1
|
DebRoy S, Dao J, Söderberg M, Rossier O, Cianciotto NP. Legionella pneumophila type II secretome reveals unique exoproteins and a chitinase that promotes bacterial persistence in the lung. Proc Natl Acad Sci U S A 2006; 103:19146-51. [PMID: 17148602 PMCID: PMC1748190 DOI: 10.1073/pnas.0608279103] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Type II protein secretion is critical for Legionella pneumophila infection of amoebae, macrophages, and mice. Previously, we found several enzymes to be secreted by this (Lsp) secretory pathway. To better define the L. pneumophila type II secretome, a 2D electrophoresis proteomic approach was used to compare proteins in wild-type and type II mutant supernatants. We identified 20 proteins that are type II-dependent, including aminopeptidases, an RNase, and chitinase, as well as proteins with no homology to known proteins. Because a chitinase had not been previously reported in Legionella, we determined that wild type secretes activity against both p-nitrophenyl triacetyl chitotriose and glycol chitin. An lsp mutant had a 70-75% reduction in activity, confirming the type II dependency of the secreted chitinase. Newly constructed chitinase (chiA) mutants also had approximately 75% less activity, and reintroduction of chiA restored the mutants to normal levels of activity. Although chiA mutants were not impaired for in vitro intracellular infection, they were defective upon intratracheal inoculation into the lungs of A/J mice, and antibodies against ChiA were detectable in infected animals. In contrast, mutants lacking a secreted phosphatase, protease, or one of several lipolytic enzymes were not defective in vivo. In sum, this study shows that the output of type II secretion is greater in magnitude than previously appreciated and includes previously undescribed proteins. Our data also indicate that an enzyme with chitinase activity can promote infection of a mammalian host.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
168 |
2
|
Rossier O, Wengelnik K, Hahn K, Bonas U. The Xanthomonas Hrp type III system secretes proteins from plant and mammalian bacterial pathogens. Proc Natl Acad Sci U S A 1999; 96:9368-73. [PMID: 10430949 PMCID: PMC17789 DOI: 10.1073/pnas.96.16.9368] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Studies of essential pathogenicity determinants in Gram-negative bacteria have revealed the conservation of type III protein secretion systems that allow delivery of virulence factors into host cells from plant and animal pathogens. Ten of 21 Hrp proteins of the plant pathogen Xanthomonas campestris pv. vesicatoria have been suggested to be part of a type III machinery. Here, we report the hrp-dependent secretion of two avirulence proteins, AvrBs3 and AvrRxv, by X. campestris pv. vesicatoria strains that constitutively express hrp genes. Secretion occurred without leakage of a cytoplasmic marker in minimal medium containing BSA, at pH 5.4. Secretion was strictly hrp-dependent because a mutant carrying a deletion in hrcV, a conserved hrp gene, did not secrete AvrBs3 and AvrRxv. Moreover, the Hrp system of X. campestris pv. vesicatoria was able to secrete proteins from two other plant pathogens: PopA, a protein secreted via the Hrp system in Ralstonia solanacearum, and AvrB, an avirulence protein from Pseudomonas syringae pv. glycinea. Interestingly, X. campestris pv. vesicatoria also secreted YopE, a type III-secreted cytotoxin of the mammalian pathogen Yersinia pseudotuberculosis in a hrp-dependent manner. YerA, a YopE-specific chaperone, was required for YopE stability but not for secretion in X. campestris pv. vesicatoria. Our results demonstrate the functional conservation of the type III system of X. campestris for secretion of proteins from both plant and mammalian pathogens and imply recognition of their respective secretion signals.
Collapse
|
research-article |
26 |
157 |
3
|
Wengelnik K, Rossier O, Bonas U. Mutations in the regulatory gene hrpG of Xanthomonas campestris pv. vesicatoria result in constitutive expression of all hrp genes. J Bacteriol 1999; 181:6828-31. [PMID: 10542187 PMCID: PMC94150 DOI: 10.1128/jb.181.21.6828-6831.1999] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/1999] [Accepted: 07/03/1999] [Indexed: 11/20/2022] Open
Abstract
hrpG is a key regulatory gene for transcriptional activation of pathogenicity genes (hrp) of Xanthomonas campestris pv. vesicatoria. We identified three mutations in hrpG which render hrp gene expression constitutive in normally suppressing medium. The mutations in hrpG result in novel amino acid substitutions compared to mutations in related proteins, such as OmpR. In addition, mutated hrpG enhances the timing and intensity of plant reactions in infection assays.
Collapse
|
research-article |
26 |
124 |
4
|
Mudgett MB, Chesnokova O, Dahlbeck D, Clark ET, Rossier O, Bonas U, Staskawicz BJ. Molecular signals required for type III secretion and translocation of the Xanthomonas campestris AvrBs2 protein to pepper plants. Proc Natl Acad Sci U S A 2000; 97:13324-9. [PMID: 11078519 PMCID: PMC27223 DOI: 10.1073/pnas.230450797] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2000] [Indexed: 11/18/2022] Open
Abstract
Strains of Xanthomonas campestris pv. vesicatoria (Xcv) carrying avrBs2 are specifically recognized by Bs2 pepper plants, resulting in localized cell death and plant resistance. Agrobacterium-mediated transient expression of the Xcv avrBs2 gene in plant cells results in Bs2-dependent cell death, indicating that the AvrBs2 protein alone is sufficient for the activation of disease resistance-mediated cell death in planta. We now provide evidence that AvrBs2 is secreted from Xcv and that secretion is type III (hrp) dependent. N- and C-terminal deletion analysis of AvrBs2 has identified the effector domain of AvrBs2 recognized by Bs2 pepper plants. By using a truncated Pseudomonas syringae AvrRpt2 effector reporter devoid of type III signal sequences, we have localized the minimal region of AvrBs2 required for type III secretion in Xcv. Furthermore, we have identified the region of AvrBs2 required for both type III secretion and translocation to host plants. The mapping of AvrBs2 sequences sufficient for type III delivery also revealed the presence of a potential mRNA secretion signal.
Collapse
|
research-article |
25 |
124 |
5
|
Rossier O, Van den Ackerveken G, Bonas U. HrpB2 and HrpF from Xanthomonas are type III-secreted proteins and essential for pathogenicity and recognition by the host plant. Mol Microbiol 2000; 38:828-38. [PMID: 11115117 DOI: 10.1046/j.1365-2958.2000.02173.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The interaction between the plant pathogen Xanthomonas campestris pv. vesicatoria and its host plants is controlled by hrp genes (hypersensitive reaction and pathogenicity), which encode a type III protein secretion system. Among type III-secreted proteins are avirulence proteins, effectors involved in the induction of plant defence reactions. Using non-polar mutants, we investigated the role of 12 hrp genes in the secretion of the avirulence protein AvrBs3 from X. c. pv. vesicatoria and a heterologous protein, YopE, from Yersinia pseudotuberculosis. Genes conserved among type III secretion systems (hrcQ, hrcR, hrcS and hrcT) as well as non-conserved genes (hrpB1, hrpB2, hrpB4, hrpB5, hrpD5 and hrpD6) were shown to be required for secretion. Protein localization studies using specific antibodies showed that HrpB1 and HrpB4, as well as the putative ATPase HrcN, were mainly found in the soluble fraction of the bacterial cell. In contrast, HrpB2 and HrpF, which is related to NolX of Rhizobium fredii, are secreted into the culture medium in an hrp-dependent manner. As HrpB2, but not HrpF, is essential for type III protein secretion, there might be a hierarchy in the secretion process. We propose that HrpF, which is dispensable for protein secretion but required for AvrBs3 recognition in planta, functions as a translocator of effector proteins into the host cell.
Collapse
|
|
25 |
123 |
6
|
Szurek B, Rossier O, Hause G, Bonas U. Type III-dependent translocation of the Xanthomonas AvrBs3 protein into the plant cell. Mol Microbiol 2002; 46:13-23. [PMID: 12366827 DOI: 10.1046/j.1365-2958.2002.03139.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many plant pathogenic bacteria utilize a conserved type III secretion system (TTSS) to deliver effector proteins into the host tissue. Indirect evidence has suggested that at least some effector proteins are translocated from the bacterial cytoplasm into the plant cell. Using an immunocytochemical approach, we demonstrate that the type III effector AvrBs3 from Xanthomonas campestris pv. vesicatoria localizes to nuclei of infected pepper leaves. Importantly, AvrBs3 translocation was observed in situ in native tissues of susceptible and resistant plants. AvrBs3 was detected in the nucleus as soon as 4 h post infection, which was dependent on a functional TTSS and the putative translocator HrpF. N-terminal AvrBs3 deletion derivatives are no longer secreted by the TTSS in vitro and could not be detected inside the host cells, suggesting that the N-terminus of AvrBs3 is important for secretion. Deletion of the nuclear localization signals in the AvrBs3 C-terminus, which are required for the AvrBs3-mediated induction of the hypersensitive reaction in resistant pepper plants, abolished AvrBs3 localization to the nucleus. This is the first report on direct evidence for translocation of a native type III effector protein from a plant pathogenic bacterium into the host cell.
Collapse
|
|
23 |
114 |
7
|
Rossier O, Starkenburg SR, Cianciotto NP. Legionella pneumophila type II protein secretion promotes virulence in the A/J mouse model of Legionnaires' disease pneumonia. Infect Immun 2004; 72:310-21. [PMID: 14688110 PMCID: PMC344012 DOI: 10.1128/iai.72.1.310-321.2004] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Legionella pneumophila, the gram-negative agent of Legionnaires' disease, possesses type IV pili and a type II protein secretion (Lsp) system, both of which are dependent upon the PilD prepilin peptidase. By analyzing multiple pilD mutants and various types of Lsp mutants as well as performing trans-complementation of these mutants, we have confirmed that PilD and type II secretion genes are required for L. pneumophila infection of both amoebae and human macrophages. Based upon a complete analysis of lspDE, lspF, and lspG mutants, we found that the type II system controls the secretion of protease, RNase, lipase, phospholipase A, phospholipase C, lysophospholipase A, and tartrate-sensitive and tartrate-resistant acid phosphatase activities and influences the appearance of colonies. Examination of the developing L. pneumophila genome database indicated that the organism has two other loci (lspC and lspLM) that are predicted to promote secretion and thus a set of genes that is comparable to the type II secretion genes in other gram-negative bacteria. In contrast to lsp mutants, L. pneumophila pilus mutants lacking either the PilQ secretin, the PspA pseudopilin, or pilin were not defective for colonial growth, secreted activities, or intracellular replication. L. pneumophila dot/icm mutants were also not impaired for type II-dependent exoenzymes. Upon intratracheal inoculation into A/J mice, lspDE, lspF, and pilD mutants, but not pilus mutants, exhibited a reduced ability to grow in the lung, as measured by competition assays. The lspF mutant was also defective in an in vivo kinetic assay. Examination of infected mouse sera revealed that type II secreted proteins are expressed in vivo. Thus, the L. pneumophila Lsp system is a virulence factor and the only type II secretion system linked to intracellular infection.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
110 |
8
|
Rossier O, Cianciotto NP. Type II protein secretion is a subset of the PilD-dependent processes that facilitate intracellular infection by Legionella pneumophila. Infect Immun 2001; 69:2092-8. [PMID: 11254562 PMCID: PMC98134 DOI: 10.1128/iai.69.4.2092-2098.2001] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, we had demonstrated that a Legionella pneumophila prepilin peptidase (pilD) mutant does not produce type IV pili and shows reduced secretion of enzymatic activities. Moreover, it displays a distinct colony morphology and a dramatic reduction in intracellular growth within amoebae and macrophages, two phenotypes that are not exhibited by a pilin (pilE(L)) mutant. To determine whether these pilD-dependent defects were linked to type II secretion, we have constructed two new mutants of L. pneumophila strain 130b. Mutations were introduced into either lspDE, which encodes the type II outer membrane secretin and ATPase, or lspFGHIJK, which encodes the pseudopilins. Unlike the wild-type and pilE(L) strains, both lspDE and lspG mutants showed reduced secretion of six pilD-dependent enzymatic activities; i.e., protease, acid phosphatase, p-nitrophenol phosphorylcholine hydrolase, lipase, phospholipase A, and lysophospholipase A. However, they exhibited a colony morphology different from that of the pilD mutant, suggesting that their surfaces are distinct. The pilD, lspDE, and lspG mutants were similarly and greatly impaired for growth within Hartmannella vermiformis, indicating that the intracellular defect of the peptidase mutant in amoebae is explained by the loss of type II secretion. When assessed for infection of U937 macrophages, both lsp mutants exhibited a 10-fold reduction in intracellular multiplication and a diminished cytopathic effect. Interestingly, the pilD mutant was clearly 100-fold more defective than the type II secretion mutants in U937 cells. These results suggest the existence of a novel pilD-dependent mechanism for promoting L. pneumophila intracellular infection of human cells.
Collapse
|
research-article |
24 |
83 |
9
|
Rossier O, Cianciotto NP. The Legionella pneumophila tatB gene facilitates secretion of phospholipase C, growth under iron-limiting conditions, and intracellular infection. Infect Immun 2005; 73:2020-32. [PMID: 15784543 PMCID: PMC1087389 DOI: 10.1128/iai.73.4.2020-2032.2005] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our previous mutational analysis of Legionella pneumophila demonstrated a role for type II protein (Lsp) secretion and iron acquisition in intracellular infection and virulence. In gram-negative bacteria, the twin-arginine translocation (Tat) pathway is involved in secretion of proteins, including components of respiratory complexes, across the inner membrane to the periplasm. To assess the significance of Tat for L. pneumophila, tatB mutants were characterized. The mutants exhibited normal growth in standard media but grew slowly under low-iron conditions. They were also impaired in the Nadi assay, indicating that the function of cytochrome c oxidase is influenced by tatB. Consistent with this observation, a subunit of the cytochrome c reductase was shown to be a Tat substrate. Supernatants of the tatB mutants showed a 30% reduction in phospholipase C activity while maintaining normal levels of other Lsp secreted activities. When tested for infection of U937 macrophages, the tatB mutants showed a 10-fold reduction in growth. Double mutants lacking tatB and Lsp secretion were even more defective, suggesting tatB has an intracellular role that is independent of Lsp. tatB mutants were also impaired 20-fold in Hartmannella vermiformis amoebae cultured in the presence of an iron chelator. All mutant phenotypes were complemented by reintroduction of an intact tatB. Thus, L. pneumophila tatB plays a role in the formation of a respiratory complex, growth under low-iron conditions, the secretion of a phospholipase C activity, and intracellular infection.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
76 |
10
|
Rossier O, Abuin L, Fanelli F, Leonardi A, Cotecchia S. Inverse agonism and neutral antagonism at alpha(1a)- and alpha(1b)-adrenergic receptor subtypes. Mol Pharmacol 1999; 56:858-66. [PMID: 10531388 DOI: 10.1124/mol.56.5.858] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have characterized the pharmacological antagonism, i.e., neutral antagonism or inverse agonism, displayed by a number of alpha-blockers at two alpha1-adrenergic receptor (AR) subtypes, alpha(1a)- and alpha(1b)-AR. Constitutively activating mutations were introduced into the alpha(1a)-AR at the position homologous to A293 of the alpha(1b)-AR where activating mutations were previously described. Twenty-four alpha-blockers differing in their chemical structures were initially tested for their effect on the agonist-independent inositol phosphate response mediated by the constitutively active A271E and A293E mutants expressed in COS-7 cells. A selected number of drugs also were tested for their effect on the small, but measurable spontaneous activity of the wild-type alpha(1a)- and alpha(1b)-AR expressed in COS-7 cells. The results of our study demonstrate that a large number of structurally different alpha-blockers display profound negative efficacy at both the alpha(1a)- and alpha(1b)-AR subtypes. For other drugs, the negative efficacy varied at the different constitutively active mutants. The most striking difference concerns a group of N-arylpiperazines, including 8-[2-[4-(5-chloro-2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro [4, 5] decane-7,9-dione (REC 15/3039), REC 15/2739, and REC 15/3011, which are inverse agonists with profound negative efficacy at the wild-type alpha(1b)-AR, but not at the alpha(1a)-AR.
Collapse
|
|
26 |
74 |
11
|
Ballvora A, Pierre M, van den Ackerveken G, Schornack S, Rossier O, Ganal M, Lahaye T, Bonas U. Genetic mapping and functional analysis of the tomato Bs4 locus governing recognition of the Xanthomonas campestris pv. vesicatoria AvrBs4 protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:629-638. [PMID: 11332727 DOI: 10.1094/mpmi.2001.14.5.629] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Xanthomonas campestris pv. vesicatoria is the causal agent of bacterial spot disease on pepper (Capsicum spp.) and tomato (Lycopersicon spp.). Analysis of 17 different Lycopersicon accessions with avrBs4-expressing X. campestris pv. vesicatoria strains identified 15 resistant and two susceptible tomato genotypes. Genetic analysis revealed that AvrBs4 recognition in tomato is governed by a single locus, designated Bs4 (bacterial spot resistance locus no. 4). Amplified fragment length polymorphism and bulked DNA templates from resistant and susceptible plants were used to define a 2.6-cM interval containing the Bs4 locus. A standard tomato mapping population was employed to localize Bs4-linked markers on the short arm of chromosome 5. Investigation of X. campestris pv. vesicatoria hrp mutant strains revealed that AvrBs4 secretion and avirulence activity are hrp dependent. Agrobacterium-based delivery of the avrBs4 gene into tomato triggered a plant response that phenotypically resembled the hypersensitive response induced by avrBs4-expressing X. campestris pv. vesicatoria strains, suggesting symplastic perception of the avirulence protein. Mutations in the avrBs4 C-terminal nuclear localization signals (NLSs) showed that NLSs are dispensable for Bs4-mediated recognition. Our data suggest that tomato Bs4 and pepper Bs3 employ different recognition modes for detection of the highly homologous X. campestris pv. vesicatoria avirulence proteins AvrBs4 and AvrBs3.
Collapse
|
|
24 |
60 |
12
|
Söderberg MA, Rossier O, Cianciotto NP. The type II protein secretion system of Legionella pneumophila promotes growth at low temperatures. J Bacteriol 2004; 186:3712-20. [PMID: 15175284 PMCID: PMC419956 DOI: 10.1128/jb.186.12.3712-3720.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gram-negative bacterium Legionella pneumophila grows in both natural and man-made water systems and in the mammalian lung as a facultative intracellular parasite. The PilD prepilin peptidase of L. pneumophila promotes type IV pilus biogenesis and type II protein secretion. Whereas pili enhance adherence, Legionella type II secretion is critical for intracellular growth and virulence. Previously, we observed that pilD transcript levels are greater in legionellae grown at 30 versus 37 degrees C. Using a new pilD::lacZ fusion strain, we now show that pilD transcriptional initiation increases progressively as L. pneumophila is grown at 30, 25, and 17 degrees C. Legionella pilD mutants also had a dramatically reduced ability to grow in broth and to form colonies on agar at the lower temperatures. Whereas strains specifically lacking type IV pili were not defective for low-temperature growth, mutations in type II secretion (lsp) genes greatly impaired the capacity of L. pneumophila to form colonies at 25, 17, and 12 degrees C. Indeed, the lsp mutants were completely unable to grow at 12 degrees C. The growth defect of the pilD and lsp mutants was complemented by reintroduction of the corresponding intact gene. Interestingly, the lsp mutants displayed improved growth at 25 degrees C when plated next to a streak of wild-type but not mutant bacteria, implying that a secreted, diffusible factor promotes low-temperature growth. Mutants lacking either the known secreted acid phosphatases, lipases, phospholipase C, lysophospholipase A, or protease grew normally at 25 degrees C, suggesting the existence of a critical, yet-to-be-defined exoprotein(s). In summary, these data document, for the first time, that L. pneumophila replicates at temperatures below 20 degrees C and that a bacterial type II protein secretion system facilitates growth at low temperatures.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
54 |
13
|
Aragon V, Rossier O, Cianciotto NP. Legionella pneumophila genes that encode lipase and phospholipase C activities. MICROBIOLOGY (READING, ENGLAND) 2002; 148:2223-2231. [PMID: 12101309 DOI: 10.1099/00221287-148-7-2223] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Legionella pneumophila, the agent of Legionnaires' disease, is an intracellular parasite of aquatic protozoans and human macrophages. The type II protein secretion system of the Gram-negative Legionella organism promotes intracellular infection. A lipase activity and a p-nitrophenylphosphorylcholine (pNPPC) hydrolytic activity are two of the factors that are diminished in L. pneumophila type II secretion mutants. The Legionella lipase activity was found to include free fatty acid release from di- and triacylglycerol substrates, in addition to the previously reported cleavage of monoacylglycerol. In a number of other bacterial systems, the release of p-nitrophenol from pNPPC is due to a phospholipase C. In an attempt to identify exoproteins that potentiate intracellular infection, three genes were identified and mutated in L. pneumophila strain 130b that were predicted to encode either a secreted lipase or a phospholipase C. The first two genes, which were designated lipA and lipB, encoded proteins containing the lipase consensus sequence [LIV]-X-[LIVFY]-[LIVMST]-G-[HYWV]-S-X-G-[GSTAC]. Mutations in lipA in particular reduced supernatant activity against mono- and triacylglycerols. However, loss of lipA and/or lipB did not impair the ability of L. pneumophila to infect Hartmannella amoebae or U937 cell macrophages. The third L. pneumophila gene, which was denoted plcA, encoded a protein that was highly homologous with a phospholipase C from Pseudomonas fluorescens. Inactivation of plcA diminished secreted pNPPC hydrolase activity but did not influence Legionella infection of host cells. Taken together, these data indicate that L. pneumophila has multiple lipases and possibly several phospholipase C enzymes but that LipA, LipB and PlcA are not among those exoproteins required for optimal intracellular infection.
Collapse
|
|
23 |
53 |
14
|
Escolar L, Van Den Ackerveken G, Pieplow S, Rossier O, Bonas U. Type III secretion and in planta recognition of the Xanthomonas avirulence proteins AvrBs1 and AvrBsT. MOLECULAR PLANT PATHOLOGY 2001; 2:287-296. [PMID: 20573017 DOI: 10.1046/j.1464-6722.2001.00077.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
summary The hrp gene cluster of the plant pathogen Xanthomonas campestris pv. vesicatoria (Xcv) encodes a type III secretion system required for the delivery of virulence and avirulence proteins into the plant. Some of these effector proteins, e.g. AvrBs1 and AvrBsT, are recognized by pepper plants carrying corresponding resistance genes, triggering the hypersensitive reaction (HR). In this study, epitope tagged AvrBs1 and AvrBsT proteins were detected in culture supernatants only in the presence of a functional type III apparatus and not in a hrcV mutant, showing that both proteins are secreted by Xcv in an hrp-dependent manner. Expression of both avirulence genes is constitutive and independent of the hrp gene regulators, hrpG and hrpX. Transient expression of avrBs1 and avrBsT in resistant host plants using Agrobacterium tumefaciens-mediated gene transfer resulted in the induction of a specific HR. This indicates that recognition occurs intracellularly, and suggests that during the Xcv infection, AvrBs1 and AvrBsT are translocated from Xcv into the plant cell. We describe a conserved protein motif which is present in the N-terminal region of all known Xcv avirulence proteins and discuss its potential role in translocation into plant cells.
Collapse
|
|
24 |
46 |
15
|
Lorenz C, Schulz S, Wolsch T, Rossier O, Bonas U, Büttner D. HpaC controls substrate specificity of the Xanthomonas type III secretion system. PLoS Pathog 2008; 4:e1000094. [PMID: 18584024 PMCID: PMC2427183 DOI: 10.1371/journal.ppat.1000094] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 05/28/2008] [Indexed: 12/04/2022] Open
Abstract
The Gram-negative bacterial plant pathogen Xanthomonas campestris pv. vesicatoria employs a type III secretion (T3S) system to inject bacterial effector proteins into the host cell cytoplasm. One essential pathogenicity factor is HrpB2, which is secreted by the T3S system. We show that secretion of HrpB2 is suppressed by HpaC, which was previously identified as a T3S control protein. Since HpaC promotes secretion of translocon and effector proteins but inhibits secretion of HrpB2, HpaC presumably acts as a T3S substrate specificity switch protein. Protein–protein interaction studies revealed that HpaC interacts with HrpB2 and the C-terminal domain of HrcU, a conserved inner membrane component of the T3S system. However, no interaction was observed between HpaC and the full-length HrcU protein. Analysis of HpaC deletion derivatives revealed that the binding site for the C-terminal domain of HrcU is essential for HpaC function. This suggests that HpaC binding to the HrcU C terminus is key for the control of T3S. The C terminus of HrcU also provides a binding site for HrpB2; however, no interaction was observed with other T3S substrates including pilus, translocon and effector proteins. This is in contrast to HrcU homologs from animal pathogenic bacteria suggesting evolution of distinct mechanisms in plant and animal pathogenic bacteria for T3S substrate recognition. The Gram-negative plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria is the causal agent of bacterial spot disease in pepper and tomato. Pathogenicity of X. campestris pv. vesicatoria depends on a type III protein secretion (T3S) system that injects bacterial effector proteins directly into the host cell cytosol. The T3S system is a highly complex nanomachine that spans both bacterial membranes and is associated with an extracellular pilus and a translocon that inserts into the host cell membrane. Given the architecture of the secretion apparatus, it is conceivable that pilus formation precedes effector protein secretion. The pilus presumably consists of two components, i.e., the major pilus subunit HrpE and HrpB2, which is required for pilus assembly. Secretion of HrpB2 is suppressed by HpaC that switches substrate specificity of the T3S system from secretion of HrpB2 to secretion of translocon and effector proteins. The substrate specificity switch depends on the cytoplasmic domain of HrcU, which is a conserved inner membrane protein of the T3S apparatus that interacts with HrpB2 and HpaC.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
40 |
16
|
Kakoschke T, Kakoschke S, Magistro G, Schubert S, Borath M, Heesemann J, Rossier O. The RNA chaperone Hfq impacts growth, metabolism and production of virulence factors in Yersinia enterocolitica. PLoS One 2014; 9:e86113. [PMID: 24454955 PMCID: PMC3893282 DOI: 10.1371/journal.pone.0086113] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 12/05/2013] [Indexed: 11/18/2022] Open
Abstract
To adapt to changes in environmental conditions, bacteria regulate their gene expression at the transcriptional but also at the post-transcriptional level, e.g. by small RNAs (sRNAs) which modulate mRNA stability and translation. The conserved RNA chaperone Hfq mediates the interaction of many sRNAs with their target mRNAs, thereby playing a global role in fine-tuning protein production. In this study, we investigated the significance of Hfq for the enteropathogen Yersina enterocolitica serotype O:8. Hfq facilitated optimal growth in complex and minimal media. Our comparative protein analysis of parental and hfq-negative strains suggested that Hfq promotes lipid metabolism and transport, cell redox homeostasis, mRNA translation and ATP synthesis, and negatively affects carbon and nitrogen metabolism, transport of siderophore and peptides and tRNA synthesis. Accordingly, biochemical tests indicated that Hfq represses ornithine decarboxylase activity, indole production and utilization of glucose, mannitol, inositol and 1,2-propanediol. Moreover, Hfq repressed production of the siderophore yersiniabactin and its outer membrane receptor FyuA. In contrast, hfq mutants exhibited reduced urease production. Finally, strains lacking hfq were more susceptible to acidic pH and oxidative stress. Unlike previous reports in other Gram-negative bacteria, Hfq was dispensable for type III secretion encoded by the virulence plasmid. Using a chromosomally encoded FLAG-tagged Hfq, we observed increased production of Hfq-FLAG in late exponential and stationary phases. Overall, Hfq has a profound effect on metabolism, resistance to stress and modulates the production of two virulence factors in Y. enterocolitica, namely urease and yersiniabactin.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
30 |
17
|
Rossier O, Dao J, Cianciotto NP. A type II secreted RNase of Legionella pneumophila facilitates optimal intracellular infection of Hartmannella vermiformis. MICROBIOLOGY (READING, ENGLAND) 2009; 155:882-890. [PMID: 19246759 PMCID: PMC2662391 DOI: 10.1099/mic.0.023218-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Type II protein secretion plays a role in a wide variety of functions that are important for the ecology and pathogenesis of Legionella pneumophila. Perhaps most dramatic is the critical role that this secretion pathway has in L. pneumophila intracellular infection of aquatic protozoa. Recently, we showed that virulent L. pneumophila strain 130b secretes RNase activity through its type II secretion system. We now report the cloning and mutational analysis of the gene (srnA) encoding that novel type of secreted activity. The SrnA protein was defined as being a member of the T2 family of secreted RNases. Supernatants from mutants inactivated for srnA completely lacked RNase activity, indicating that SrnA is the major secreted RNase of L. pneumophila. Although srnA mutants grew normally in bacteriological media and human U937 cell macrophages, they were impaired in their ability to grow within Hartmannella vermiformis amoebae. This finding represents the second identification of a L. pneumophila type II effector being necessary for optimal intracellular infection of amoebae, with the first being the ProA zinc metalloprotease. Newly constructed srnA proA double mutants displayed an even larger infection defect that appeared to be the additive result of losing both SrnA and ProA. Overall, these data represent the first demonstration of a secreted RNase promoting an intracellular infection event, and support our long-standing hypothesis that the infection defects of L. pneumophila type II secretion mutants are due to the loss of multiple secreted effectors.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
29 |
18
|
Ramirez-Chamorro L, Boulanger P, Rossier O. Strategies for Bacteriophage T5 Mutagenesis: Expanding the Toolbox for Phage Genome Engineering. Front Microbiol 2021; 12:667332. [PMID: 33981295 PMCID: PMC8108384 DOI: 10.3389/fmicb.2021.667332] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/19/2021] [Indexed: 12/31/2022] Open
Abstract
Phage genome editing is crucial to uncover the molecular mechanisms of virus infection and to engineer bacteriophages with enhanced antibacterial properties. Phage genetic engineering relies mostly on homologous recombination (HR) assisted by the targeted elimination of wild-type phages by CRISPR-Cas nucleases. These strategies are often less effective in virulent bacteriophages with large genomes. T5 is a virulent phage that infects Escherichia coli. We found that CRISPR-Cas9 system (type II-A) had ununiform efficacies against T5, which impairs a reliable use of CRISPR-Cas-assisted counterselection in the gene editing of T5. Here, we present alternative strategies for the construction of mutants in T5. Bacterial retroelements (retrons) proved to be efficient for T5 gene editing by introducing point mutations in the essential gene A1. We set up a protocol based on dilution-amplification-screening (DAS) of phage pools for mutant enrichment that was used to introduce a conditional mutation in another essential gene (A2), insert a new gene (lacZα), and construct a translational fusion of a late phage gene with a fluorescent protein coding gene (pb10-mCherry). The method should be applicable to other virulent phages that are naturally resistant to CRISPR/Cas nucleases.
Collapse
|
Journal Article |
4 |
19 |
19
|
Nieckarz M, Raczkowska A, Dębski J, Kistowski M, Dadlez M, Heesemann J, Rossier O, Brzostek K. Impact of OmpR on the membrane proteome of Yersinia enterocolitica in different environments: repression of major adhesin YadA and heme receptor HemR. Environ Microbiol 2016; 18:997-1021. [PMID: 26627632 DOI: 10.1111/1462-2920.13165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/26/2015] [Accepted: 11/29/2015] [Indexed: 01/22/2023]
Abstract
Enteropathogenic Yersinia enterocolitica is able to grow within or outside the mammalian host. Previous transcriptomic studies have indicated that the regulator OmpR plays a role in the expression of hundreds of genes in enterobacteria. Here, we have examined the impact of OmpR on the production of Y. enterocolitica membrane proteins upon changes in temperature, osmolarity and pH. Proteomic analysis indicated that the loss of OmpR affects the production of 120 proteins, a third of which are involved in uptake/transport, including several that participate in iron or heme acquisition. A set of proteins associated with virulence was also affected. The influence of OmpR on the abundance of adhesin YadA and heme receptor HemR was examined in more detail. OmpR was found to repress YadA production and bind to the yadA promoter, suggesting a direct regulatory effect. In contrast, the repression of hemR expression by OmpR appears to be indirect. These findings provide new insights into the role of OmpR in remodelling the cell surface and the adaptation of Y. enterocolitica to different environmental niches, including the host.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
13 |
20
|
Cotecchia S, Rossier O, Fanelli F, Leonardi A, De Benedetti PG. The alpha 1a and alpha 1b-adrenergic receptor subtypes: molecular mechanisms of receptor activation and of drug action. PHARMACEUTICA ACTA HELVETIAE 2000; 74:173-9. [PMID: 10812955 DOI: 10.1016/s0031-6865(99)00031-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this chapter we summarize some aspects of the structure-functional relationship of the alpha 1a and alpha 1b-adrenergic receptor subtypes related to the receptor activation process as well as the effect of different alpha-blockers on the constitutive activity of the receptor. Molecular modeling of the alpha 1a and alpha 1b-adrenergic receptor subtypes and computational simulation of receptor dynamics were useful to interpret the experimental findings derived from site directed mutagenesis studies.
Collapse
|
Review |
25 |
12 |
21
|
Ghassemi S, Rossier O, Sheetz MP, Wind SJ, Hone J. Gold-Tipped Elastomeric Pillars for Cellular Mechanotransduction. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY. B, MICROELECTRONICS AND NANOMETER STRUCTURES : PROCESSING, MEASUREMENT, AND PHENOMENA : AN OFFICIAL JOURNAL OF THE AMERICAN VACUUM SOCIETY 2009; 27:3088-3091. [PMID: 20526428 PMCID: PMC2880520 DOI: 10.1116/1.3259953] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We describe a technique for the fabrication of arrays of elastomeric pillars whose top surfaces are treated with selective chemical functionalization to promote cellular adhesion in cellular force transduction experiments. The technique involves the creation of a rigid mold consisting of arrays of circular holes into which a thin layer of Au is deposited while the top surface of the mold and the sidewalls of the holes are protected by a sacrificial layer of Cr. When an elastomer is formed in the mold, the Au adheres to the tops of the molded pillars. This can then be selectively functionalized with a protein that induces cell adhesion, while the rest of the surface is treated with a repellent substance. An additional benefit is that the tops of the pillars can be fluorescently labeled for improved accuracy in force transduction measurements.
Collapse
|
research-article |
16 |
5 |
22
|
Bonas U, Van den Ackerveken G, Büttner D, Hahn K, Marois E, Nennstiel D, Noel L, Rossier O, Szurek B. How the bacterial plant pathogen Xanthomonas campestris pv. vesicatoria conquers the host. MOLECULAR PLANT PATHOLOGY 2000; 1:73-76. [PMID: 20572953 DOI: 10.1046/j.1364-3703.2000.00010.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Abstract Xanthomonas campestris pv. vesicatoria (Xcv) is the causal agent of bacterial spot disease on pepper and tomato. Pathogenicity on susceptible plants and the induction of the hypersensitive reaction (HR) on resistant plants requires a number of genes, designated hrp, most of which are clustered in a 23-kb chromosomal region. Nine hrp genes encode components of a type III protein secretion apparatus that is conserved in Gram-negative plant and animal pathogenic bacteria. We have recently demonstrated that Xcv secretes proteins into the culture medium in a hrp-dependent manner. Substrates of the Hrp secretion machinery are pathogenicity factors and avirulence proteins, e.g. AvrBs3. The AvrBs3 protein governs recognition, i.e. HR induction, when bacteria infect pepper plants carrying the corresponding resistance gene Bs3. Intriguingly, the AvrBs3 protein contains eukaryotic signatures such as nuclear localization signals (NLS), and has been shown to act inside the plant cell. We postulate that AvrBs3 is transferred into the plant cell via the Hrp type III pathway and that recognition of AvrBs3 takes place in the plant cell nucleus.
Collapse
|
|
25 |
4 |
23
|
Hanauer DI, Zhang T, Graham MJ, Adams SD, Ahumada-Santos YP, Alvey RM, Antunes MS, Ayuk MA, Báez-Flores ME, Bancroft CT, Bates TC, Bechman MJ, Behr E, Beyer AR, Bortz RL, Bowder DM, Briggs LA, Brown-Kennerly V, Buckholt MA, Bullock SK, Butela KA, Byrum CA, Caruso SM, Chia CP, Chong RA, Chung HM, Clase KL, Coleman ST, Parks Collins D, Conant SB, Condon BM, Connerly PL, Connors BJ, Cook-Easterwood JE, Crump KE, D’Elia T, Dennis MK, DeVeaux LC, Diacovich L, Duffy I, Edgington NP, Edwards DC, Egwuatu TO, Eivazova ER, Fallest-Strobl PC, Fillman CL, Findley AM, Fisher E, Fisher MR, Fogarty MP, Freise AC, Frost VJ, Gainey MD, Costas AMG, Garza AA, Gavin HE, Ghittoni R, Gibb B, Golebiewska UP, Grinath AS, R Gurney SM, Hare RF, Heninger SG, Hinz JM, Hughes LE, Jayachandran P, Johnson KC, Johnson AA, Kanther M, Kenna M, Kirkpatrick BL, Klyczek KK, Kohl KP, Kuchka M, LaPeruta AJ, Lee-Soety JY, Lewis LO, Lindberg HM, Madden JA, Markov SA, Mastropaolo MD, Mathur V, McClory SP, Merkhofer EC, Merkle JA, Michael SF, Mitchell JC, Molloy SD, Monti DL, Mussi MA, Nance H, Nieto-Fernandez FE, Nissen JC, Nsa IY, O’Donnell MG, Page ST, Panagakis A, Parra-Unda JR, Pelletier TA, Perez Morales TG, et alHanauer DI, Zhang T, Graham MJ, Adams SD, Ahumada-Santos YP, Alvey RM, Antunes MS, Ayuk MA, Báez-Flores ME, Bancroft CT, Bates TC, Bechman MJ, Behr E, Beyer AR, Bortz RL, Bowder DM, Briggs LA, Brown-Kennerly V, Buckholt MA, Bullock SK, Butela KA, Byrum CA, Caruso SM, Chia CP, Chong RA, Chung HM, Clase KL, Coleman ST, Parks Collins D, Conant SB, Condon BM, Connerly PL, Connors BJ, Cook-Easterwood JE, Crump KE, D’Elia T, Dennis MK, DeVeaux LC, Diacovich L, Duffy I, Edgington NP, Edwards DC, Egwuatu TO, Eivazova ER, Fallest-Strobl PC, Fillman CL, Findley AM, Fisher E, Fisher MR, Fogarty MP, Freise AC, Frost VJ, Gainey MD, Costas AMG, Garza AA, Gavin HE, Ghittoni R, Gibb B, Golebiewska UP, Grinath AS, R Gurney SM, Hare RF, Heninger SG, Hinz JM, Hughes LE, Jayachandran P, Johnson KC, Johnson AA, Kanther M, Kenna M, Kirkpatrick BL, Klyczek KK, Kohl KP, Kuchka M, LaPeruta AJ, Lee-Soety JY, Lewis LO, Lindberg HM, Madden JA, Markov SA, Mastropaolo MD, Mathur V, McClory SP, Merkhofer EC, Merkle JA, Michael SF, Mitchell JC, Molloy SD, Monti DL, Mussi MA, Nance H, Nieto-Fernandez FE, Nissen JC, Nsa IY, O’Donnell MG, Page ST, Panagakis A, Parra-Unda JR, Pelletier TA, Perez Morales TG, Peters NT, Phuntumart V, Pollenz RS, Preuss ML, Puthoff DP, Raifu MK, Reyna NS, Rinehart CA, Rocheleau JM, Rossier O, Rudner AD, Rueschhoff EE, Ryan A, Saha S, Shaffer CD, Smith MAV, Sprenkle AB, Strong CL, Nicole Sunnen C, Tarbox BP, Temple L, Thoemke KR, Thomas MA, Tobiason DM, Tolsma SS, Garcia JT, Valentine MS, Vazquez E, Ward RE, Ward CM, Ware VC, Warner MH, Washington JM, Westholm DE, Wheaton KA, Wilkes BM, Williams EC, Biederman WH, Cresawn SG, Heller DM, Jacobs-Sera D, Hatfull GF, Asai DJ, Sivanathan V. Models of Classroom Assessment for Course-Based Research Experiences. FRONTIERS IN EDUCATION 2023; 8:1279921. [PMID: 39687267 PMCID: PMC11649310 DOI: 10.3389/feduc.2023.1279921] [Show More Authors] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Course-based research pedagogy involves positioning students as contributors to authentic research projects as part of an engaging educational experience that promotes their learning and persistence in science. To develop a model for assessing and grading students engaged in this type of learning experience, the assessment aims and practices of a community of experienced course-based research instructors were collected and analyzed. This approach defines four aims of course-based research assessment - 1) Assessing Laboratory Work and Scientific Thinking; 2) Evaluating Mastery of Concepts, Quantitative Thinking and Skills; 3) Appraising Forms of Scientific Communication; and 4) Metacognition of Learning - along with a set of practices for each aim. These aims and practices of assessment were then integrated with previously developed models of course-based research instruction to reveal an assessment program in which instructors provide extensive feedback to support productive student engagement in research while grading those aspects of research that are necessary for the student to succeed. Assessment conducted in this way delicately balances the need to facilitate students' ongoing research with the requirement of a final grade without undercutting the important aims of a CRE education.
Collapse
|
research-article |
2 |
2 |
24
|
Arnaud CA, Linares R, Rossier O, Boeri Erba E, Boulanger P, Schoehn G, Breyton C. About proteins of a siphophage tail tip complex reverting to their pre-ejection fold after DNA ejection. Nat Commun 2025; 16:2859. [PMID: 40133284 PMCID: PMC11937500 DOI: 10.1038/s41467-025-57874-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
|
Letter |
1 |
|
25
|
Monti DL, Gill JC, Adair TL, Adams SD, Ahumada-Santos YP, Amaya I, Anders KR, Anderson JR, Antunes MS, Ayuk MA, Baliraine FN, Bates TC, Beyer AR, Bhalla SS, Bouklas T, Bullock SK, Butela KA, Byrum CA, Caruso SM, Chong RA, Chung HM, Conant SB, Condon BM, Crump KE, D’Elia T, Dennis MK, DeVeaux LC, Diacovich L, Diaz A, Duffy I, Edwards DC, Fallest-Strobl PC, Findley AM, Fisher MR, Fogarty MP, Frost VJ, Gainey MD, Galle CS, Gibb B, Golebiewska UP, Gramajo HC, Grinath AS, Guerrero JA, Guild NA, Gunn KE, Gurney SM, Hughes LE, Jayachandran P, Johnson KC, Johnson AA, Kanak AE, Kanther ML, King RA, Kohl KP, Lee-Soety JY, Lewis LO, Lindberg HM, Madden JA, Martin BJ, Mastropaolo MD, McClory SP, Merkhofer EC, Merkle JA, Mitchell JC, Mussi MA, Nieto-Fernandez FE, Nissen JC, Nsa IY, O’Donnell MG, Overath RD, Page ST, Panagakis A, Parra Unda JR, Pass MB, Morales TGP, Peters NT, Plymale R, Pollenz RS, Reyna NS, Rinehart CA, Rocheleau JM, Rombold JS, Rossier O, Rudner AD, Rueschhoff EE, Shaffer CD, Smith MAV, Sprenkle AB, Sunnen CN, Thomas MA, Tigges MM, Tobiason DM, Tolsma SS, Garcia JT, Uetz P, Vazquez E, Ward CM, Ware VC, Washington JM, Waterman MJ, et alMonti DL, Gill JC, Adair TL, Adams SD, Ahumada-Santos YP, Amaya I, Anders KR, Anderson JR, Antunes MS, Ayuk MA, Baliraine FN, Bates TC, Beyer AR, Bhalla SS, Bouklas T, Bullock SK, Butela KA, Byrum CA, Caruso SM, Chong RA, Chung HM, Conant SB, Condon BM, Crump KE, D’Elia T, Dennis MK, DeVeaux LC, Diacovich L, Diaz A, Duffy I, Edwards DC, Fallest-Strobl PC, Findley AM, Fisher MR, Fogarty MP, Frost VJ, Gainey MD, Galle CS, Gibb B, Golebiewska UP, Gramajo HC, Grinath AS, Guerrero JA, Guild NA, Gunn KE, Gurney SM, Hughes LE, Jayachandran P, Johnson KC, Johnson AA, Kanak AE, Kanther ML, King RA, Kohl KP, Lee-Soety JY, Lewis LO, Lindberg HM, Madden JA, Martin BJ, Mastropaolo MD, McClory SP, Merkhofer EC, Merkle JA, Mitchell JC, Mussi MA, Nieto-Fernandez FE, Nissen JC, Nsa IY, O’Donnell MG, Overath RD, Page ST, Panagakis A, Parra Unda JR, Pass MB, Morales TGP, Peters NT, Plymale R, Pollenz RS, Reyna NS, Rinehart CA, Rocheleau JM, Rombold JS, Rossier O, Rudner AD, Rueschhoff EE, Shaffer CD, Smith MAV, Sprenkle AB, Sunnen CN, Thomas MA, Tigges MM, Tobiason DM, Tolsma SS, Garcia JT, Uetz P, Vazquez E, Ward CM, Ware VC, Washington JM, Waterman MJ, Westholm DE, Wheaton KA, White SJ, Williams BC, Williams DC, Wisner EM, Biederman WH, Cresawn SG, Heller DM, Jacobs-Sera D, Russell DA, Hatfull GF, Asai DJ, Hanauer DI, Graham MJ, Sivanathan V. An inclusive Research Education Community (iREC) Model to Facilitate Undergraduate Science Education Reform. FRONTIERS IN EDUCATION 2024; 9:1442318. [PMID: 39686966 PMCID: PMC11649309 DOI: 10.3389/feduc.2024.1442318] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Over the last two decades, there have been numerous initiatives to improve undergraduate student outcomes in STEM. One model for scalable reform is the inclusive Research Education Community (iREC). In an iREC, STEM faculty from colleges and universities across the nation are supported to adopt and sustainably implement course-based research - a form of science pedagogy that enhances student learning and persistence in science. In this study, we used pathway modelling to develop a qualitative description that explicates the HHMI Science Education Alliance (SEA) iREC as a model for facilitating the successful adoption and continued advancement of new curricular content and pedagogy. In particular, outcomes that faculty realize through their participation in the SEA iREC were identified, organized by time, and functionally linked. The resulting pathway model was then revised and refined based on several rounds of feedback from over 100 faculty members in the SEA iREC who participated in the study. Our results show that in an iREC, STEM faculty organized as a long-standing community of practice leverage one another, outside expertise, and data to adopt, implement, and iteratively advance their pedagogy. The opportunity to collaborate in this manner and, additionally, to be recognized for pedagogical contributions sustainably engages STEM faculty in the advancement of their pedagogy. Here, we present a detailed pathway model of SEA that, together with underpinning features of an iREC identified in this study, offers a framework to facilitate transformations in undergraduate science education.
Collapse
|
research-article |
1 |
|