. In the ITPA gene, a c.94C>A mutation is significantly associated with an adverse thiopurine reaction. The aim of this study was to develop a quick and highly sensitive method for determining major TPMT and ITPA alleles. Here we present the molecular test for genotyping c.238G>C, c.460G>A, c.719A>G and c.94C>A changes based on multiplex high resolution melting analysis (HRMA). We analyzed DNA samples from 100 clinically diagnosed IBD patients treated with thiopurine drugs, and a known genotype in the positions 238, 460 and 719 of the TPMT gene as well as in position 94 of the ITPA gene. Our results obtained with multiplex HRMA indicated 100 % accuracy in comparison with data from restriction fragments length polymorphism (RFLP) and standard DNA sequencing. We conclude, that multiplex HRMA can be used as a quick, sensitive and efficient alternative diagnostic method compared to conventional techniques for the determination of TPMT*2, TPMT*3A and TPMT*3C alleles and c.94C>A change in the ITPA gene.
Collapse
|
research-article |
9 |
9 |
6
|
Walczak M, Skrzypczak-Zielinska M, Plucinska M, Zakerska-Banaszak O, Marszalek D, Lykowska-Szuber L, Stawczyk-Eder K, Dobrowolska A, Slomski R. Long-range PCR libraries and next-generation sequencing for pharmacogenetic studies of patients treated with anti-TNF drugs. THE PHARMACOGENOMICS JOURNAL 2018; 19:358-367. [PMID: 30293984 DOI: 10.1038/s41397-018-0058-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 08/06/2018] [Accepted: 08/14/2018] [Indexed: 12/30/2022]
Abstract
Biological therapy with anti-tumor necrosis factor-α (anti-TNF-α) monoclonal antibodies significantly increased the effectiveness of autoimmune disease treatment compared with conventional medicines. However, anti-TNF-α drugs are relatively expensive and a response to the therapy is reported in only 60-70% of patients. Moreover, in up to 5% of patients adverse drug reactions occur. The various effects of biological treatment may be a potential consequence of interindividual genetic variability. Only a few studies have been conducted in this field and which refer to single gene loci. Our aim was to design and optimize a methodology for a broader application of pharmacogenetic studies in patients undergoing anti-TNF-α treatment. Based on the current knowledge, we selected 16 candidate genes: TNFRSF1A, TNFRSF1B, ADAM17, CASP9, FCGR3A, LTA, TNF, FAS, IL1B, IL17A, IL6, MMP1, MMP3, S100A8, S100A9, and S100A12, which are potentially involved in the response to anti-TNF-α therapy. As a research model, three DNA samples from Crohn's disease (CD) patients were used. Targeted genomic regions were amplified in 23 long-range (LR) PCR reactions and after enzymatic fragmentation amplicon libraries were prepared and analyzed by next-generation sequencing (NGS). Our results indicated 592 sequence variations located in all fragments with coverage range of 5-1089. We demonstrate a highly sensitive, flexible, rapid, and economical approach to the pharmacogenetic investigation of anti-TNF-α therapy using amplicon libraries and NGS technology.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
9 |
7
|
Krela-Kaźmierczak I, Zakerska-Banaszak O, Skrzypczak-Zielińska M, Łykowska-Szuber L, Szymczak-Tomczak A, Zawada A, Rychter AM, Ratajczak AE, Skoracka K, Skrzypczak D, Marcinkowska E, Słomski R, Dobrowolska A. Where Do We Stand in the Behavioral Pathogenesis of Inflammatory Bowel Disease? The Western Dietary Pattern and Microbiota-A Narrative Review. Nutrients 2022; 14:nu14122520. [PMID: 35745251 PMCID: PMC9230670 DOI: 10.3390/nu14122520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023] Open
Abstract
Despite the increasing knowledge with regard to IBD (inflammatory bowel disease), including ulcerative colitis (UC) and Crohn’s disease (CD), the etiology of these conditions is still not fully understood. Apart from immunological, environmental and nutritional factors, which have already been well documented, it is worthwhile to look at the possible impact of genetic factors, as well as the composition of the microbiota in patients suffering from IBD. New technologies in biochemistry allow to obtain information that can add to the current state of knowledge in IBD etiology.
Collapse
|
Review |
3 |
8 |
8
|
Mańkowska-Wierzbicka D, Zuraszek J, Wierzbicka A, Gabryel M, Mahadea D, Baturo A, Zakerska-Banaszak O, Slomski R, Skrzypczak-Zielinska M, Dobrowolska A. Alterations in Gut Microbiota Composition in Patients with COVID-19: A Pilot Study of Whole Hypervariable 16S rRNA Gene Sequencing. Biomedicines 2023; 11:biomedicines11020367. [PMID: 36830905 PMCID: PMC9953267 DOI: 10.3390/biomedicines11020367] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/13/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
It is crucial to consider the importance of the microbiome and the gut-lung axis in the context of SARS-CoV-2 infection. This pilot study examined the fecal microbial composition of patients with COVID-19 following a 3-month recovery. Using for the first time metagenomic analysis based on all hypervariable regions (V1-V9) of the 16S rRNA gene, we have identified 561 microbial species; however, 17 were specific only for the COVID-19 group (n = 8). The patients' cohorts revealed significantly greater alpha diversity of the gut microbiota compared to healthy controls (n = 14). This finding has been demonstrated by operational taxonomic units (OTUs) richness (p < 0.001) and Chao1 index (p < 0.01). The abundance of the phylum Verrucomicrobia was 30 times higher in COVID-19 patients compared to healthy subjects. Accordingly, this disproportion was also noted at other taxonomic levels: in the class Verrucomicrobiae, the family Verrucomicrobiaceae, and the genus Akkermansia. Elevated pathobionts such as Escherichia coli, Bilophila wadsworthia, and Parabacteroides distasonis were found in COVID-19 patients. Considering the gut microbiota's ability to disturb the immune response, our findings suggest the importance of the enteric microbiota in the course of SARS-CoV-2 infection. This pilot study shows that the composition of the microbial community may not be fully restored in individuals with SARS-CoV-2 following a 3-month recovery.
Collapse
|
research-article |
2 |
7 |
9
|
Walczak M, Lykowska-Szuber L, Plucinska M, Stawczyk-Eder K, Zakerska-Banaszak O, Eder P, Krela-Kazmierczak I, Michalak M, Zywicki M, Karlowski WM, Szalata M, Dobrowolska A, Slomski R, Skrzypczak-Zielinska M. Is Polymorphism in the Apoptosis and Inflammatory Pathway Genes Associated With a Primary Response to Anti-TNF Therapy in Crohn's Disease Patients? Front Pharmacol 2020; 11:1207. [PMID: 32922288 PMCID: PMC7456829 DOI: 10.3389/fphar.2020.01207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022] Open
Abstract
Anti-tumor necrosis factor (TNF) therapy is used for the induction and maintenance of remission in Crohn’s disease (CD) patients. However, primary nonresponders to initial treatment constitute 20%–40% of cases. The causes of this phenomenon are still unknown. In this study, we aimed to determine the genetic predictors of the variable reactions of CD patients to anti-TNF therapy. Using long-range PCR libraries and the next-generation sequencing (NGS) method, we performed broad pharmacogenetic studies including a panel of 23 genes (TNFRSF1A, TNFRSF1B, CASP9, FCGR3A, LTA, TNF, FAS, ADAM17, IL17A, IL6, MMP1, MMP3, S100A8, S100A9, S100A12, TLR2, TLR4, TLR9, CD14, IL23R, IL23, IL1R, and IL1B) in a group of 107 diagnosed and clinically characterized CD patients following anti-TNF therapy. In the studied group, we indicated, in total, 598 single nucleotide variants for all analyzed genomic targets. Twelve patients (11.2%) did not respond to the induction therapy, which was associated with alleles in 11 loci located in FCGR3A (rs7539036, rs6672453, rs373184583, and rs12128686), IL1R (rs2041747), TNFRSF1B (rs5746053), IL1B (rs1071676, rs1143639, rs1143637, and rs1143634), and FAS (rs7896789) genes. After multiple comparison corrections, the results were not statistically significant, however for nonresponders the alleles distribution for those loci presented large differences and specified scheme compared to responders and populations. These findings require further investigation in an independent larger cohort before introducing them for a clinical setting, however, we identified an interesting direction. Polymorphism of the FCGR3A, IL1R, TNFRSF1B, IL1B, and FAS genes could be a predictor of the primary response to anti-TNF therapy in CD patients.
Collapse
|
Journal Article |
5 |
7 |
10
|
Skrzypczak-Zielinska M, Zakerska-Banaszak O, Tamowicz B, Sobieraj I, Drweska-Matelska N, Szalata M, Slomski R, Mikstacki A. Polymorphisms and allele frequencies of glutathione S-transferases A1 and P1 genes in the Polish population. GENETICS AND MOLECULAR RESEARCH 2015; 14:2850-9. [PMID: 25867434 DOI: 10.4238/2015.march.31.15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Glutathione S-transferases (GST) A1 and P1 are crucial enzymes involved in the biotransformation of drugs, carcinogens, and toxins, and their activity may influence drug response, susceptibility to diseases, and carcinogenesis. The genes encoding these enzymes, GSTA1 and GSTP1, have been examined in many studies because of their genetic variability, which may affect enzymatic activity. The goal of this study was to determine the distribution of the alleles GSTA1*A/*B and GSTP1*A, *B, and *C in the Polish population. A total of 160 subjects from the Polish population were genotyped for 2 polymorphisms (I105V and A114V) in the GSTP1 gene using pyrosequencing. The promoter region of the GSTA1 gene was screened using sequencing. The detected variants were subjected to haplotype analysis. We found that the distribution of the alleles GSTA1*A/*B and GSTP1*A, *B, and *C in the Polish population correspond to the results of studies in Caucasians. Furthermore, we identified additional single nucleotide polymorphisms, excluding 3 well-known changes (G-52A, C-69T, T-567G), which are linked to alleles GSTA1*A/*B, that affect enzyme activity. A total of 4 haplotypes were identified in 160 Polish individuals.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
5 |
11
|
Lykowska-Szuber L, Walczak M, Stawczyk-Eder K, Krela-Kazmierczak I, Eder P, Zakerska-Banaszak O, Dobrowolska A, Skrzypczak-Zielinska M. Variants of the CASP9 gene as candidate markers for primary response to anti-TNF therapy in Crohn's disease patients. J Appl Genet 2023; 64:759-768. [PMID: 37658984 PMCID: PMC10632275 DOI: 10.1007/s13353-023-00783-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
Anti-tumor necrosis factor (TNF) therapy is used to induce and maintain remission in Crohn's disease (CD) patients. However, primary non-responders to initial treatment constitute 20-40% of cases. The causes of this phenomenon are still unknown. We aim to investigate the impact of the caspase 9 (CASP9) gene variants on the variable reactions of CD patients to anti-TNF therapy. The study group included 196 diagnosed and clinically characterized CD Polish patients following anti-TNF therapy. The sequence of the CASP9 gene was analyzed using next-generation and Sanger sequencing and was analyzed with the response to biological treatment. Using the RT-qPCR analysis, we estimated the CASP9 gene mRNA level in colon biopsies material from inflamed and non-inflamed tissue (21 CD patients: 14 responders and seven non-responders to anti-TNF therapy and six controls), as well as in vitro in a peripheral blood mononuclear cells (PBMCs) from CD patients (seven responders and seven non-responders to anti-TNF therapy) and eight controls. Our findings indicated association of variants rs1052571 and rs4645978 with response to anti-TNF monoclonal antibodies (mAbs). Moreover, we observed tendency for reduced expression after incubation with anti-TNF in the group of CD patients, in contrast to the control group. Our results suggest that response to anti-TNF therapy in CD patients may be an effect of variants of the CASP9 gene as a key effector of the internal pathway of apoptosis; however, further population and functional research are necessary.
Collapse
|
research-article |
2 |
2 |
12
|
Wawrzyniak A, Skrzypczak-Zielinska M, Krela-Kazmierczak I, Michalak M, Marszalek D, Marcinkowska M, Zakerska-Banaszak O, Slomski R. Analysis of the tumor necrosis factor superfamily member 11 gene polymorphism with bone mineral density and bone fracture frequency in patients with postmenopausal osteoporosis. Adv Med Sci 2020; 65:291-297. [PMID: 32446200 DOI: 10.1016/j.advms.2020.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 03/06/2020] [Accepted: 05/02/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE We aimed to examine the polymorphism of the promoter and exon 5 of the TNFSF11 gene and their impact on bone mineral density (BMD) and the frequency of bone fractures. TNFSF11 encodes the receptor activator of the NF-kB ligand (RANKL), a key regulator of bone metabolism and osteoporosis drug targets. BMD is an essential measure in diagnosing osteoporosis and assessing the risk of fractures. In vivo, RANKL expression research suggests that promoter TNFSF11 variants influence BMD. Moreover, exon 5 polymorphism of a linear epitope sequence for a denosumab could be related to the effectiveness of biological therapy. PATIENTS AND METHODS The study included 114 postmenopausal osteoporosis patients. BMD was measured in the lumbar spine and the femoral neck. Genetic analysis was performed using Sanger sequencing. Genotypes data for 263 female European population group were obtained from the 1000Genomes database. RESULTS We identified six promoter polymorphisms (rs9525641, rs9533155, rs9533156, rs11839112, rs28926171, rs183599708) and one silent TNFSF11 variant in exon 5 (rs9562415). Three of the sequence variants detected (rs9525641, rs9533155, rs9533156) proved to be polymorphic, whereas the others four occurred at a frequency below 2%. The statistical analysis demonstrated no significant differences between polymorphisms and BMD, and bone fractures. However, variant rs9533156 was relevant with the lumbar spine T-score (p = 0.0273), and no association with BMD was of borderline significance (p = 0.0529). CONCLUSIONS Variant rs9533156 may contribute to the genetic regulation of BMD in Polish postmenopausal osteoporosis, while the exon 5 sequence of the TNFSF11 gene is very conservative.
Collapse
|
|
5 |
1 |
13
|
Zakerska-Banaszak O, Gozdzik-Spychalska J, Gabryel M, Zuraszek J, Skrzypczak-Zielinska M, Slomski R, Dobrowolska A, Piorunek T, Batura-Gabryel H. IL1B gene variants, but not TNF, CXCL8, IL6 and IL10, modify the course of cystic fibrosis in Polish patients. F1000Res 2022; 11:379. [PMID: 39185143 PMCID: PMC11344199 DOI: 10.12688/f1000research.110472.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2022] [Indexed: 08/27/2024] Open
Abstract
Background: The main aim of this study was to evaluate whether selected polymorphic variants in genes from the inflammatory pathway can be predictors of pulmonary or digestive manifestation of cystic fibrosis, as well as of severity of lung disease. Materials and methods: Using pyrosequencing and sequencing we have genotyped 12 variants in TNF (rs361525, rs1800629), CXCL8 (rs4073, rs2227306, rs2227307, rs188378669), IL1B (rs16944, rs1143634, rs1142639, rs1143627), IL6 (rs1800795) and IL10 (rs1800896) genes in a cohort of 55 Polish patients with diagnosed cystic fibrosis and controls. In our study group, a pulmonary manifestation of disease revealed 44 of subjects (80%), and digestive symptoms dominated in 11 (20%) of analyzed individuals. Severe lung dysfunction has occurred in 20 (36.4%) of patients. Results: We proved, that two promoter variants of IL1B, rs1143627 (c.-118G > A) and rs16944 (c.-598T > C) are presented significantly more often in patients with severe character of lung disease compared to mild (82.5% vs. 62.8%, p-value 0.030, and 87.5% vs. 64.3%, p-value 0.008, respectively) in cystic fibrosis course. Haplotype AC formed by both changes had also a higher frequency (80%) in patients with severe course compared to the mild character (61.4%) of disease. However, the frequency of promoter variant TNF c.-308C > T (rs1800629) was presented at a significantly lower level in the patient's group compared to healthy controls (2.7% vs. 15%, p-value 0.001). Furthermore, the presence of methicillin-resistant Staphylococcus aureus significantly correlated with the lower FEV1% in patients (p-value 0.01). Conclusions: Genetic variants, rs1143627 and rs16944, of IL1B are promising candidates as predictors of the severe character of lung disease in Polish patients with cystic fibrosis.
Collapse
|
|
3 |
|
14
|
Gabryel M, Zakerska-Banaszak O, Ladziak K, Hubert KA, Baturo A, Suszynska-Zajczyk J, Hryhorowicz M, Dobrowolska A, Skrzypczak-Zielinska M. Is a rare CXCL8 gene variant a new possible cause or curse factor of inflammatory bowel disease? Front Immunol 2025; 16:1562618. [PMID: 40176809 PMCID: PMC11961448 DOI: 10.3389/fimmu.2025.1562618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/26/2025] [Indexed: 04/04/2025] Open
Abstract
Introduction The pathogenesis of inflammatory bowel diseases (IBD) involves genetic, environmental, immunological, and microbial factors; however, it remains unclear. Pro-inflammatory interleukin 8 (IL-8), encoded by the CXCL8 gene, assumes a crucial chemotactic role in leukocyte migration. Methods This study aimed to investigate whether an association exists between IBD and two CXCL8 variants, namely, c.-251A>T (rs4073) and c.91G>T (rs188378669), and IL-8 concentration. We analyzed the distribution of both variants among 353 Polish IBD patients and 200 population subjects using pyrosequencing, competitive allele-specific PCR and Sanger sequencing. Results The c.91T stop-gained allele was significantly more frequent in IBD patients (2.12%) than in controls (0.25%) (p = 0.0121), while the c.-251T allele frequencies were similar (54% vs. 51.5%, p = 0.4955). Serum IL-8 concentrations, measured using ELISA, were higher in IBD patients with the c.91 GG genotype compared to healthy controls (mean, 70.02 vs. 51.5 pg/ml, p<0.01) and patients with c.91 GT (mean, 61.73 pg/ml). Moreover, clinical data indicated that carriers of the c.91T variant need more often corticosteroids and surgical treatment of the disease than GG homozygous IBD patients. Conclusion This suggest that the CXCL8 c.91T allele may influence IBD manifestation and the course of the disorders in Polish patients, potentially serving as a novel target for future studies and therapeutic approaches.
Collapse
|
research-article |
1 |
|
15
|
Zakerska-Banaszak O, Zuraszek-Szymanska J, Eder P, Ladziak K, Slomski R, Skrzypczak-Zielinska M. The Role of Host Genetics and Intestinal Microbiota and Metabolome as a New Insight into IBD Pathogenesis. Int J Mol Sci 2024; 25:9589. [PMID: 39273536 PMCID: PMC11394875 DOI: 10.3390/ijms25179589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Inflammatory bowel disease (IBD) is an incurable, chronic disorder of the gastrointestinal tract whose incidence increases every year. Scientific research constantly delivers new information about the disease and its multivariate, complex etiology. Nevertheless, full discovery and understanding of the complete mechanism of IBD pathogenesis still pose a significant challenge to today's science. Recent studies have unanimously confirmed the association of gut microbial dysbiosis with IBD and its contribution to the regulation of the inflammatory process. It transpires that the altered composition of pathogenic and commensal bacteria is not only characteristic of disturbed intestinal homeostasis in IBD, but also of viruses, parasites, and fungi, which are active in the intestine. The crucial function of the microbial metabolome in the human body is altered, which causes a wide range of effects on the host, thus providing a basis for the disease. On the other hand, human genomic and functional research has revealed more loci that play an essential role in gut homeostasis regulation, the immune response, and intestinal epithelial function. This review aims to organize and summarize the currently available knowledge concerning the role and interaction of crucial factors associated with IBD pathogenesis, notably, host genetic composition, intestinal microbiota and metabolome, and immune regulation.
Collapse
|
Review |
1 |
|