1
|
Todd EV, Ortega-Recalde O, Liu H, Lamm MS, Rutherford KM, Cross H, Black MA, Kardailsky O, Marshall Graves JA, Hore TA, Godwin JR, Gemmell NJ. Stress, novel sex genes, and epigenetic reprogramming orchestrate socially controlled sex change. SCIENCE ADVANCES 2019; 5:eaaw7006. [PMID: 31309157 PMCID: PMC6620101 DOI: 10.1126/sciadv.aaw7006] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/05/2019] [Indexed: 05/15/2023]
Abstract
Bluehead wrasses undergo dramatic, socially cued female-to-male sex change. We apply transcriptomic and methylome approaches in this wild coral reef fish to identify the primary trigger and subsequent molecular cascade of gonadal metamorphosis. Our data suggest that the environmental stimulus is exerted via the stress axis and that repression of the aromatase gene (encoding the enzyme converting androgens to estrogens) triggers a cascaded collapse of feminizing gene expression and identifies notable sex-specific gene neofunctionalization. Furthermore, sex change involves distinct epigenetic reprogramming and an intermediate state with altered epigenetic machinery expression akin to the early developmental cells of mammals. These findings reveal at a molecular level how a normally committed developmental process remains plastic and is reversed to completely alter organ structures.
Collapse
|
research-article |
6 |
74 |
2
|
Ortega-Recalde O, Day RC, Gemmell NJ, Hore TA. Zebrafish preserve global germline DNA methylation while sex-linked rDNA is amplified and demethylated during feminisation. Nat Commun 2019; 10:3053. [PMID: 31311924 PMCID: PMC6635516 DOI: 10.1038/s41467-019-10894-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/31/2019] [Indexed: 12/24/2022] Open
Abstract
The germline is the only cellular lineage capable of transferring genetic information from one generation to the next. Intergenerational transmission of epigenetic memory through the germline, in the form of DNA methylation, has been proposed; however, in mammals this is largely prevented by extensive epigenetic erasure during germline definition. Here we report that, unlike mammals, the continuously-defined ‘preformed’ germline of zebrafish does not undergo genome-wide erasure of DNA methylation during development. Our analysis also uncovers oocyte-specific germline amplification and demethylation of an 11.5-kb repeat region encoding 45S ribosomal RNA (fem-rDNA). The peak of fem-rDNA amplification coincides with the initial expansion of stage IB oocytes, the poly-nucleolar cell type responsible for zebrafish feminisation. Given that fem-rDNA overlaps with the only zebrafish locus identified thus far as sex-linked, we hypothesise fem-rDNA expansion could be intrinsic to sex determination in this species. Germline cells transfer genetic information to offspring, and in zebrafish, drive sex determination. Here the authors report that, unlike mammals, the germline of zebrafish does not undergo genome-wide DNA methylation erasure, while amplifying and demethylating sex-linked rDNA during feminisation.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
54 |
3
|
Fonseca DJ, Patiño LC, Suárez YC, de Jesús Rodríguez A, Mateus HE, Jiménez KM, Ortega-Recalde O, Díaz-Yamal I, Laissue P. Next generation sequencing in women affected by nonsyndromic premature ovarian failure displays new potential causative genes and mutations. Fertil Steril 2015; 104:154-62.e2. [PMID: 25989972 DOI: 10.1016/j.fertnstert.2015.04.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 04/07/2015] [Accepted: 04/12/2015] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To identify new molecular actors involved in nonsyndromic premature ovarian failure (POF) etiology. DESIGN This is a retrospective case-control cohort study. SETTING University research group and IVF medical center. PATIENT(S) Twelve women affected by nonsyndromic POF. The control group included 176 women whose menopause had occurred after age 50 and had no antecedents regarding gynecological disease. A further 345 women from the same ethnic origin (general population group) were also recruited to assess allele frequency for potentially deleterious sequence variants. INTERVENTION(S) Next generation sequencing (NGS), Sanger sequencing, and bioinformatics analysis. MAIN OUTCOME MEASURE(S) The complete coding regions of 70 candidate genes were massively sequenced, via NGS, in POF patients. Bioinformatics and genetics were used to confirm NGS results and to identify potential sequence variants related to the disease pathogenesis. RESULT(S) We have identified mutations in two novel genes, ADAMTS19 and BMPR2, that are potentially related to POF origin. LHCGR mutations, which might have contributed to the phenotype, were also detected. CONCLUSION(S) We thus recommend NGS as a powerful tool for identifying new molecular actors in POF and for future diagnostic/prognostic purposes.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
46 |
4
|
Ortega-Recalde O, Goikoetxea A, Hore TA, Todd EV, Gemmell NJ. The Genetics and Epigenetics of Sex Change in Fish. Annu Rev Anim Biosci 2019; 8:47-69. [PMID: 31525067 DOI: 10.1146/annurev-animal-021419-083634] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fish show extraordinary sexual plasticity, changing sex naturally as part of their life cycle or reversing sex because of environmental stressors. This plasticity shows that sexual fate is not an irreversible process but the result of an ongoing tug-of-war for supremacy between male and female signaling networks. The behavioral, gonadal, and morphological changes involved in this process are well described, yet the molecular events that underpin those changes remain poorly understood. Epigenetic modifications emerge as a critical link between environmental stimuli, the onset of sex change, and subsequent maintenance of sexual phenotype. Here we synthesize current knowledge of sex change, focusing on the genetic and epigenetic processes that are likely involved in the initiation and regulation of sex change. We anticipate that better understanding of sex change in fish will shed new light on sex determination and development in vertebrates and on how environmental perturbations affect sexual fate.
Collapse
|
Review |
6 |
41 |
5
|
Ortega-Recalde O, Vergara JI, Fonseca DJ, Ríos X, Mosquera H, Bermúdez OM, Medina CL, Vargas CI, Pallares AE, Restrepo CM, Laissue P. Whole-exome sequencing enables rapid determination of xeroderma pigmentosum molecular etiology. PLoS One 2013; 8:e64692. [PMID: 23755135 PMCID: PMC3670841 DOI: 10.1371/journal.pone.0064692] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/16/2013] [Indexed: 12/02/2022] Open
Abstract
Xeroderma pigmentosum (XP) is a rare autosomal recessive disorder characterized by extreme sensitivity to actinic pigmentation changes in the skin and increased incidence of skin cancer. In some cases, patients are affected by neurological alterations. XP is caused by mutations in 8 distinct genes (XPA through XPG and XPV). The XP-V (variant) subtype of the disease results from mutations in a gene (XPV, also named POLH) which encodes for Polη, a member of the Y-DNA polymerase family. Although the presence and severity of skin and neurological dysfunctions differ between XP subtypes, there are overlapping clinical features among subtypes such that the sub-type cannot be deduced from the clinical features. In this study, in order to overcome this drawback, we undertook whole-exome sequencing in two XP sibs and their father. We identified a novel homozygous nonsense mutation (c.897T>G, p.Y299X) in POLH which causes the disease. Our results demonstrate that next generation sequencing is a powerful approach to rapid determination of XP genetic etiology.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
34 |
6
|
Abstract
Sexual fate can no longer be considered an irreversible deterministic process that once established during early embryonic development, plays out unchanged across an organism's life. Rather, it appears to be a dynamic process, with sexual phenotype determined through an ongoing battle for supremacy between antagonistic male and female developmental pathways. That sexual fate is not final and is actively regulated via the suppression or activation of opposing genetic networks creates the potential for flexibility in sexual phenotype in adulthood. Such flexibility is seen in many fish, where sex change is a usual and adaptive part of the life cycle. Many fish are sequential hermaphrodites, beginning life as one sex and changing sometime later to the other. Sequential hermaphrodites include species capable of female-to-male (protogynous), male-to-female (protandrous), or bidirectional (serial) sex change. These natural forms of sex change involve coordinated transformations across multiple biological systems, including behavioral, anatomical, neuroendocrine and molecular axes. Here we review the biological processes underlying this amazing transformation, focusing particularly on the molecular aspects, where new genomic technologies are beginning to help us understand how sex change is initiated and regulated at the molecular level.
Collapse
|
Review |
6 |
30 |
7
|
Ortega-Recalde O, Beltrán O, Gálvez J, Palma-Montero A, Restrepo C, Mateus H, Laissue P. BiallelicHERC1mutations in a syndromic form of overgrowth and intellectual disability. Clin Genet 2015; 88:e1-3. [DOI: 10.1111/cge.12634] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 05/30/2015] [Accepted: 06/30/2015] [Indexed: 01/20/2023]
|
|
10 |
27 |
8
|
Patiño LC, Battu R, Ortega-Recalde O, Nallathambi J, Anandula VR, Renukaradhya U, Laissue P. Exome sequencing is an efficient tool for variant late-infantile neuronal ceroid lipofuscinosis molecular diagnosis. PLoS One 2014; 9:e109576. [PMID: 25333361 PMCID: PMC4198115 DOI: 10.1371/journal.pone.0109576] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 09/02/2014] [Indexed: 12/28/2022] Open
Abstract
The neuronal ceroid-lipofuscinoses (NCL) is a group of neurodegenerative disorders characterized by epilepsy, visual failure, progressive mental and motor deterioration, myoclonus, dementia and reduced life expectancy. Classically, NCL-affected individuals have been classified into six categories, which have been mainly defined regarding the clinical onset of symptoms. However, some patients cannot be easily included in a specific group because of significant variation in the age of onset and disease progression. Molecular genetics has emerged in recent years as a useful tool for enhancing NCL subtype classification. Fourteen NCL genetic forms (CLN1 to CLN14) have been described to date. The variant late-infantile form of the disease has been linked to CLN5, CLN6, CLN7 (MFSD8) and CLN8 mutations. Despite advances in the diagnosis of neurodegenerative disorders mutations in these genes may cause similar phenotypes, which rends difficult accurate candidate gene selection for direct sequencing. Three siblings who were affected by variant late-infantile NCL are reported in the present study. We used whole-exome sequencing, direct sequencing and in silico approaches to identify the molecular basis of the disease. We identified the novel c.1219T>C (p.Trp407Arg) and c.1361T>C (p.Met454Thr) MFSD8 pathogenic mutations. Our results highlighted next generation sequencing as a novel and powerful methodological approach for the rapid determination of the molecular diagnosis of NCL. They also provide information regarding the phenotypic and molecular spectrum of CLN7 disease.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
25 |
9
|
Peat JR, Ortega-Recalde O, Kardailsky O, Hore TA. The elephant shark methylome reveals conservation of epigenetic regulation across jawed vertebrates. F1000Res 2017; 6:526. [PMID: 28580133 PMCID: PMC5437953 DOI: 10.12688/f1000research.11281.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/12/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Methylation of CG dinucleotides constitutes a critical system of epigenetic memory in bony vertebrates, where it modulates gene expression and suppresses transposon activity. The genomes of studied vertebrates are pervasively hypermethylated, with the exception of regulatory elements such as transcription start sites (TSSs), where the presence of methylation is associated with gene silencing. This system is not found in the sparsely methylated genomes of invertebrates, and establishing how it arose during early vertebrate evolution is impeded by a paucity of epigenetic data from basal vertebrates. METHODS We perform whole-genome bisulfite sequencing to generate the first genome-wide methylation profiles of a cartilaginous fish, the elephant shark Callorhinchus milii. Employing these to determine the elephant shark methylome structure and its relationship with expression, we compare this with higher vertebrates and an invertebrate chordate using published methylation and transcriptome data. Results: Like higher vertebrates, the majority of elephant shark CG sites are highly methylated, and methylation is abundant across the genome rather than patterned in the mosaic configuration of invertebrates. This global hypermethylation includes transposable elements and the bodies of genes at all expression levels. Significantly, we document an inverse relationship between TSS methylation and expression in the elephant shark, supporting the presence of the repressive regulatory architecture shared by higher vertebrates. CONCLUSIONS Our demonstration that methylation patterns in a cartilaginous fish are characteristic of higher vertebrates imply the conservation of this epigenetic modification system across jawed vertebrates separated by 465 million years of evolution. In addition, these findings position the elephant shark as a valuable model to explore the evolutionary history and function of vertebrate methylation.
Collapse
|
Journal Article |
8 |
21 |
10
|
Angulo-Aguado M, Corredor-Orlandelli D, Carrillo-Martínez JC, Gonzalez-Cornejo M, Pineda-Mateus E, Rojas C, Triana-Fonseca P, Contreras Bravo NC, Morel A, Parra Abaunza K, Restrepo CM, Fonseca-Mendoza DJ, Ortega-Recalde O. Association Between the LZTFL1 rs11385942 Polymorphism and COVID-19 Severity in Colombian Population. Front Med (Lausanne) 2022; 9:910098. [PMID: 35795626 PMCID: PMC9251207 DOI: 10.3389/fmed.2022.910098] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/26/2022] [Indexed: 01/08/2023] Open
Abstract
Genetic and non-genetic factors are responsible for the high interindividual variability in the response to SARS-CoV-2. Although numerous genetic polymorphisms have been identified as risk factors for severe COVID-19, these remain understudied in Latin-American populations. This study evaluated the association of non-genetic factors and three polymorphisms: ACE rs4646994, ACE2 rs2285666, and LZTFL1 rs11385942, with COVID severity and long-term symptoms by using a case-control design. The control group was composed of asymptomatic/mild cases (n = 61) recruited from a private laboratory, while the case group was composed of severe/critical patients (n = 63) hospitalized in the Hospital Universitario Mayor-Méderi, both institutions located in Bogotá, Colombia. Clinical follow up and exhaustive revision of medical records allowed us to assess non-genetic factors. Genotypification of the polymorphism of interest was performed by amplicon size analysis and Sanger sequencing. In agreement with previous reports, we found a statistically significant association between age, male sex, and comorbidities, such as hypertension and type 2 diabetes mellitus (T2DM), and worst outcomes. We identified the polymorphism LZTFL1 rs11385942 as an important risk factor for hospitalization (p < 0.01; OR = 5.73; 95% CI = 1.2-26.5, under the allelic test). Furthermore, long-term symptoms were common among the studied population and associated with disease severity. No association between the polymorphisms examined and long-term symptoms was found. Comparison of allelic frequencies with other populations revealed significant differences for the three polymorphisms investigated. Finally, we used the statistically significant genetic and non-genetic variables to develop a predictive logistic regression model, which was implemented in a Shiny web application. Model discrimination was assessed using the area under the receiver operating characteristic curve (AUC = 0.86; 95% confidence interval 0.79-0.93). These results suggest that LZTFL1 rs11385942 may be a potential biomarker for COVID-19 severity in addition to conventional non-genetic risk factors. A better understanding of the impact of these genetic risk factors may be useful to prioritize high-risk individuals and decrease the morbimortality caused by SARS-CoV2 and future pandemics.
Collapse
|
research-article |
3 |
9 |
11
|
Ortega-Recalde O, Moreno MB, Vergara JI, Fonseca DJ, Rojas RF, Mosquera H, Medina CL, Restrepo CM, Laissue P. A novel TGM1 mutation, leading to multiple splicing rearrangements, is associated with autosomal recessive congenital ichthyosis. Clin Exp Dermatol 2015; 40:757-60. [PMID: 25754682 DOI: 10.1111/ced.12627] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2014] [Indexed: 12/01/2022]
Abstract
Autosomal recessive congenital ichthyosis (ARCI) is a group of rare, clinically heterogeneous skin disorders that affect cornification. ARCI includes lamellar ichthyosis, congenital ichthyosiform erythroderma and harlequin ichthyosis. TGM1 mutations cause > 50% of ARCI cases in the USA. We report two siblings with ARCI. They were found to carry a novel aetiological TGM1 mutation, which leads to the synthesis of multiple abnormal transcripts. These molecules resulted from three independent mechanisms: intron retention, exon skipping and activation of expand cryptic splice sites. Taken together, our findings expand the known TGM1 mutation repertoire, and provide an insight into the molecular mechanisms leading to ARCI phenotypes. These results could be useful for genetic counselling and future potential genotype-phenotype correlations.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
6 |
12
|
Corredor-Orlandelli D, Sambracos-Parrado S, Mantilla-García S, Tovar-Tirado J, Vega-Ramírez V, Mendoza-Ayús SD, Peña LC, Leal MF, Rodríguez-Carrillo J, León-Torres J, Pardo-Oviedo JM, Parra Abaunza K, Contreras Bravo NC, Ortega-Recalde O, Fonseca Mendoza DJ. Association between Paraoxonase-1 p.Q192R Polymorphism and Coronary Artery Disease susceptibility in the Colombian Population. Vasc Health Risk Manag 2021; 17:689-699. [PMID: 34764653 PMCID: PMC8573264 DOI: 10.2147/vhrm.s330766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/11/2021] [Indexed: 12/24/2022] Open
Abstract
Background Paraoxonase-1 (PON1), a glycoprotein associated with serum high-density lipoprotein (HDL), has a central role in metabolizing lipid peroxides, exhibiting antiatherogenic properties. The polymorphism p.Q192R has been previously associated with coronary artery disease (CAD) susceptibility and clopidogrel response. Purpose We aimed at investigating the association of PON1 p.Q192R with CAD and clopidogrel response in Colombian population. Patients and Methods The study was conducted among 163 patients diagnosed with CAD and treated with clopidogrel. The allele frequencies for the PON1 192Q and 192R alleles were determined in cases and Latin-American controls obtained from the public database gnomAD (n = 17,711). Response to clopidogrel was determined by assessing the platelet function using the INNOVANCE PFA-200 System. We determined the association between PON1 p.Q192R polymorphism, increased susceptibility to CAD and high on-treatment platelet reactivity (HPR) by using odds ratio (OR) and 95% confidence interval (CI) on four genetic models. Results The allele frequencies for the PON1 192Q and 192R alleles were 0.60 and 0.40, respectively. The allele distribution was found to be statistically different from the control group and other ethnic groups. The allele 192R was positively associated with decreased susceptibility to CAD under a dominant model (OR, 0.58; 95% CI, 0.42–0.8; P < 0.01). We found no association between the polymorphism and HPR. Conclusion We propose that PON1 p.Q192R is a potentially useful marker for CAD susceptibility in the Colombian population and lacks association with HPR under clopidogrel treatment.
Collapse
|
|
4 |
5 |
13
|
Ravichandran M, Rafalski D, Davies CI, Ortega-Recalde O, Nan X, Glanfield CR, Kotter A, Misztal K, Wang AH, Wojciechowski M, Rażew M, Mayyas IM, Kardailsky O, Schwartz U, Zembrzycki K, Morison IM, Helm M, Weichenhan D, Jurkowska RZ, Krueger F, Plass C, Zacharias M, Bochtler M, Hore TA, Jurkowski TP. Pronounced sequence specificity of the TET enzyme catalytic domain guides its cellular function. SCIENCE ADVANCES 2022; 8:eabm2427. [PMID: 36070377 PMCID: PMC9451156 DOI: 10.1126/sciadv.abm2427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
TET (ten-eleven translocation) enzymes catalyze the oxidation of 5-methylcytosine bases in DNA, thus driving active and passive DNA demethylation. Here, we report that the catalytic domain of mammalian TET enzymes favor CGs embedded within basic helix-loop-helix and basic leucine zipper domain transcription factor-binding sites, with up to 250-fold preference in vitro. Crystal structures and molecular dynamics calculations show that sequence preference is caused by intrasubstrate interactions and CG flanking sequence indirectly affecting enzyme conformation. TET sequence preferences are physiologically relevant as they explain the rates of DNA demethylation in TET-rescue experiments in culture and in vivo within the zygote and germ line. Most and least favorable TET motifs represent DNA sites that are bound by methylation-sensitive immediate-early transcription factors and octamer-binding transcription factor 4 (OCT4), respectively, illuminating TET function in transcriptional responses and pluripotency support.
Collapse
|
research-article |
3 |
3 |
14
|
Castro BE, Rios R, Carvajal LP, Vargas ML, Cala MP, León L, Hanson B, Dinh AQ, Ortega-Recalde O, Seas C, Munita JM, Arias CA, Rincon S, Reyes J, Diaz L. Multiomics characterization of methicillin-resistant Staphylococcus aureus (MRSA) isolates with heterogeneous intermediate resistance to vancomycin (hVISA) in Latin America. J Antimicrob Chemother 2022; 78:122-132. [PMID: 36322484 PMCID: PMC10205466 DOI: 10.1093/jac/dkac363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) compromise the clinical efficacy of vancomycin. The hVISA isolates spontaneously produce vancomycin-intermediate Staphylococcus aureus (VISA) cells generated by diverse and intriguing mechanisms. OBJECTIVE To characterize the biomolecular profile of clinical hVISA applying genomic, transcriptomic and metabolomic approaches. METHODS 39 hVISA and 305 VSSA and their genomes were included. Core genome-based Bayesian phylogenetic reconstructions were built and alterations in predicted proteins in VISA/hVISA were interrogated. Linear discriminant analysis and a Genome-Wide Association Study were performed. Differentially expressed genes were identified in hVISA-VSSA by RNA-sequencing. The undirected profiles of metabolites were determined by liquid chromatography and hydrophilic interaction in six CC5-MRSA. RESULTS Genomic relatedness of MRSA associated to hVISA phenotype was not detected. The change Try38 → His in Atl (autolysin) was identified in 92% of the hVISA. We identified SNPs and k-mers associated to hVISA in 11 coding regions with predicted functions in virulence, transport systems, carbohydrate metabolism and tRNA synthesis. Further, capABCDE, sdrD, esaA, esaD, essA and ssaA genes were overexpressed in hVISA, while lacABCDEFG genes were downregulated. Additionally, valine, threonine, leucine tyrosine, FAD and NADH were more abundant in VSSA, while arginine, glycine and betaine were more abundant in hVISA. Finally, we observed altered metabolic pathways in hVISA, including purine and pyrimidine pathway, CoA biosynthesis, amino acid metabolism and aminoacyl tRNA biosynthesis. CONCLUSIONS Our results show that the mechanism of hVISA involves major changes in regulatory systems, expression of virulence factors and reduction in glycolysis via TCA cycle. This work contributes to the understanding of the development of this complex resistance mechanism in regional strains.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
3 |
15
|
Ortega-Recalde O, Silgado D, Fetiva C, Fonseca DJ, Laissue P. Transcriptomic analysis of skin in a case of ichthyosis Curth-Macklin caused by a KRT1 mutation. Br J Dermatol 2016; 175:1372-1375. [PMID: 27518765 DOI: 10.1111/bjd.14969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
Case Reports |
9 |
1 |
16
|
Echeverría O, Angulo-Aguado M, Vela R, Calderón-Ospina C, Parra K, Contreras N, Morel A, Cabrera R, Restrepo C, Ramírez-Santana C, Ortega-Recalde O, Rojas-Quintana ME, Murcia L, Gaviria-Sabogal CC, Valero N, Fonseca-Mendoza DJ. The polygenic implication of clopidogrel responsiveness: Insights from platelet reactivity analysis and next-generation sequencing. PLoS One 2024; 19:e0306445. [PMID: 38991024 PMCID: PMC11239111 DOI: 10.1371/journal.pone.0306445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/18/2024] [Indexed: 07/13/2024] Open
Abstract
Clopidogrel is widely used worldwide as an antiplatelet therapy in patients with acute coronary disease. Genetic factors influence interindividual variability in response. Some studies have explored the polygenic contributions in the drug response, generating pharmacogenomic risk scores (PgxPRS). Importantly, these factors are less explored in underrepresented populations, such as Latin-American countries. Identifying patients at risk of high-on-treatment platelet reactivity (HTPR) is highly valuable in translational medicine. In this study we used a custom next-generation sequencing (NGS) panel composed of 91 single nucleotide polymorphisms (SNPs) and 28 genes related to clopidogrel metabolism, to analyze 70 patients with platelet reactivity values, assessed through closure time (CT). Our results demonstrated the association of SNPs with HTPR and non-HTPR, revealing the strongest associations with rs2286823 (OR: 5,0; 95% CI: 1,02-24,48; p: 0,03), rs2032582 (OR: 4,41; 95% CI: 1,20-16,12; p: 0,019), and rs1045642 (OR: 3,38; 95% CI: 0,96-11,9; p: 0,05). Bivariate regression analysis demonstrated the significant association of several SNPs with the CT value, a "surrogate" biomarker of clopidogrel response. Exploratory results from the LASSO regression model showed a high discriminatory capacity between HTPR and non-HTPR patients (AUC: 0,955), and the generated PgxPRS demonstrated a significant negative association between the risk score, CT value, and the condition of HTPR and non-HTPR. To our knowledge, our study addresses for the first time the analysis of the polygenic contribution in platelet reactivity using NGS and establishes PgxPRS derived from the LASSO model. Our results demonstrate the polygenic implication of clopidogrel response and offer insights applicable to the translational medicine of antiplatelet therapy in an understudied population.
Collapse
|
research-article |
1 |
|
17
|
Angulo-Aguado M, Carrillo-Martinez JC, Contreras-Bravo NC, Morel A, Parra-Abaunza K, Usaquén W, Fonseca-Mendoza DJ, Ortega-Recalde O. Next-generation sequencing of host genetics risk factors associated with COVID-19 severity and long-COVID in Colombian population. Sci Rep 2024; 14:8497. [PMID: 38605121 PMCID: PMC11009356 DOI: 10.1038/s41598-024-57982-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/24/2024] [Indexed: 04/13/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) was considered a major public health burden worldwide. Multiple studies have shown that susceptibility to severe infections and the development of long-term symptoms is significantly influenced by viral and host factors. These findings have highlighted the potential of host genetic markers to identify high-risk individuals and develop target interventions to reduce morbimortality. Despite its importance, genetic host factors remain largely understudied in Latin-American populations. Using a case-control design and a custom next-generation sequencing (NGS) panel encompassing 81 genetic variants and 74 genes previously associated with COVID-19 severity and long-COVID, we analyzed 56 individuals with asymptomatic or mild COVID-19 and 56 severe and critical cases. In agreement with previous studies, our results support the association between several clinical variables, including male sex, obesity and common symptoms like cough and dyspnea, and severe COVID-19. Remarkably, thirteen genetic variants showed an association with COVID-19 severity. Among these variants, rs11385942 (p < 0.01; OR = 10.88; 95% CI = 1.36-86.51) located in the LZTFL1 gene, and rs35775079 (p = 0.02; OR = 8.53; 95% CI = 1.05-69.45) located in CCR3 showed the strongest associations. Various respiratory and systemic symptoms, along with the rs8178521 variant (p < 0.01; OR = 2.51; 95% CI = 1.27-4.94) in the IL10RB gene, were significantly associated with the presence of long-COVID. The results of the predictive model comparison showed that the mixed model, which incorporates genetic and non-genetic variables, outperforms clinical and genetic models. To our knowledge, this is the first study in Colombia and Latin-America proposing a predictive model for COVID-19 severity and long-COVID based on genomic analysis. Our study highlights the usefulness of genomic approaches to studying host genetic risk factors in specific populations. The methodology used allowed us to validate several genetic variants previously associated with COVID-19 severity and long-COVID. Finally, the integrated model illustrates the importance of considering genetic factors in precision medicine of infectious diseases.
Collapse
|
research-article |
1 |
|
18
|
Silgado-Guzmán DF, Angulo-Aguado M, Morel A, Niño-Orrego MJ, Ruiz-Torres DA, Contreras Bravo NC, Restrepo CM, Ortega-Recalde O, Fonseca-Mendoza DJ. Characterization of ADME Gene Variation in Colombian Population by Exome Sequencing. Front Pharmacol 2022; 13:931531. [PMID: 35846994 PMCID: PMC9280300 DOI: 10.3389/fphar.2022.931531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022] Open
Abstract
In genes related to drug pharmacokinetics, molecular variations determine interindividual variability in the therapeutic efficacy and adverse drug reactions. The assessment of single-nucleotide variants (SNVs) is used with growing frequency in pharmacogenetic practice, and recently, high-throughput genomic analyses obtained through next-generation sequencing (NGS) have been recognized as powerful tools to identify common, rare and novel variants. These genetic profiles remain underexplored in Latin-American populations, including Colombia. In this study, we investigated the variability of 35 genes included in the ADME core panel (absorption, distribution, metabolism, and excretion) by whole-exome sequencing (WES) of 509 unrelated Colombian individuals with no previous reports of adverse drug reactions. Rare variants were filtered according to the minor allele frequencies (MAF) <1% and potential deleterious consequences. The functional impact of novel and rare missense variants was assessed using an optimized framework for pharmacogenetic variants. Bioinformatic analyses included the identification of clinically validated variants described in PharmGKB and ClinVar databases. Ancestry from WES data was inferred using the R package EthSEQ v2.1.4. Allelic frequencies were compared to other populations reported in the public gnomAD database. Our analysis revealed that rare missense pharmacogenetic variants were 2.1 times more frequent than common variants with 121 variants predicted as potentially deleterious. Rare loss of function (LoF) variants were identified in 65.7% of evaluated genes. Regarding variants with clinical pharmacogenetic effect, our study revealed 89 sequence variations in 28 genes represented by missense (62%), synonymous (22.5%), splice site (11.2%), and indels (3.4%). In this group, ABCB1, ABCC2, CY2B6, CYP2D6, DPYD, NAT2, SLC22A1, and UGTB2B7, are the most polymorphic genes. NAT2, CYP2B6 and DPYD metabolizer phenotypes demonstrated the highest variability. Ancestry analysis indicated admixture in 73% of the population. Allelic frequencies exhibit significant differences with other Latin-American populations, highlighting the importance of pharmacogenomic studies in populations of different ethnicities. Altogether, our data revealed that rare variants are an important source of variability in pharmacogenes involved in the pharmacokinetics of drugs and likely account for the unexplained interindividual variability in drug response. These findings provide evidence of the utility of WES for pharmacogenomic testing and into clinical practice.
Collapse
|
|
3 |
|
19
|
Bond DM, Ortega-Recalde O, Laird MK, Hayakawa T, Richardson KS, Reese FCB, Kyle B, McIsaac-Williams BE, Robertson BC, van Heezik Y, Adams AL, Chang WS, Haase B, Mountcastle J, Driller M, Collins J, Howe K, Go Y, Thibaud-Nissen F, Lister NC, Waters PD, Fedrigo O, Jarvis ED, Gemmell NJ, Alexander A, Hore TA. The admixed brushtail possum genome reveals invasion history in New Zealand and novel imprinted genes. Nat Commun 2023; 14:6364. [PMID: 37848431 PMCID: PMC10582058 DOI: 10.1038/s41467-023-41784-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 09/13/2023] [Indexed: 10/19/2023] Open
Abstract
Combining genome assembly with population and functional genomics can provide valuable insights to development and evolution, as well as tools for species management. Here, we present a chromosome-level genome assembly of the common brushtail possum (Trichosurus vulpecula), a model marsupial threatened in parts of their native range in Australia, but also a major introduced pest in New Zealand. Functional genomics reveals post-natal activation of chemosensory and metabolic genes, reflecting unique adaptations to altricial birth and delayed weaning, a hallmark of marsupial development. Nuclear and mitochondrial analyses trace New Zealand possums to distinct Australian subspecies, which have subsequently hybridised. This admixture allowed phasing of parental alleles genome-wide, ultimately revealing at least four genes with imprinted, parent-specific expression not yet detected in other species (MLH1, EPM2AIP1, UBP1 and GPX7). We find that reprogramming of possum germline imprints, and the wider epigenome, is similar to eutherian mammals except onset occurs after birth. Together, this work is useful for genetic-based control and conservation of possums, and contributes to understanding of the evolution of novel mammalian epigenetic traits.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
|
20
|
Gomez-Villegas SI, Dinh AQ, Reyes J, Panesso-Botero D, Reyes MI, Reyes MI, Rios R, Ortega-Recalde O, Ortega-Recalde O, Diaz L, Rincon S, Murray BE, Murray BE, Singh KV, Singh KV, Arias CA. 28. Regulation of the Staphylococcal β-lactamase Plays a Major Role in the cefazolin Inoculum Effect. Open Forum Infect Dis 2020. [PMCID: PMC7776064 DOI: 10.1093/ofid/ofaa417.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Cefazolin (Cz) is commonly used to treat methicillin-sensitive Staphylococcus aureus (MSSA) bacteremia. Yet, some MSSA isolates producing the staphylococcal β-lactamase (BlaZ) exhibit the Cz inoculum effect (CzIE), defined as an increase in the minimum inhibitory concentration (MIC) to ≥ 16 µg/mL at high inoculum (107 CFU/mL, HI-MIC). Retrospective clinical data linked the CzIE to increased 30-day mortality and Cz treatment failure in patients with MSSA bacteremia, yet the mechanistic bases of this phenomenon are unknown. We aimed to explore the contribution of blaZ regulation, via BlaR (antibiotic sensor) and BlaI (transcriptional repressor) (Fig 1) to the CzIE by i) in trans expression assays and ii) analysis of their sequences in a set of isolates Figure 1. Structure of the Staphylococcal bla Operon Methods The blaZ genes (with putative promoters) of strains exhibiting and lacking the CzIE (TX0117 and ATCC29213, respectively) were expressed in trans in RN4220 (blaZ neg) using the promotor-less vector pWM401 (Figure 2). We subsequently cloned the blaR and blaI genes of each TX0117 and ATCC29213 upstream of each blaZ allele (Figure 3). The presence of the CzIE was assessed in transformants using broth microdilution at standard (105 CFU/mL, SI-MIC) and high inoculum. We also performed whole-genome sequencing (WGS) in 104 MSSA isolates exhibiting and lacking the CzIE to compare the sequences of BlaZ, BlaR, and BlaI and classified them by allotypes (unique amino acid sequences) using ATCC29213 as reference. ![]()
Figure 2. In trans expression of blaZ genes from a CzIE+ strain (TX0117) and a CzIE- strain (ATCC29213) in RN4220 ![]()
Figure 3. In trans expression of the bla Operons from a CzIE+ strain (TX0117) and a CzIE- strain (ATCC29213) in RN4220 Results Expression of blaZTX0117 and blaZATCC29213 with their native promoters in RN4220 resulted in the CzIE with Cz HI-MICs ≥ 64 µg/mL regardless of the origin of the allele (Table 1). Inclusion of the regulatory elements blaR and blaI from TX0117 (CzIE+) did not change the phenotype. In contrast, addition of blaR and blaI from ATCC29213 (CzIE-) led to a marked decrease in the Cz HI-MIC (Table 1). Sequence analyses of 104 MSSA isolates revealed 10, 17 and 6 BlaZ, BlaR and BlaI allotypes, respectively (Table 2). BlaZ-2 and BlaR-4 were linked to the CzIE in 90% of isolates. ![]()
Table 1. MIC values of transformans after In trans expression of blaZ genes and bla Operons from a S. aureus CzIE+ strain(TX0117) and a CzIE- strain (ATCC29213) in RN4220 ![]()
Table 2. BlaZ allotypes of 104 Staphylococcus aureus isolates and their association with the CzIE Conclusion Our results suggest that overexpression of blaZ can lead to the CzIE in any MSSA strain. Thus, the regulation of blaZ expression via BlaR and BlaI seem to play a major role in the CzIE. Identification of specific BlaR and BlaI allotypes could predict the presence of the CzIE. ![]()
Disclosures Cesar A. Arias, M.D., MSc, Ph.D., FIDSA, Entasis Therapeutics (Scientific Research Study Investigator)MeMed (Scientific Research Study Investigator)Merck (Grant/Research Support)
Collapse
|
|
5 |
|
21
|
Ortega-Recalde O, Echeverri AM, Rios R, Carvajal L, Hernandez AK, Espitia-Acero C, Solano-Gutierrez S, Shropshire WC, Arias CA, Diaz L, Rincon S, Reyes J. 1442. Acquisition and Transferability Mechanisms of Mercury Resistance Genes in Latin-American Staphylococcus aureus Strains. Open Forum Infect Dis 2020. [PMCID: PMC7776699 DOI: 10.1093/ofid/ofaa439.1623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background Latin-American (LA) countries are among the largest mercury (Hg) polluters in the world. Fittingly, a significant high frequency (>50%) of Hg resistance genes (MRG) has been observed in LA MRSA genomes, including USA300-LV clone, which contains the genomic element COMER, encoding for copper and Hg resistance genes adjacent to SCCmecIVc/E. Co-selection of MRG and antibiotic resistance genes may be facilitated by shared transferable genetic elements, nevertheless, analyses of the genetic MRG context in strains other than USA300-LV are lacking. In this study, we aimed to characterize possible mechanisms of acquisition and transfer of MRG in LA S. aureus. Methods We sequenced 6 MRSA and 2 MSSA clinical isolates harboring MRG from Colombia, Ecuador, Peru and Chile using short-read (Illumina) and long-read (ONT) sequencing. Hybrid assemblies were constructed using Flye and iterative polishing with Medaka and Racon. Identification of insertion sequences, rearrangements and assessment of the genomic context was investigated using ISfinder, MAUVE, PlasmidFinder and SnapGene. Results Highly contiguous genome assemblies allowed us to identify the localization and genetic background of MRG. For MRSA belonging to USA300-LV (SCCmecIVc/E) and Brazilian (SCCmecIII) clones, we confirmed the presence of MRG within SCCmec. In contrast, for the 4 MRSA belonging to Chilean/Cordobes clone (SCCmecI), collected from Colombia, Chile and Peru, MRG were located on ~30kbp plasmids genetically related that also contained the blaZ beta-lactamase and cadmium/arsenic resistance genes. In MSSA strains, we observed both plasmidic and chromosomal localizations of MGR. Interestingly, in one of the MSSA, MRG were inserted downstream of orfX, along with repA, suggesting a plasmidic origin. In all these cases, MRG were flanked by IS6 family elements. Conclusion Genomic architecture of SCCmec types IVc/E and III might facilitate MRG transferability, whereas for the highly prevalent Chilean/Cordobes clone (SCCmecI) MRG acquisition occurs through plasmids. Our findings underscore the mechanisms of MRG transference in LA S. aureus likely related to antibiotic resistance co-selection. Disclosures Cesar A. Arias, MD, MSc, PhD, FIDSA, Entasis Therapeutics (Scientific Research Study Investigator)MeMed (Scientific Research Study Investigator)Merck (Grant/Research Support)
Collapse
|
|
5 |
|
22
|
Angulo-Aguado M, Orjuela-Amarillo S, Mora-Jácome JF, Córdoba LP, Gallego-Ortiz A, Gaviria-Sabogal CC, Contreras N, Figueroa C, Ortega-Recalde O, Morel A, Fonseca-Mendoza DJ. Functional analysis of CTLA4 promoter variant and its possible implication in colorectal cancer immunotherapy. Front Med (Lausanne) 2023; 10:1160368. [PMID: 37601778 PMCID: PMC10436101 DOI: 10.3389/fmed.2023.1160368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/07/2023] [Indexed: 08/22/2023] Open
Abstract
Background Colorectal cancer (CRC) is a prevalent cancer, ranking as the third most common. Recent advances in our understanding of the molecular causes of this disease have highlighted the crucial role of tumor immune evasion in its initiation and progression. CTLA4, a receptor that acts as a negative regulator of T cell responses, plays a pivotal role in this process, and genetic variations in CTLA4 have been linked to CRC susceptibility, prognosis, and response to therapy. Methods We conducted a case-control study involving 98 CRC patients and 424 controls. We genotyped the CTLA4 c.-319C > T variant (rs5742909) and performed an association analysis by comparing allele frequencies between the patients and controls. To assess the potential functional impact of this variant, we first performed an In Silico analysis of transcription factor binding sites using Genomatix. Finally, to validate our findings, we conducted a luciferase reporter gene assay using different cell lines and an electrophoretic mobility shift assay (EMSA). Results The case-control association analysis revealed a significant association between CTLA4 c.-319C > T and CRC susceptibility (p = 0.023; OR 1.89; 95% CI = 1.11-3.23). Genomatix analysis identified LEF1 and TCF7 transcription factors as specific binders to CTLA4 c.-319C. The reporter gene assay demonstrated notable differences in luciferase activity between the c.-319 C and T alleles in COS-7, HCT116, and Jurkat cell lines. EMSA analysis showed differences in TCF7 interaction with the CTLA4 C and T alleles. Conclusion CTLA4 c.-319C > T is associated with CRC susceptibility. Based on our functional validation results, we proposed that CTLA4 c.-319C > T alters gene expression at the transcriptional level, triggering a stronger negative regulation of T-cells and immune tumoral evasion.
Collapse
|
research-article |
2 |
|
23
|
Sierra-Díaz DC, Cabrera R, Gonzalez-Vasquez LA, Angulo-Aguado M, Llinás-Caballero K, Fonseca-Mendoza DJ, Contreras-Bravo NC, Restrepo CM, Ortega-Recalde O, Morel A. Functional Analysis of BRCA1 3'UTR Variants Predisposing to Breast Cancer. Appl Clin Genet 2024; 17:57-62. [PMID: 38803352 PMCID: PMC11129763 DOI: 10.2147/tacg.s444546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/29/2024] [Indexed: 05/29/2024] Open
Abstract
Purpose Breast Cancer (BC) is the main female cancer diagnosed worldwide, and it has been described that few genes, such as BRCA1, have a high penetrance for this type of cancer. In this manuscript, we were interested in evaluating the effect of 3'UTR variants on BRCA1 expression. Patients and Methods To accomplish this objective, Whole Exome Sequencing (WES) data of 400 patients with unselected BC was used to filter variants located in the region of interest of BRCA1 gene, finding two of them (c.*36C>G and c.*369_373del). miRGate and miRanda in silico tools were used to predict microRNA (miRNA) interaction. Results The two variants (c.*36C>G, c.*369_373del) were predicted to affect miRNA interaction. After cloning of BRCA1 3'UTR into pMIR-Report vector, the construct was transfected into two BC cell lines (MDA-MB-231 and MCF-7), and the variant c.*36C>G evidenced overexpression of reporter gene luciferase, showing that the transcript was not being degraded by the miRNA in MDA-MB-231 cells. Conclusion The variant seems to protect against Triple Negative BC probably due to the expression level of miRNA in this particular cell line (MDA-MB-231). This is consistent with the clinical history of the patients who harbor BC Hormone Receptors positive (HR+).
Collapse
|
brief-report |
1 |
|
24
|
Quesille-Villalobos AM, Solar C, Martínez JRW, Rivas L, Quiroz V, González AM, Riquelme-Neira R, Ugalde JA, Peters A, Ortega-Recalde O, Araos R, García P, Lebreton F, Munita JM, Diaz L. Multispecies emergence of dual blaKPC/NDM carbapenemase-producing Enterobacterales recovered from invasive infections in Chile. Antimicrob Agents Chemother 2025; 69:e0120524. [PMID: 39636127 PMCID: PMC11784225 DOI: 10.1128/aac.01205-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024] Open
Abstract
Carbapenemase-producing carbapenem-resistant Enterobacterales (CP-CRE) represent a significant global threat. The emergence of dual CP-CRE is particularly alarming, as they can potentially compromise the efficacy of newer antibiotics, further decreasing therapeutic alternatives. Herein, we report the emergence of multiple species of CP-CRE recovered from invasive infections in Chile that simultaneously harbor blaKPC and blaNDM and provide an in-depth genomic characterization of these worrisome pathogens. We collected carbapenem-resistant Enterobacterales (CRE) isolates from invasive infections over a 4-year period, across 11 healthcare centers in Chile. Bacterial species and the presence of carbapenemase genes were confirmed using MALDI-TOF and PCR assays, respectively. Antimicrobial susceptibility testing was conducted through disk diffusion and broth microdilution methods. Dual CP-CRE isolates were subjected to short- and long-read whole genome sequencing to perform a detailed genomic characterization of the isolates and of the mobile genetic elements harboring the enzymes. From a total of 1,335 CRE isolates, we observed an increase in the prevalence of CP-CRE, from 11% in 2019 to 38% in 2022. A total of 11 dual CP-CRE isolates were recovered, all of them harboring blaKPC and blaNDM. Species corresponded to Escherichia coli (n = 6), Klebsiella pneumoniae (n = 2), Klebsiella oxytoca (n = 2), and Citrobacter freundii (n = 1). Dual CP-CRE isolates exhibited resistance to all tested β-lactams except for cefiderocol. The blaKPC and blaNDM encoding genes were located on independent plasmids. Platforms harboring blaKPC were diverse and included IncN, IncF, and IncFIB plasmids. In contrast, blaNDM-7 was only found on fairly conserved IncX3 plasmids. We report that a rapid increase of CP-CRE in Chile, alongside with the emergence of multiple bacterial species of CP-CRE co-harboring blaKPC-2/3 and blaNDM-7, underscores a critical public health challenge. Our data suggest that the dissemination of blaNDM-7 was predominantly facilitated by IncX3 plasmids, whereas the spread of blaKPC involved multiple plasmid backbones. Active surveillance and genomic monitoring are critical to inform public policy and curtail the spread of these highly resistant pathogens.
Collapse
|
research-article |
1 |
|
25
|
Ragsdale A, Ortega-Recalde O, Dutoit L, Besson AA, Chia JHZ, King T, Nakagawa S, Hickey A, Gemmell NJ, Hore T, Johnson SL. Paternal hypoxia exposure primes offspring for increased hypoxia resistance. BMC Biol 2022; 20:185. [PMID: 36038899 PMCID: PMC9426223 DOI: 10.1186/s12915-022-01389-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND In a time of rapid environmental change, understanding how the challenges experienced by one generation can influence the fitness of future generations is critically needed. Using tolerance assays and transcriptomic and methylome approaches, we use zebrafish as a model to investigate cross-generational acclimation to hypoxia. RESULTS We show that short-term paternal exposure to hypoxia endows offspring with greater tolerance to acute hypoxia. We detected two hemoglobin genes that are significantly upregulated by more than 6-fold in the offspring of hypoxia exposed males. Moreover, the offspring which maintained equilibrium the longest showed greatest upregulation in hemoglobin expression. We did not detect differential methylation at any of the differentially expressed genes, suggesting that other epigenetic mechanisms are responsible for alterations in gene expression. CONCLUSIONS Overall, our findings suggest that an epigenetic memory of past hypoxia exposure is maintained and that this environmentally induced information is transferred to subsequent generations, pre-acclimating progeny to cope with hypoxic conditions.
Collapse
|
research-article |
3 |
|