1
|
Liu Y, Corcoran M, Rasool O, Ivanova G, Ibbotson R, Grandér D, Iyengar A, Baranova A, Kashuba V, Merup M, Wu X, Gardiner A, Mullenbach R, Poltaraus A, Hultström AL, Juliusson G, Chapman R, Tiller M, Cotter F, Gahrton G, Yankovsky N, Zabarovsky E, Einhorn S, Oscier D. Cloning of two candidate tumor suppressor genes within a 10 kb region on chromosome 13q14, frequently deleted in chronic lymphocytic leukemia. Oncogene 1997; 15:2463-73. [PMID: 9395242 DOI: 10.1038/sj.onc.1201643] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Previous studies have indicated the presence of a putative tumor suppressor gene on chromosome 13q14, commonly deleted in patients with B-cell chronic lymphocytic leukemia (B-CLL). We have previously defined a minimally deleted region of 130 kb centromeric to the marker D13S272, and constructed a PAC and cosmid contig encompassing this area. In the present study we have made a detailed restriction and transcriptional map of the region of interest. Using these tools we have screened a panel of 206 primary CLL clones and three cell lines. In five CLL cases we found limited deletions defining the region of interest to an area of no more than 10 kb. Two adjacent genes, termed Leu1 and Leu2 (leukemia-associated gene 1 and 2), were mapped to the minimally deleted region, with several patients showing deletion borders within these genes. The Leu1 and Leu2 genes show little homology to previously published genes at the nucleotide and expected translated amino acid sequence level. Mutational analysis of the Leu1 and 2 genes in 170 CLL samples revealed no small intragenic mutations or point mutations. However, in all cases of 13q14 loss examined, the first exon of both genes, which are only 300 bp apart, were deleted. We conclude that the Leu1 and Leu2 genes are strong candidates as tumor suppressor gene(s) involved in B-CLL leukemogenesis.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Cell Transformation, Neoplastic/genetics
- Chromosomes, Human, Pair 13/genetics
- Cloning, Molecular
- Cosmids
- DNA Mutational Analysis
- DNA, Neoplasm/genetics
- Gene Deletion
- Gene Expression Regulation, Leukemic
- Genes, Tumor Suppressor
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Molecular Sequence Data
- Neoplasm Proteins/genetics
- Open Reading Frames
- Polymerase Chain Reaction
- Polymorphism, Single-Stranded Conformational
- Proteins/genetics
- RNA, Long Noncoding
- Restriction Mapping
- Sequence Homology, Nucleic Acid
- Transcription, Genetic
- Transferases
- Tumor Suppressor Proteins
Collapse
|
Comparative Study |
28 |
140 |
2
|
Elo LL, Järvenpää H, Tuomela S, Raghav S, Ahlfors H, Laurila K, Gupta B, Lund RJ, Tahvanainen J, Hawkins RD, Oresic M, Lähdesmäki H, Rasool O, Rao KV, Aittokallio T, Lahesmaa R. Genome-wide profiling of interleukin-4 and STAT6 transcription factor regulation of human Th2 cell programming. Immunity 2010; 32:852-62. [PMID: 20620947 DOI: 10.1016/j.immuni.2010.06.011] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 04/20/2010] [Accepted: 05/26/2010] [Indexed: 01/30/2023]
Abstract
Dissecting the molecular mechanisms by which T helper (Th) cells differentiate to effector Th2 cells is important for understanding the pathogenesis of immune-mediated diseases, such as asthma and allergy. Because the STAT6 transcription factor is an upstream mediator required for interleukin-4 (IL-4)-induced Th2 cell differentiation, its targets include genes important for this process. Using primary human CD4(+) T cells, and by blocking STAT6 with RNAi, we identified a number of direct and indirect targets of STAT6 with ChIP sequencing. The integration of these data sets with detailed kinetics of IL-4-driven transcriptional changes showed that STAT6 was predominantly needed for the activation of transcription leading to the Th2 cell phenotype. This integrated genome-wide data on IL-4- and STAT6-mediated transcription provide a unique resource for studies on Th cell differentiation and, in particular, for designing interventions of human Th2 cell responses.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
114 |
3
|
Akerlund B, Jarstrand C, Lindeke B, Sönnerborg A, Akerblad AC, Rasool O. Effect of N-acetylcysteine(NAC) treatment on HIV-1 infection: a double-blind placebo-controlled trial. Eur J Clin Pharmacol 1996; 50:457-61. [PMID: 8858271 DOI: 10.1007/s002280050140] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE In a double-blind placebo-controlled trial, human immunodeficiency virus (HIV)-seropositive patients with a CD4 lymphocyte cell count of more than 200 x 10(6) . l-1 were randomised to receive either 800 mg N-acetylcysteine (NAC) or placebo for 4 months. Before treatment low plasma cysteine levels, high free radical activity in neutrophils in the presence of autologous plasma-measured by the nitroblue tetrazolium (NBT) test- and increased tumor necrosis factor (TNF)-alpha levels were found in the HIV positive patients. RESULTS After treatment the low plasma cysteine level in the NAC group increased to normal, and the decline of the CD4+ lymphocyte count before the study start, was less steep in the NAC group than in the placebo group after treatment. There was also a reduction in TNF-alpha level. However, NAC had no effect on the radical production by neutrophils, and although it did not increase the CD4+ cell count, it may have decreased the decline in CD4+ cells. CONCLUSION Further controlled trials with NAC are needed to determine whether it has a beneficial effect in the treatment of asymptomatic HIV-infected individuals.
Collapse
|
Clinical Trial |
29 |
75 |
4
|
Lund RJ, Löytömäki M, Naumanen T, Dixon C, Chen Z, Ahlfors H, Tuomela S, Tahvanainen J, Scheinin J, Henttinen T, Rasool O, Lahesmaa R. Genome-wide identification of novel genes involved in early Th1 and Th2 cell differentiation. THE JOURNAL OF IMMUNOLOGY 2007; 178:3648-60. [PMID: 17339462 DOI: 10.4049/jimmunol.178.6.3648] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Th cell subtypes, Th1 and Th2, are involved in the pathogenesis or progression of many immune-mediated diseases, such as type 1 diabetes and asthma, respectively. Defining the molecular networks and factors that direct Th1 and Th2 cell differentiation will help to understand the pathogenic mechanisms causing these diseases. Some of the key factors regulating this differentiation have been identified, however, they alone do not explain the process in detail. To identify novel factors directing the early differentiation, we have studied the transcriptomes of human Th1 and Th2 cells after 2, 6, and 48 h of polarization at the genome scale. Based on our current and previous studies, 288 genes or expressed sequence tags, representing approximately 1-1.5% of the human genome, are regulated in the process during the first 2 days. These transcriptional profiles revealed genes coding for components of certain pathways, such as RAS oncogene family and G protein-coupled receptor signaling, to be differentially regulated during the early Th1 and Th2 cell differentiation. Importantly, numerous novel genes with unknown functions were identified. By using short-hairpin RNA knockdown, we show that a subset of these genes is regulated by IL-4 through STAT6 signaling. Furthermore, we demonstrate that one of the IL-4 regulated genes, NDFIP2, promotes IFN-gamma production by the polarized human Th1 lymphocytes. Among the novel genes identified, there may be many factors that play a crucial role in the regulation of the differentiation process together with the previously known factors and are potential targets for developing therapeutics to modulate Th1 and Th2 responses.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
68 |
5
|
Andersson A, Rasool O, Schmidt M, Kodzius R, Flückiger S, Zargari A, Crameri R, Scheynius A. Cloning, expression and characterization of two new IgE-binding proteins from the yeast Malassezia sympodialis with sequence similarities to heat shock proteins and manganese superoxide dismutase. ACTA ACUST UNITED AC 2004; 271:1885-94. [PMID: 15128298 DOI: 10.1111/j.1432-1033.2004.04098.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Malassezia sympodialis is an opportunistic yeast that colonizes human skin and may induce IgE and T cell reactivity in patients with atopic eczema/dermatitis syndrome (AEDS). Previously, we have cloned and expressed six recombinant allergens (rMala s 1 and rMala s 5 to rMala s 9) from this yeast. By combining high throughput screening and phage surface display techniques, 27 complete and partial IgE-binding clones of M. sympodialis have been identified. Here we enlarged the panel of recombinant M. sympodialis allergens by RACE-PCR, cloning and nucleotide sequencing to obtain the coding sequences of two new IgE-binding clones. The coding sequences of one of the clones showed similarity to the heat shock protein (HSP) family and the other to manganese superoxide dismutase (MnSOD), and both had a high degree of homology to human counterparts. The coding sequences were expressed in Escherichia coli as six-histidine tagged recombinant proteins and generated products with molecular masses of 86.1 kDa for HSP and 22.4 kDa for MnSOD. Their IgE-binding frequencies were shown to be 69% and 75%, respectively, to 28 sera from AEDS patients with serum IgE to M. sympodialis extract, indicating that HSP and MnSOD are major M. sympodialis allergens. In inhibition immunoblotting, M. sympodialis extract could inhibit the binding of serum IgE from AEDS patients to rHSP and rMnSOD in a concentration-dependent manner. The high frequency of sera from AEDS patients, showing IgE binding to both HSP and MnSOD, indicates that these allergens, designated Mala s 10 and Mala s 11, could play a role in AEDS.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
58 |
6
|
Närvä E, Rahkonen N, Emani MR, Lund R, Pursiheimo JP, Nästi J, Autio R, Rasool O, Denessiouk K, Lähdesmäki H, Rao A, Lahesmaa R. RNA-binding protein L1TD1 interacts with LIN28 via RNA and is required for human embryonic stem cell self-renewal and cancer cell proliferation. Stem Cells 2012; 30:452-60. [PMID: 22162396 DOI: 10.1002/stem.1013] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human embryonic stem cells (hESC) have a unique capacity to self-renew and differentiate into all the cell types found in human body. Although the transcriptional regulators of pluripotency are well studied, the role of cytoplasmic regulators is still poorly characterized. Here, we report a new stem cell-specific RNA-binding protein L1TD1 (ECAT11, FLJ10884) required for hESC self-renewal and cancer cell proliferation. Depletion of L1TD1 results in immediate downregulation of OCT4 and NANOG. Furthermore, we demonstrate that OCT4, SOX2, and NANOG all bind to the promoter of L1TD1. Moreover, L1TD1 is highly expressed in seminomas, and depletion of L1TD1 in these cancer cells influences self-renewal and proliferation. We show that L1TD1 colocalizes and interacts with LIN28 via RNA and directly with RNA helicase A (RHA). LIN28 has been reported to regulate translation of OCT4 in complex with RHA. Thus, we hypothesize that L1TD1 is part of the L1TD1-RHA-LIN28 complex that could influence levels of OCT4. Our results strongly suggest that L1TD1 has an important role in the regulation of stemness.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
58 |
7
|
Gustafsson M, Gawel DR, Alfredsson L, Baranzini S, Björkander J, Blomgran R, Hellberg S, Eklund D, Ernerudh J, Kockum I, Konstantinell A, Lahesmaa R, Lentini A, Liljenström HRI, Mattson L, Matussek A, Mellergård J, Mendez M, Olsson T, Pujana MA, Rasool O, Serra-Musach J, Stenmarker M, Tripathi S, Viitala M, Wang H, Zhang H, Nestor CE, Benson M. A validated gene regulatory network and GWAS identifies early regulators of T cell-associated diseases. Sci Transl Med 2016; 7:313ra178. [PMID: 26560356 DOI: 10.1126/scitranslmed.aad2722] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Early regulators of disease may increase understanding of disease mechanisms and serve as markers for presymptomatic diagnosis and treatment. However, early regulators are difficult to identify because patients generally present after they are symptomatic. We hypothesized that early regulators of T cell-associated diseases could be found by identifying upstream transcription factors (TFs) in T cell differentiation and by prioritizing hub TFs that were enriched for disease-associated polymorphisms. A gene regulatory network (GRN) was constructed by time series profiling of the transcriptomes and methylomes of human CD4(+) T cells during in vitro differentiation into four helper T cell lineages, in combination with sequence-based TF binding predictions. The TFs GATA3, MAF, and MYB were identified as early regulators and validated by ChIP-seq (chromatin immunoprecipitation sequencing) and small interfering RNA knockdowns. Differential mRNA expression of the TFs and their targets in T cell-associated diseases supports their clinical relevance. To directly test if the TFs were altered early in disease, T cells from patients with two T cell-mediated diseases, multiple sclerosis and seasonal allergic rhinitis, were analyzed. Strikingly, the TFs were differentially expressed during asymptomatic stages of both diseases, whereas their targets showed altered expression during symptomatic stages. This analytical strategy to identify early regulators of disease by combining GRNs with genome-wide association studies may be generally applicable for functional and clinical studies of early disease development.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
55 |
8
|
Heyman M, Rasool O, Borgonovo Brandter L, Liu Y, Grandér D, Söderhäll S, Gustavsson G, Einhorn S. Prognostic importance of p15INK4B and p16INK4 gene inactivation in childhood acute lymphocytic leukemia. J Clin Oncol 1996; 14:1512-20. [PMID: 8622065 DOI: 10.1200/jco.1996.14.5.1512] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
PURPOSE The present study explores the prognostic importance of p16INK4/p15INK4B gene inactivation in childhood acute lymphocytic leukemia (ALL). MATERIALS AND METHODS Cells from 79 pediatric ALL patients were investigated for inactivation of the p15INK4B and p16INK4 genes or loss of heterozygosity (LOH) for chromosome 9p markers by use of Southern hybridization, restriction fragment length polymorphism (RFLP) analysis, microsatellite analysis as well as single-strand conformation polymorphism (SSCP) analysis, and nucleotide sequencing of the p15INK4B and p16INK4 genes. Genetic data were correlated to clinical outcome and established prognostic factors. RESULTS Inactivation of the p15INK4B and/or p16INK4 genes by homozygous deletion or loss of one allele and mutation of the other was detected in 24 cases (30%). Another 12 patients (15%) showed loss of one allele. A statistically significant correlation was found between inactivation of the p15INK4B/p16INK4 genes and poor prognosis (P < .01). Furthermore, inactivation proved to be an independent factor that predicted relapse, ranking second to WBC count. The trend toward overrepresentation of treatment failure was strongest in the high-risk (HR) group patients with p16INK4/p15INK4B gene inactivation. Patients with deletion of genetic material on 9p21 and normal coding sequence of the remaining p16INK4 and p15INK4B genes had a similar prognosis to that of nondeleted cases. CONCLUSION The data suggest that analysis of p15INK4B/p16INK4 genes may contribute prognostic information in pediatric ALL.
Collapse
|
|
29 |
54 |
9
|
Filén JJ, Filén S, Moulder R, Tuomela S, Ahlfors H, West A, Kouvonen P, Kantola S, Björkman M, Katajamaa M, Rasool O, Nyman TA, Lahesmaa R. Quantitative proteomics reveals GIMAP family proteins 1 and 4 to be differentially regulated during human T helper cell differentiation. Mol Cell Proteomics 2008; 8:32-44. [PMID: 18701445 DOI: 10.1074/mcp.m800139-mcp200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
T helper (Th) cells differentiate into functionally distinct effector cell subsets of which Th1 and Th2 cells are best characterized. Besides T cell receptor signaling, IL-12-induced STAT4 and T-bet- and IL-4-induced STAT6 and GATA3 signaling pathways are the major players regulating the Th1 and Th2 differentiation process, respectively. However, there are likely to be other yet unknown factors or pathways involved. In this study we used quantitative proteomics exploiting cleavable ICAT labeling and LC-MS/MS to identify IL-4-regulated proteins from the microsomal fractions of CD4(+) cells extracted from umbilical cord blood. We were able to identify 557 proteins of which 304 were also quantified. This study resulted in the identification of the down-regulation of small GTPases GIMAP1 and GIMAP4 by IL-4 during Th2 differentiation. We also showed that both GIMAP1 and GIMAP4 genes are up-regulated by IL-12 and other Th1 differentiation-inducing cytokines in cells induced to differentiate toward Th1 lineage and down-regulated by IL-4 in cells induced to Th2. Our results indicate that the GIMAP (GTPase of the immunity-associated protein) family of proteins is differentially regulated during Th cell differentiation.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
49 |
10
|
Selander C, Zargari A, Möllby R, Rasool O, Scheynius A. Higher pH level, corresponding to that on the skin of patients with atopic eczema, stimulates the release of Malassezia sympodialis allergens. Allergy 2006; 61:1002-8. [PMID: 16867055 DOI: 10.1111/j.1398-9995.2006.01108.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The opportunistic yeast Malassezia is a trigger factor in atopic eczema (AE). Around 30-80% of patients with AE have an IgE and/or T-cell reactivity to the yeast. Several IgE-binding components have been identified in Malassezia extracts and 11 allergens have been cloned and sequenced. The pH of the skin surface in patients with AE is higher than that of normal healthy skin. We here investigate whether different pH conditions mimicking those of AE skin and healthy skin can influence the production and release of Malassezia allergens. METHODS Malassezia sympodialis (ATCC strain 42132) was cultured in Dixon broth at pH 6.1 to 5.0 for 1-15 days. Culture supernatants were analysed for the presence of IgE-binding components by immunoblotting. The M. sympodialis cells were analysed for allergen expression and production with immunocytochemistry and quantitative polymerase chain reaction. RESULTS We found that M. sympodialis cells produce, express and release allergens to a greater extent when cultured at the higher pH. This was particularly true of a 67-kDa major allergen designated Mala s 12. CONCLUSIONS The data suggest that the skin barrier in AE patients provides an environment that can enhance the release of allergens from M. sympodialis, which can contribute to the inflammation.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
48 |
11
|
Kapanadze B, Kashuba V, Baranova A, Rasool O, van Everdink W, Liu Y, Syomov A, Corcoran M, Poltaraus A, Brodyansky V, Syomova N, Kazakov A, Ibbotson R, van den Berg A, Gizatullin R, Fedorova L, Sulimova G, Zelenin A, Deaven L, Lehrach H, Grander D, Buys C, Oscier D, Zabarovsky ER, Einhorn S, Yankovsky N. A cosmid and cDNA fine physical map of a human chromosome 13q14 region frequently lost in B-cell chronic lymphocytic leukemia and identification of a new putative tumor suppressor gene, Leu5. FEBS Lett 1998; 426:266-70. [PMID: 9599022 DOI: 10.1016/s0014-5793(98)00357-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
B-cell chronic lymphocytic leukemia (B-CLL) is a human hematological neoplastic disease often associated with the loss of a chromosome 13 region between RB1 gene and locus D13S25. A new tumor suppressor gene (TSG) may be located in the region. A cosmid contig has been constructed between the loci D13S1168 (WI9598) and D13S25 (H2-42), which corresponds to the minimal region shared by B-CLL associated deletions. The contig includes more than 200 LANL and ICRF cosmid clones covering 620 kb. Three cDNAs likely corresponding to three different genes have been found in the minimally deleted region, sequenced and mapped against the contigged cosmids. cDNA clone 10k4 as well as a chimeric clone 13g3, codes for a zinc-finger domain of the RING type and shares homology to some known genes involved in tumorigenesis (RET finger protein, BRCA1) and embryogenesis (MID1). We have termed the gene corresponding to 10k4/13g3 clones LEU5. This is the first gene with homology to known TSGs which has been found in the region of B-CLL rearrangements.
Collapse
|
|
27 |
47 |
12
|
Munukka E, Pekkala S, Wiklund P, Rasool O, Borra R, Kong L, Ojanen X, Cheng SM, Roos C, Tuomela S, Alen M, Lahesmaa R, Cheng S. Gut-adipose tissue axis in hepatic fat accumulation in humans. J Hepatol 2014; 61:132-8. [PMID: 24613361 DOI: 10.1016/j.jhep.2014.02.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/27/2014] [Accepted: 02/25/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS Recent evidence suggests that in animals gut microbiota composition (GMC) affects the onset and progression of hepatic fat accumulation. The aim of this study was to investigate in humans whether subjects with high hepatic fat content (HHFC) differ in their GMC from those with low hepatic fat content (LHFC), and whether these differences are associated with body composition, biomarkers and abdominal adipose tissue inflammation. METHODS Hepatic fat content (HFC) was measured using proton magnetic resonance spectroscopy ((1)H MRS). Fecal GMC was profiled by 16S rRNA fluorescence in situ hybridization and flow cytometry. Adipose tissue gene expression was analyzed using Affymetrix microarrays and quantitative PCR. RESULTS The HHFC group had unfavorable GMC described by lower amount of Faecalibacterium prausnitzii (FPrau) (p<0.05) and relatively higher Enterobacteria than the LHFC group. Metabolically dysbiotic GMC associated with HOMA-IR and triglycerides (p<0.05 for both). Several inflammation-related adipose tissue genes were differentially expressed and correlated with HFC (p<0.05). In addition, the expression of certain genes correlated with GMC dysbiosis, i.e., low FPrau-to-Bacteroides ratio. CONCLUSIONS HHFC subjects differ unfavorably in their GMC from LHFC subjects. Adipose tissue inflammation may be an important link between GMC, metabolic disturbances, and hepatic fat accumulation.
Collapse
|
|
11 |
46 |
13
|
Domsgen E, Lind K, Kong L, Hühn MH, Rasool O, van Kuppeveld F, Korsgren O, Lahesmaa R, Flodström-Tullberg M. An IFIH1 gene polymorphism associated with risk for autoimmunity regulates canonical antiviral defence pathways in Coxsackievirus infected human pancreatic islets. Sci Rep 2016; 6:39378. [PMID: 28000722 PMCID: PMC5175199 DOI: 10.1038/srep39378] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/23/2016] [Indexed: 02/08/2023] Open
Abstract
The IFIH1 gene encodes the pattern recognition receptor MDA5. A common polymorphism in IFIH1 (rs1990760, A946T) confers increased risk for autoimmune disease, including type 1-diabetes (T1D). Coxsackievirus infections are linked to T1D and cause beta-cell damage in vitro. Here we demonstrate that the rs1990760 polymorphism regulates the interferon (IFN) signature expressed by human pancreatic islets following Coxsackievirus infection. A strong IFN signature was associated with high expression of IFNλ1 and IFNλ2, linking rs1990760 to the expression of type III IFNs. In the high-responding genotype, IRF-1 expression correlated with that of type III IFN, suggesting a positive-feedback on type III IFN transcription. In summary, our study uncovers an influence of rs1990760 on the canonical effector function of MDA5 in response to an acute infection of primary human parenchymal cells with a clinically relevant virus linked to human T1D. It also highlights a previously unrecognized connection between the rs1990760 polymorphism and the expression level of type III IFNs.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
45 |
14
|
Ortona E, Vaccari S, Margutti P, Delunardo F, Rigano R, Profumo E, Buttari B, Rasool O, Teggi A, Siracusano A. Immunological characterization of Echinococcus granulosus cyclophilin, an allergen reactive with IgE and IgG4 from patients with cystic echinococcosis. Clin Exp Immunol 2002; 128:124-30. [PMID: 11982600 PMCID: PMC1906366 DOI: 10.1046/j.1365-2249.2002.01807.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By immunological screening of a cDNA library derived from protoscoleces of Echinococcus granulosus with IgE from patients with cystic echinococcosis (CE) and allergic manifestations, we isolated a protein identical to E. granulosus cyclophilin. The protein, named EA21, has close homology with Malassezia furfur cyclophilin allergen (Mal f 6) and with human cyclophilin. Using immunoblotting (IB) with a polyclonal antibody specific to EA21, we identified E. granulosus cyclophilin both in protoscoleces and in sheep hydatid fluid. Of the 58 sera from patients with CE, 29 (50%) were IgE positive to EA21, whereas, despite the high sequence homology, none were IgE positive to Mal f 6 or human cyclophilin. Only 26 of the 58 patients (45%) had IgG specific to EA21, whereas all patients (100%) had IgG specific to Mal f 6 and human cyclophilin. IB analysis showed that serum IgE-binding reactivity to EA21 differed significantly in patients with and without allergic reactions (20 of 25, 80% versus nine of 33, 27%; P < 10(-4)). Conversely, five of the 25 patients who had CE-related allergic manifestations (20%) and 21 of the 33 who did not (63%) had specific IgG4 (P = 10(-3)) and total IgG to EA21. EA21 induced a proliferative response in 15 of 19 (79%) patients' PBMC regardless of the allergic manifestations, but it induced no IL-4 production. Overall, these findings suggest that E. granulosus cyclophilin is a conserved, constitutive, parasite protein that does not cross-react with cyclophilins from other organisms and is involved in the allergic symptoms related to CE.
Collapse
|
research-article |
23 |
43 |
15
|
Rasool O, Freer E, Moreno E, Jarstrand C. Effect of Brucella abortus lipopolysaccharide on oxidative metabolism and lysozyme release by human neutrophils. Infect Immun 1992; 60:1699-702. [PMID: 1548094 PMCID: PMC257051 DOI: 10.1128/iai.60.4.1699-1702.1992] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Both Brucella abortus lipopolysaccharide (LPS) and lipid A were low activators of nitroblue tetrazolium reduction and lysozyme release in human neutrophils. The stimulation was dose dependent and was higher in the presence of autologous plasma than in its absence. The comparison between Brucella LPS and lipid A versus Salmonella LPS revealed that at least 100 times more LPS and 1,000 times more lipid A of the former genus were required to induce significant nitroblue tetrazolium reduction and a corresponding lysozyme release in neutrophils. Low Brucella LPS-mediated superoxide and lysozyme production might contribute to the survival of these facultative intracellular bacteria in phagocytic cells.
Collapse
|
research-article |
33 |
41 |
16
|
Tuomela S, Rautio S, Ahlfors H, Öling V, Salo V, Ullah U, Chen Z, Hämälistö S, Tripathi SK, Äijö T, Rasool O, Soueidan H, Wessels L, Stockinger B, Lähdesmäki H, Lahesmaa R. Comparative analysis of human and mouse transcriptomes of Th17 cell priming. Oncotarget 2017; 7:13416-28. [PMID: 26967054 PMCID: PMC4924651 DOI: 10.18632/oncotarget.7963] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/24/2016] [Indexed: 01/17/2023] Open
Abstract
Uncontrolled Th17 cell activity is associated with cancer and autoimmune and inflammatory diseases. To validate the potential relevance of mouse models of targeting the Th17 pathway in human diseases we used RNA sequencing to compare the expression of coding and non-coding transcripts during the priming of Th17 cell differentiation in both human and mouse. In addition to already known targets, several transcripts not previously linked to Th17 cell polarization were found in both species. Moreover, a considerable number of human-specific long non-coding RNAs were identified that responded to cytokines stimulating Th17 cell differentiation. We integrated our transcriptomics data with known disease-associated polymorphisms and show that conserved regulation pinpoints genes that are relevant to Th17 cell-mediated human diseases and that can be modelled in mouse. Substantial differences observed in non-coding transcriptomes between the two species as well as increased overlap between Th17 cell-specific gene expression and disease-associated polymorphisms underline the need of parallel analysis of human and mouse models. Comprehensive analysis of genes regulated during Th17 cell priming and their classification to conserved and non-conserved between human and mouse facilitates translational research, pointing out which candidate targets identified in human are worth studying by using in vivo mouse models.
Collapse
|
Journal Article |
8 |
41 |
17
|
Rasool O, Zargari A, Almqvist J, Eshaghi H, Whitley P, Scheynius A. Cloning, characterization and expression of complete coding sequences of three IgE binding Malassezia furfur allergens, Mal f 7, Mal f 8 and Mal f 9. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:4355-61. [PMID: 10880958 DOI: 10.1046/j.1432-1327.2000.01475.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Malassezia furfur, formerly known as Pityrosporum orbiculare or P. ovale, is a yeast that colonizes human skin. Normally, this yeast is nonpathogenic but under the influence of predisposing factors it may induce IgE reactivity in patients with atopic dermatitis. Approximately 40-65% of atopic dermatitis patients have IgE antibodies and/or skin reactivity against M. furfur and a higher T-cell response against this yeast is found in atopic dermatitis patients than in healthy individuals. By making a cDNA library displayed on a phage surface, we previously cloned five different IgE-binding proteins, Mal f 5, Mal f 6, MF 7, MF 8 and MF 9, from this yeast. The cDNAs encoding these allergens were sequenced and expressed in Escherichia coli. The sequences of MF 7, MF 8 and MF 9 were not full length (missing their 5'-ends) giving only partial gene products. To obtain complete cDNA sequences, we performed RACE-PCR to amplify the 5'-ends of each cDNA. These PCR products were sequenced and analyzed. The coding sequences of Mal f 7, Mal f 8 and Mal f 9 encode proteins with ORFs of 141 (16.2 kDa), 179 (19.2 kDa) and 126 (14.0 kDa) amino-acid residues, respectively. None of the putative proteins showed significant sequence homology with other known proteins in the searched database. The proteins encoded by the complete cDNA sequences were expressed in E. coli as recombinant proteins. Immunoblotting and radioallergosorbant test data showed that all of the expressed recombinant proteins have the ability to bind serum IgE from atopic dermatitis patients and furthermore, the M. furfur extract could specifically inhibit this IgE binding.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Allergens/biosynthesis
- Allergens/genetics
- Amino Acid Sequence
- Antigens, Fungal/biosynthesis
- Antigens, Fungal/genetics
- Antigens, Plant
- Base Sequence
- Child
- Child, Preschool
- Cloning, Molecular
- DNA, Complementary/metabolism
- Dermatitis, Atopic/blood
- Dermatitis, Atopic/immunology
- Escherichia coli/metabolism
- Female
- Gene Library
- Humans
- Immunoblotting
- Immunoglobulin E/immunology
- Immunoglobulin E/metabolism
- Malassezia/genetics
- Malassezia/immunology
- Male
- Middle Aged
- Molecular Sequence Data
- Open Reading Frames
- Polymerase Chain Reaction
- Recombinant Proteins/metabolism
- Sequence Analysis, DNA
Collapse
|
|
25 |
40 |
18
|
Herting E, Jarstrand C, Rasool O, Curstedt T, Sun B, Robertson B. Experimental neonatal group B streptococcal pneumonia: effect of a modified porcine surfactant on bacterial proliferation in ventilated near-term rabbits. Pediatr Res 1994; 36:784-91. [PMID: 7898987 DOI: 10.1203/00006450-199412000-00017] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We studied bacterial proliferation in relation to surfactant treatment in a model of neonatal group B streptococcal (GBS) pneumonia. Surfactant (Curosurf) was isolated from pig lungs with a method preserving only polar lipids and hydrophobic proteins. Near-term rabbit fetuses were ventilated in a body plethysmograph system. At 15 min, a suspension of GBS strain 090 Ia LD (5 mL/kg, concentration approximately 10(9)/mL) was instilled intratracheally. At 30 min, surfactant (n = 12) or sterile saline (n = 13) was administered via the airways (2.5 mL/kg). A control group (n = 12) received the same volumes of saline. After 5 h the animals were killed, and samples for blood cultures and blood gases were taken from the heart. The left lung was aseptically removed, weighed, homogenized, serially diluted, and cultured on blood agar plates. The results were expressed as mean log10 colony forming units/g lung +/- SD. Compared with animals (n = 12) killed immediately after GBS instillation (8.13 +/- 0.54), there was a significant increase in bacterial numbers in both groups ventilated for 5 h, but values for surfactant-treated animals (8.96 +/- 0.38) were lower than those for animals receiving saline (9.46 +/- 0.50; p < 0.05). After 5 h, 96% of GBS-infected animals had positive blood cultures. Light microscopic examination of the right lung of GBS-infected animals revealed inflammatory changes that tended to be less prominent in surfactant-treated rabbits. We conclude that intratracheal inoculation of near-term rabbits with GBS resulted in a significant bacterial proliferation during 5 h of ventilation and that bacterial growth was mitigated by treatment with surfactant.
Collapse
|
|
31 |
40 |
19
|
Merup M, Juliusson G, Wu X, Jansson M, Stellan B, Rasool O, Röijer E, Stenman G, Gahrton G, Einhorn S. Amplification of multiple regions of chromosome 12, including 12q13-15, in chronic lymphocytic leukaemia. Eur J Haematol Suppl 1997; 58:174-80. [PMID: 9150711 DOI: 10.1111/j.1600-0609.1997.tb00944.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Trisomy 12 is a frequent abnormality in chronic lymphocytic leukaemia (CLL). The biological importance of trisomy 12 is still poorly understood but it has been suggested that one or several genes are duplicated leading to malignant transformation. We present a case with amplification of 12q13-22 found in a clinically aggressive relapse of CLL. A smaller region, 12q13-15, was amplified most frequently and a YAC containing the MDM2 gene gave the highest number of signals. Additionally, in a subclone an amplicon containing at least 5 copies of a cosmid from 12q23-24 was detected. The case shows that small duplications of chromosome 12, not revealed by cytogenetic analysis, may occur in CLL. Also, it shows that cytogenetic clonal evolution can occur in CLL without morphological evidence of blast transformation. Our results indicate that the 12q13-15 region carries an important gene for CLL progression.
Collapse
|
Case Reports |
28 |
36 |
20
|
Saarne T, Kaiser L, Grönlund H, Rasool O, Gafvelin G, van Hage-Hamsten M. Rational design of hypoallergens applied to the major cat allergen Fel d 1. Clin Exp Allergy 2005; 35:657-63. [PMID: 15898990 DOI: 10.1111/j.1365-2222.2005.02234.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Allergen-specific immunotherapy is the only treatment for allergic disease providing long-lasting symptom relief. Currently, it is mainly based on the use of crude allergen extracts. The treatment may be improved by the use of genetically engineered allergens, hypoallergens, aiming at a more effective and safer therapy. OBJECTIVE The aim of this study was to provide a rational design of hypoallergen candidates for immunotherapy by using structural information and knowledge of B and T cell epitopes of an allergen. METHODS The three-dimensional structure of the major cat allergen Fel d 1 was systematically altered by duplication of selected T cell epitopes and disruption of disulphide bonds. Seven Fel d 1 derivatives were generated and screened for allergenic reactivity in comparison with recombinant Fel d 1 in competition-ELISA. The allergenicity was further evaluated in basophil activation experiments and T cell reactivity was assessed in a lymphoproliferation assay. RESULTS Three out of seven Fel d 1 derivatives, with two duplicated T cell epitopes and one or two disulphide bonds disrupted, were carefully evaluated. The three derivatives displayed a strong reduction in allergenicity with 400-900 times lower IgE-binding capacity than recombinant Fel d 1. In addition, they induced a lower degree of basophil activation and similar or stronger T cell proliferation than recombinant Fel d 1. CONCLUSION By a rational approach, we have constructed three Fel d 1 hypoallergens with reduced IgE-binding capacities and retained T cell reactivities. This strategy may be applied to any well-characterized allergen to improve immunotherapy for allergic patients.
Collapse
|
|
20 |
36 |
21
|
Calero Moreno TM, Gustafsson G, Garwicz S, Grandér D, Jonmundsson GK, Frost BM, Mäkipernaa A, Rasool O, Savolainen ER, Schmiegelow K, Söderhäll S, Vettenranta K, Wesenberg F, Einhorn S, Heyman M. Deletion of the Ink4-locus (the p16ink4a, p14ARF and p15ink4b genes) predicts relapse in children with ALL treated according to the Nordic protocols NOPHO-86 and NOPHO-92. Leukemia 2002; 16:2037-45. [PMID: 12357355 DOI: 10.1038/sj.leu.2402697] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2001] [Accepted: 05/22/2002] [Indexed: 11/09/2022]
Abstract
Inactivation of the Ink4 gene locus locus on 9p comprising the tumour suppressor gene p16ink4a and its neighbours p14ARF and p15ink4b is common in childhood acute lymphoblastic leukaemia (ALL), but the prognostic significance is controversial. DNA from 230 patients was retrospectively analysed by Southern blotting, single strand conformation polymorphism (SSCP) and sequencing techniques. The results were correlated with clinical characteristics and outcome. One hundred and ninety-four fully analysed patients, similarly treated using the Nordic NOPHO-86 or the current NOPHO-92 protocols, were included in the outcome analysis. Deletions approached a minimally deleted region between the p16ink4a and p15ink4b genes, making the p14ARF gene the most commonly deleted coding sequence. Bi-allelic deletion was associated with high white blood cell count (WBC) (P < 0.001), T cell phenotype (P < 0.001) and mediastinal mass (P < 0.001). Patients with Ink4 locus bi-allelic deletions had an inferior pEFS (P < 0.01) and multivariate analysis indicated that bi-allelic deletion of the p16ink4a and the p14ARF genes was an independent prognostic risk factor (P < 0.05). Sub-group analysis revealed a pronounced impact of deletion status for high-risk patients, ie with high WBC. Deletion-status and clinical risk criteria (WBC) could thus be combined to further differentiate risk within the high-risk group. The analysis of the Ink4 locus adds independent prognostic information in childhood ALL treated by Nordic protocols and may help in selection of patients for alternative treatment.
Collapse
|
|
23 |
36 |
22
|
Ubaid Ullah, Andrabi SBA, Tripathi SK, Dirasantha O, Kanduri K, Rautio S, Gross CC, Lehtimäki S, Bala K, Tuomisto J, Bhatia U, Chakroborty D, Elo LL, Lähdesmäki H, Wiendl H, Rasool O, Lahesmaa R. Transcriptional Repressor HIC1 Contributes to Suppressive Function of Human Induced Regulatory T Cells. Cell Rep 2019; 22:2094-2106. [PMID: 29466736 PMCID: PMC5842026 DOI: 10.1016/j.celrep.2018.01.070] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/29/2017] [Accepted: 01/23/2018] [Indexed: 01/13/2023] Open
Abstract
Regulatory T (Treg) cells are critical in regulating the immune response. In vitro induced Treg (iTreg) cells have significant potential in clinical medicine. However, applying iTreg cells as therapeutics is complicated by the poor stability of human iTreg cells and their variable suppressive activity. Therefore, it is important to understand the molecular mechanisms of human iTreg cell specification. We identified hypermethylated in cancer 1 (HIC1) as a transcription factor upregulated early during the differentiation of human iTreg cells. Although FOXP3 expression was unaffected, HIC1 deficiency led to a considerable loss of suppression by iTreg cells with a concomitant increase in the expression of effector T cell associated genes. SNPs linked to several immune-mediated disorders were enriched around HIC1 binding sites, and in vitro binding assays indicated that these SNPs may alter the binding of HIC1. Our results suggest that HIC1 is an important contributor to iTreg cell development and function.
Hypermethylated in cancer 1 (HIC1) is upregulated in iTreg cells HIC1-deficient iTreg cells express FOXP3 but have reduced suppressive ability Autoimmune-disease-associated SNPs are enriched within HIC1 binding loci HIC1 is an important regulator of iTreg development and function
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
34 |
23
|
Filén S, Ylikoski E, Tripathi S, West A, Björkman M, Nyström J, Ahlfors H, Coffey E, Rao KVS, Rasool O, Lahesmaa R. Activating transcription factor 3 is a positive regulator of human IFNG gene expression. THE JOURNAL OF IMMUNOLOGY 2010; 184:4990-9. [PMID: 20304822 DOI: 10.4049/jimmunol.0903106] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
IL-12 and IL-18 are essential for Th1 differentiation, whereas the role of IFN-alpha in Th1 development is less understood. In this microarray-based study, we searched for genes that are regulated by IFN-alpha, IL-12, or the combination of IL-12 plus IL-18 during the early differentiation of human umbilical cord blood CD4(+) Th cells. Twenty-six genes were similarly regulated in response to treatment with IL-12, IFN-alpha, or the combination of IL-12 plus IL-18. These genes could therefore play a role in Th1 lineage decision. Transcription factor activating transcription factor (ATF) 3 was upregulated by these cytokines and selected for further study. Ectopic expression of ATF3 in CD4(+) T cells enhanced the production of IFN-gamma, the hallmark cytokine of Th1 cells, whereas small interfering RNA knockdown of ATF3 reduced IFN-gamma production. Furthermore, ATF3 formed an endogenous complex with JUN in CD4(+) T cells induced to Th1. Chromatin immunoprecipitation and luciferase reporter assays showed that both ATF3 and JUN are recruited to and transactivate the IFNG promoter during early Th1 differentiation. Collectively, these data indicate that ATF3 promotes human Th1 differentiation.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
32 |
24
|
Kallionpää H, Somani J, Tuomela S, Ullah U, de Albuquerque R, Lönnberg T, Komsi E, Siljander H, Honkanen J, Härkönen T, Peet A, Tillmann V, Chandra V, Anagandula MK, Frisk G, Otonkoski T, Rasool O, Lund R, Lähdesmäki H, Knip M, Lahesmaa R. Early Detection of Peripheral Blood Cell Signature in Children Developing β-Cell Autoimmunity at a Young Age. Diabetes 2019; 68:2024-2034. [PMID: 31311800 DOI: 10.2337/db19-0287] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/10/2019] [Indexed: 11/13/2022]
Abstract
The appearance of type 1 diabetes (T1D)-associated autoantibodies is the first and only measurable parameter to predict progression toward T1D in genetically susceptible individuals. However, autoantibodies indicate an active autoimmune reaction, wherein the immune tolerance is already broken. Therefore, there is a clear and urgent need for new biomarkers that predict the onset of the autoimmune reaction preceding autoantibody positivity or reflect progressive β-cell destruction. Here we report the mRNA sequencing-based analysis of 306 samples including fractionated samples of CD4+ and CD8+ T cells as well as CD4-CD8- cell fractions and unfractionated peripheral blood mononuclear cell samples longitudinally collected from seven children who developed β-cell autoimmunity (case subjects) at a young age and matched control subjects. We identified transcripts, including interleukin 32 (IL32), that were upregulated before T1D-associated autoantibodies appeared. Single-cell RNA sequencing studies revealed that high IL32 in case samples was contributed mainly by activated T cells and NK cells. Further, we showed that IL32 expression can be induced by a virus and cytokines in pancreatic islets and β-cells, respectively. The results provide a basis for early detection of aberrations in the immune system function before T1D and suggest a potential role for IL32 in the pathogenesis of T1D.
Collapse
|
|
6 |
31 |
25
|
Eriksson TL, Rasool O, Huecas S, Whitley P, Crameri R, Appenzeller U, Gafvelin G, van Hage-Hamsten M. Cloning of three new allergens from the dust mite Lepidoglyphus destructor using phage surface display technology. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:287-94. [PMID: 11168362 DOI: 10.1046/j.1432-1327.2001.01879.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The dust mite Lepidoglyphus destructor is a common species in Europe and a major cause of dust mite allergy in rural surroundings, but it also contributes to dust mite allergy in urban areas. One major allergen, Lep d 2, has been expressed as a recombinant protein and evaluated both in vivo and in vitro and shown to detect 60% or more of L. destructor-sensitized subjects. Additional recombinant allergens are needed to obtain a reliable diagnostic tool for L. destructor allergy. The aim of this study was to clone and express new allergens from L. destructor and determine their recognition frequency among sensitized individuals. A phage display cDNA expression library was constructed and screened with sera from L. destructor-sensitized individuals. The cDNAs encoding the allergens were cloned into the pET17b vector and subsequently expressed in Escherichia coli as C-terminal His6-tagged proteins. Immunoblotting of the recombinant proteins was performed using sera from 45 subjects allergic to L. destructor. Three new allergens from L. destructor, Ld 5 (originating from a partial Lep d 5 clone), Lep d 7 and Lep d 13, were identified and recognized by 4/45 (9%), 28/45 (62%) and 6/45 (13%) sera from L. destructor-sensitized subjects, respectively.
Collapse
|
Comparative Study |
24 |
27 |