1
|
Sivaraman G, Iniya M, Anand T, Kotla NG, Sunnapu O, Singaravadivel S, Gulyani A, Chellappa D. Chemically diverse small molecule fluorescent chemosensors for copper ion. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.11.020] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
|
7 |
189 |
2
|
Kotla NG, Rana S, Sivaraman G, Sunnapu O, Vemula PK, Pandit A, Rochev Y. Bioresponsive drug delivery systems in intestinal inflammation: State-of-the-art and future perspectives. Adv Drug Deliv Rev 2019; 146:248-266. [PMID: 29966684 DOI: 10.1016/j.addr.2018.06.021] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/27/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023]
Abstract
Oral colon-specific delivery systems emerged as the main therapeutic cargos by making a significant impact in the field of modern medicine for local drug delivery in intestinal inflammation. The site-specific delivery of therapeutics (aminosalicylates, glucocorticoids, biologics) to the ulcerative mucus tissue can provide prominent advantages in mucosal healing (MH). Attaining gut mucosal healing and anti-fibrosis are main treatment outcomes in inflammatory bowel disease (IBD). The pharmaceutical strategies that are commonly used to achieve a colon-specific drug delivery system include time, pH-dependent polymer coating, prodrug, colonic microbiota-activated delivery systems and a combination of these approaches. Amongst the different approaches reported, the use of biodegradable polysaccharide coated systems holds great promise in delivering drugs to the ulcerative regions. The present review focuses on major physiological gastro-intestinal tract challenges involved in altering the pharmacokinetics of delivery systems, pathophysiology of MH and fibrosis, reported drug-polysaccharide cargos and focusing on conventional to advanced disease responsive delivery strategies, highlighting their limitations and future perspectives in intestinal inflammation therapy.
Collapse
|
Review |
6 |
142 |
3
|
Sunnapu O, Kotla NG, Maddiboyina B, Singaravadivel S, Sivaraman G. A rhodamine based “turn-on” fluorescent probe for Pb(ii) and live cell imaging. RSC Adv 2016. [DOI: 10.1039/c5ra20482h] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel “turn-on” fluorescent chemosensor RDP-1 based on rhodamine tri methoxy benzaldehyde conjugate was synthesized, which showed high selectivity and sensitivity towards recognition of Pb2+ in aqueous media.
Collapse
|
|
9 |
75 |
4
|
Sunnapu O, Kotla NG, Maddiboyina B, Marepally S, Shanmugapriya J, Sekar K, Singaravadivel S, Sivaraman G. Rhodamine-Based Fluorescent Turn-On Probe for Facile Sensing and Imaging of ATP in Mitochondria. ChemistrySelect 2017. [DOI: 10.1002/slct.201701149] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
|
8 |
39 |
5
|
Thorat K, Pandey S, Chandrashekharappa S, Vavilthota N, Hiwale AA, Shah P, Sreekumar S, Upadhyay S, Phuntsok T, Mahato M, Mudnakudu-Nagaraju KK, Sunnapu O, Vemula PK. Prevention of pesticide-induced neuronal dysfunction and mortality with nucleophilic poly-Oxime topical gel. SCIENCE ADVANCES 2018; 4:eaau1780. [PMID: 30345360 PMCID: PMC6192682 DOI: 10.1126/sciadv.aau1780] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
Organophosphate-based pesticides inhibit acetylcholinesterase (AChE), which plays a pivotal role in neuromuscular function. While spraying in the field, farmworkers get exposed to pesticides through the dermal route. Internalized pesticide inhibits AChE, which leads to neurotoxicity, cardiotoxicity, cognitive dysfunction, loss of endurance, and death in severe cases. Here, we present a nucleophilic pyridine-2-aldoxime-functionalized chitosan-based topical gel (poly-Oxime gel) that rapidly deactivates organophosphates, methyl parathion (MPT), on the skin of rats, which leads to reduced AChE inhibition in the blood and tissues. Testing the robustness of poly-Oxime gel, we report reduction in AChE inhibition following repeated dermal administration of MPT in the presence of poly-Oxime gel. Furthermore, poly-Oxime gel prevented MPT-induced neuromuscular dysfunction, loss of endurance, and locomotor coordination. We observe a 100% survival in rats following topical MPT administration in the presence of poly-Oxime gel. This prophylactic gel may therefore help farmworkers by limiting pesticide-induced toxicity and mortality.
Collapse
|
research-article |
7 |
21 |
6
|
Pooladanda V, Thatikonda S, Sunnapu O, Tiwary S, Vemula PK, Talluri MVNK, Godugu C. iRGD conjugated nimbolide liposomes protect against endotoxin induced acute respiratory distress syndrome. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 33:102351. [PMID: 33418136 PMCID: PMC7833751 DOI: 10.1016/j.nano.2020.102351] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 01/08/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a deadly respiratory illness associated with refractory hypoxemia and pulmonary edema. The recent pandemic outbreak of COVID-19 is associated with severe pneumonia and inflammatory cytokine storm in the lungs. The anti-inflammatory phytomedicine nimbolide (NIM) may not be feasible for clinical translation due to poor pharmacokinetic properties and lack of suitable delivery systems. To overcome these barriers, we have developed nimbolide liposomes conjugated with iRGD peptide (iRGD-NIMLip) for targeting lung inflammation. It was observed that iRGD-NIMLip treatment significantly inhibited oxidative stress and cytokine storm compared to nimbolide free-drug (f-NIM), nimbolide liposomes (NIMLip), and exhibited superior activity compared to dexamethasone (DEX). iRGD-NIMLip abrogated the LPS induced p65 NF-κB, Akt, MAPK, Integrin β3 and β5, STAT3, and DNMT1 expression. Collectively, our results demonstrate that iRGD-NIMLip could be a promising novel drug delivery system to target severe pathological consequences observed in ARDS and COVID-19 associated cytokine storm.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
12 |
7
|
Hiwale AA, Voshavar C, Dharmalingam P, Dhayani A, Mukthavaram R, Nadella R, Sunnapu O, Gandhi S, Naidu VGM, Chaudhuri A, Marepally S, Vemula PK. Scaling the effect of hydrophobic chain length on gene transfer properties of di-alkyl, di-hydroxy ethylammonium chloride based cationic amphiphiles. RSC Adv 2017. [DOI: 10.1039/c7ra02271a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Asymmetric hydrocarbon chains influence the efficiency of cationic lipids based liposomes in nucleic acid delivery. A systematic investigation of role of asymmetry in transfection efficiency.
Collapse
|
|
8 |
11 |
8
|
Singh S, Kotla NG, Tomar S, Maddiboyina B, Webster TJ, Sharma D, Sunnapu O. A nanomedicine-promising approach to provide an appropriate colon-targeted drug delivery system for 5-fluorouracil. Int J Nanomedicine 2015; 10:7175-82. [PMID: 26648721 PMCID: PMC4664497 DOI: 10.2147/ijn.s89030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Targeted drug delivery plays a significant role in disease treatment associated with the colon, affording therapeutic responses for a prolonged period of time with low side effects. Colorectal cancer is the third most common cancer in both men and women with an estimated 102,480 cases of colon cancer and 40,340 cases of rectal cancer in 2013 as reported by the American Cancer Society. In the present investigation, we developed an improved oral delivery system for existing anticancer drugs meant for colon cancer via prebiotic and probiotic approaches. The system comprises three components, namely, nanoparticles of drug coated with natural materials such as guar gum, xanthan gum (that serve as prebiotics), and probiotics. The natural gums play a dual role of protecting the drug in the gastric as well as intestinal conditions to allow its release only in the colon. In vitro results obtained from these experiments indicated the successful targeted delivery of 5-fluorouracil to the colon. Electron microscopy results demonstrated that the prepared nanoparticles were spherical in shape and 200 nm in size. The in vitro release data indicated that the maximum release occurs at pH 7.2 and 7.4 with 93% of the drug released in the presence of 4% (w/v) of rat cecal content. In vivo results conclude a practical mechanism to maintain the integrity and intactness of the intestinal/colonic microflora, in the face of a “chemical attack” by oral colon-targeted drug delivery for colon cancer treatment.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
10 |
9
|
Siddam H, Kotla NG, Maddiboyina B, Singh S, Sunnapu O, Kumar A, Sharma D. Formulation and evaluation of atenolol floating bioadhesive system using optimized polymer blends. Int J Pharm Investig 2016; 6:116-22. [PMID: 27051631 PMCID: PMC4797488 DOI: 10.4103/2230-973x.177832] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Introduction: Oral sustained release gastro retentive dosage forms offer several advantages for drugs having absorption from the upper gastrointestinal tract to improve the bioavailability of medications which have narrow absorption window. The aim of the study was to develop a floating bioadhesive drug delivery system exhibiting a unique combination of floatation and bioadhesion to prolong the residence in the stomach using atenolol as a model drug. Methods: Prior to compression, polymeric blend(s) were evaluated for flow properties. The tablets were prepared by direct compression method using bioadhesive polymer like Carbopol 934P and hydrophilic polymers like HPMC K4M, HPMC K15M, and HPMC K100M. The prepared tablets were evaluated for physical characteristics, bioadhesive strength, buoyancy lag time, swelling index and in vitro drug release studies. Results: The mean bioadhesive strength was found to be in the range of 16.2 to 52.1 gm. The optimized blend (F11) showed 92.3% drug releases after 24 hrs. Whilst, increase in concentration of carbopol 934P, bioadhesive strength and swelling index was increased with slow release. The n values of optimized formulations were found in the range of 0.631-0.719 indicating non-fickian anomalous type transport mechanism. Conclusion: The study aided in developing an ideal once-a-day gastro retentive floating drug delivery system with improved floating, swelling and bioadhesive characteristics with better bioavailability.
Collapse
|
|
9 |
9 |
10
|
Kotla NG, Singh S, Maddiboyina B, Sunnapu O, Webster TJ. A novel dissolution media for testing drug release from a nanostructured polysaccharide-based colon specific drug delivery system: an approach to alternative colon media. Int J Nanomedicine 2016; 11:1089-95. [PMID: 27051284 PMCID: PMC4803241 DOI: 10.2147/ijn.s97177] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to develop a novel microbially triggered and animal-sparing dissolution method for testing of nanorough polysaccharide-based micron granules for colonic drug delivery. In this method, probiotic cultures of bacteria present in the colonic region were prepared and added to the dissolution media and compared with the performance of conventional dissolution methodologies (such as media with rat cecal and human fecal media). In this study, the predominant species (such as Bacteroides, Bifidobacterium, Lactobacillus species, Eubacterium and Streptococcus) were cultured in 12% w/v skimmed milk powder and 5% w/v grade “A” honey. Approximately 1010–1011 colony forming units m/L of probiotic culture was added to the dissolution media to test the drug release of polysaccharide-based formulations. A USP dissolution apparatus I/II using a gradient pH dissolution method was used to evaluate drug release from formulations meant for colonic drug delivery. Drug release of guar gum/Eudragit FS30D coated 5-fluorouracil granules was assessed under gastric and small intestine conditions within a simulated colonic environment involving fermentation testing with the probiotic culture. The results with the probiotic system were comparable to those obtained from the rat cecal and human fecal-based fermentation model, thereby suggesting that a probiotic dissolution method can be successfully applied for drug release testing of any polysaccharide-based oral formulation meant for colonic delivery. As such, this study significantly adds to the nanostructured biomaterials’ community by elucidating an easier assay for colonic drug delivery.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
8 |
11
|
Maddiboyina B, Jhawat V, Sivaraman G, Sunnapu O, Nakkala RK, Naik MH, Gulia M. Formulation Development and Characterization of Controlled Release Core-in-cup Matrix Tablets of Venlafaxine HCl. CURRENT DRUG THERAPY 2021. [DOI: 10.2174/1574885515666200331104440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Venlafaxine HCl is a selective serotonin reuptake inhibitor, which is given in
the treatment of depression. The delivery of the drug at a controlled rate can be of great importance for
a prolonged effect.
Objective:
The objective was to prepare and optimize the controlled release core in a cup matrix tablet
of venlafaxine HCl using the combination of hydrophilic and hydrophobic polymers to prolong the
effect with rate controlled drug release.
Methods:
The controlled release core in cup matrix tablets of venlafaxine HCl was prepared using
HPMC K5, K4, K15, HCO, IPA, aerosol, magnesium stearate, hydrogenated castor oil and micro crystalline
cellulose PVOK-900 using wet granulation technique. Total ten formulations with varying concentrations
of polymers were prepared and evaluated for different physicochemical parameters such
FTIR analysis for drug identification. In-vitro drug dissolution study was performed to evaluate the
amount of drug release in 24 hrs, drug release kinetics study was performed to fit the data in zero order,
first order, Hixson-crowell and Higuchi equation to determine the mechanism of drug release and stability
studies for 3 months as observed.
Results:
The results of hardness, thickness, weight variation, friability and drug content study were in
an acceptable range for all formulations. Based on the in vitro dissolution profile, formulation F-9was
considered to be the optimized, extending the release of 98.32% of drug up to 24 hrs. The data fitting
study showed that the optimized formulation followed the zero order release rate kinetics and when
compared with the innovator product (flavix XR), showed better drug release profile.
Conclusion:
The core-in-cup technology has the potential to control the release rate of freely water
soluble drugs for single administration per day by optimization with the combined use of hydrophilic
and hydrophobic polymers.
Collapse
|
|
4 |
3 |
12
|
Ghosh S, Singh R, Goap TJ, Sunnapu O, Vanwinkle ZM, Li H, Nukavarapu SP, Dryden GW, Haribabu B, Vemula PK, Jala VR. Inflammation-targeted delivery of Urolithin A mitigates chemical- and immune checkpoint inhibitor-induced colitis. J Nanobiotechnology 2024; 22:701. [PMID: 39533380 PMCID: PMC11558909 DOI: 10.1186/s12951-024-02990-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Inflammatory bowel disease (IBD) treatment often involves systemic administration of anti-inflammatory drugs or biologics such as anti-TNF-α antibodies. However, current drug therapies suffer from limited efficacy due to unresponsiveness and adverse side effects. To address these challenges, we developed inflammation-targeting nanoparticles (ITNPs) using biopolymers derived from the gum kondagogu (Cochlospermum gossypium) plant. These ITNPs enable selective drug delivery to inflamed regions, offering improved therapeutic outcomes. We designed ITNPs that specifically bind to inflamed regions in both human and mouse intestines, facilitating more effective, uniform, and prolonged drug delivery within the inflamed tissues. Furthermore, we demonstrated that oral administration of ITNPs loaded with urolithin A (UroA), a microbial metabolite or its synthetic analogue UAS03 significantly attenuated chemical- and immune checkpoint inhibitor- induced colitis in pre-clinical models. In conclusion, ITNPs show great promise for delivering UroA or its analogues while enhancing therapeutic efficacy at lower doses and reduced frequency compared to free drug administration. This targeted approach offers a potential solution to enhance IBD treatment while minimizing systemic side effects.
Collapse
|
research-article |
1 |
|
13
|
Mohan MK, Thorat K, Puthiyapurayil TP, Sunnapu O, Chandrashekharappa S, Ravula V, Khader R, Sankaranarayanan A, Muhammad H, Vemula PK. Oxime-functionalized anti-insecticide fabric reduces insecticide exposure through dermal and nasal routes, and prevents insecticide-induced neuromuscular-dysfunction and mortality. Nat Commun 2024; 15:4844. [PMID: 38844466 PMCID: PMC11156901 DOI: 10.1038/s41467-024-49167-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Farmers from South Asian countries spray insecticides without protective gear, which leads to insecticide exposure through dermal and nasal routes. Acetylcholinesterase plays a crucial role in controlling neuromuscular function. Organophosphate and carbamate insecticides inhibit acetylcholinesterase, which leads to severe neuronal/cognitive dysfunction, breathing disorders, loss of endurance, and death. To address this issue, an Oxime-fabric is developed by covalently attaching silyl-pralidoxime to the cellulose of the fabric. The Oxime-fabric, when stitched as a bodysuit and facemask, efficiently deactivates insecticides (organophosphates and carbamates) upon contact, preventing exposure. The Oxime-fabric prevents insecticide-induced neuronal damage, neuro-muscular dysfunction, and loss of endurance. Furthermore, we observe a 100% survival rate in rats when repeatedly exposed to organophosphate-insecticide through the Oxime-fabric, while no survival is seen when organophosphate-insecticide applied directly or through normal fabric. The Oxime-fabric is washable and reusable for at least 50 cycles, providing an affordable solution to prevent insecticide-induced toxicity and lethality among farmers.
Collapse
|
research-article |
1 |
|