1
|
Pauken KE, Shahid O, Lagattuta KA, Mahuron KM, Luber JM, Lowe MM, Huang L, Delaney C, Long JM, Fung ME, Newcomer K, Tsai KK, Chow M, Guinn S, Kuchroo JR, Burke KP, Schenkel JM, Rosenblum MD, Daud AI, Sharpe AH, Singer M. Single-cell analyses identify circulating anti-tumor CD8 T cells and markers for their enrichment. J Exp Med 2021; 218:211836. [PMID: 33651880 PMCID: PMC7933992 DOI: 10.1084/jem.20200920] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/06/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022] Open
Abstract
The ability to monitor anti-tumor CD8+ T cell responses in the blood has tremendous therapeutic potential. Here, we used paired single-cell RNA and TCR sequencing to detect and characterize “tumor-matching” (TM) CD8+ T cells in the blood of mice with MC38 tumors or melanoma patients using the TCR as a molecular barcode. TM cells showed increased activation compared with nonmatching T cells in blood and were less exhausted than matching cells in tumors. Importantly, PD-1, which has been used to identify putative circulating anti-tumor CD8+ T cells, showed poor sensitivity for identifying TM cells. By leveraging the transcriptome, we identified candidate cell surface markers for TM cells in mice and patients and validated NKG2D, CD39, and CX3CR1 in mice. These data show that the TCR can be used to identify tumor-relevant cells for characterization, reveal unique transcriptional properties of TM cells, and develop marker panels for tracking and analysis of these cells.
Collapse
|
Journal Article |
4 |
74 |
2
|
Alvarez-Breckenridge C, Markson SC, Stocking JH, Nayyar N, Lastrapes M, Strickland MR, Kim AE, de Sauvage M, Dahal A, Larson JM, Mora JL, Navia AW, Klein RH, Kuter BM, Gill CM, Bertalan M, Shaw B, Kaplan A, Subramanian M, Jain A, Kumar S, Danish H, White M, Shahid O, Pauken KE, Miller BC, Frederick DT, Hebert C, Shaw M, Martinez-Lage M, Frosch M, Wang N, Gerstner E, Nahed BV, Curry WT, Carter B, Cahill DP, Boland GM, Izar B, Davies MA, Sharpe AH, Suvà ML, Sullivan RJ, Brastianos PK, Carter SL. Microenvironmental Landscape of Human Melanoma Brain Metastases in Response to Immune Checkpoint Inhibition. Cancer Immunol Res 2022; 10:996-1012. [PMID: 35706413 PMCID: PMC10201927 DOI: 10.1158/2326-6066.cir-21-0870] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/12/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022]
Abstract
Melanoma-derived brain metastases (MBM) represent an unmet clinical need because central nervous system progression is frequently an end stage of the disease. Immune checkpoint inhibitors (ICI) provide a clinical opportunity against MBM; however, the MBM tumor microenvironment (TME) has not been fully elucidated in the context of ICI. To dissect unique elements of the MBM TME and correlates of MBM response to ICI, we collected 32 fresh MBM and performed single-cell RNA sequencing of the MBM TME and T-cell receptor clonotyping on T cells from MBM and matched blood and extracranial lesions. We observed myeloid phenotypic heterogeneity in the MBM TME, most notably multiple distinct neutrophil states, including an IL8-expressing population that correlated with malignant cell epithelial-to-mesenchymal transition. In addition, we observed significant relationships between intracranial T-cell phenotypes and the distribution of T-cell clonotypes intracranially and peripherally. We found that the phenotype, clonotype, and overall number of MBM-infiltrating T cells were associated with response to ICI, suggesting that ICI-responsive MBMs interact with peripheral blood in a manner similar to extracranial lesions. These data identify unique features of the MBM TME that may represent potential targets to improve clinical outcomes for patients with MBM.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
26 |
3
|
Rowe JH, Elia I, Shahid O, Gaudiano EF, Sifnugel NE, Johnson S, Reynolds AG, Fung ME, Joshi S, LaFleur MW, Park JS, Pauken KE, Rabinowitz JD, Freeman GJ, Haigis MC, Sharpe AH. Formate Supplementation Enhances Antitumor CD8+ T-cell Fitness and Efficacy of PD-1 Blockade. Cancer Discov 2023; 13:2566-2583. [PMID: 37728660 PMCID: PMC10843486 DOI: 10.1158/2159-8290.cd-22-1301] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 08/10/2023] [Accepted: 09/18/2023] [Indexed: 09/21/2023]
Abstract
The tumor microenvironment (TME) restricts antitumor CD8+ T-cell function and immunotherapy responses. Cancer cells compromise the metabolic fitness of CD8+ T cells within the TME, but the mechanisms are largely unknown. Here we demonstrate that one-carbon (1C) metabolism is enhanced in T cells in an antigen-specific manner. Therapeutic supplementation of 1C metabolism using formate enhances CD8+ T-cell fitness and antitumor efficacy of PD-1 blockade in B16-OVA tumors. Formate supplementation drives transcriptional alterations in CD8+ T-cell metabolism and increases gene signatures for cellular proliferation and activation. Combined formate and anti-PD-1 therapy increases tumor-infiltrating CD8+ T cells, which are essential for enhanced tumor control. Our data demonstrate that formate provides metabolic support to CD8+ T cells reinvigorated by anti-PD-1 to overcome a metabolic vulnerability in 1C metabolism in the TME to further improve T-cell function. SIGNIFICANCE This study identifies that deficiencies in 1C metabolism limit the efficacy of PD-1 blockade in B16-OVA tumors. Supplementing 1C metabolism with formate during anti-PD-1 therapy enhances CD8+ T-cell fitness in the TME and CD8+ T-cell-mediated tumor clearance. These findings demonstrate that formate supplementation can enhance exhausted CD8+ T-cell function. See related commentary by Lin et al., p. 2507. This article is featured in Selected Articles from This Issue, p. 2489.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
14 |
4
|
Pauken KE, Shahid O, Lagattuta KA, Mahuron KM, Luber JM, Lowe MM, Huang L, Delaney C, Long JM, Fung ME, Newcomer K, Tsai KK, Chow M, Guinn S, Kuchroo JR, Burke KP, Schenkel JM, Rosenblum MD, Daud AI, Sharpe AH, Singer M. Abstract PO016: Single-cell analyses characterize circulating anti-tumor CD8 T cells and identify markers for their isolation. Cancer Immunol Res 2021. [DOI: 10.1158/2326-6074.tumimm20-po016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The ability to monitor anti-tumor CD8+ T cell responses in the blood has tremendous therapeutic potential. Here, we used paired single-cell RNA sequencing and T cell receptor (TCR) sequencing to detect and characterize “tumor matching” (TM) CD8+ T cells in the blood of mice with MC38 tumors and melanoma patients using the TCR as a molecular barcode. TM cells showed increased activation compared to non-matching T cells in blood, and appeared less exhausted than matching counterparts in tumor. Importantly, PD-1, which has been used to identify putative circulating anti-tumor CD8+ T cells, showed poor sensitivity for identifying TM cells. By leveraging the transcriptome we identified candidate cell surface marker panels for TM cells in mice and melanoma patients, and validated markers in mice. Here, using combinations of markers provided better performance than single markers in identifying TM cells from non-TM cells in the blood. These data demonstrate that the TCR can be used to identify tumor-relevant populations for comprehensive characterization, reveal unique transcriptional properties of TM cells, and develop marker panels for tracking and analysis of these cells.
Citation Format: Kristen E. Pauken, Osmaan Shahid, Kaitlyn A. Lagattuta, Kelly M. Mahuron, Jacob M. Luber, Margaret M. Lowe, Linglin Huang, Conor Delaney, Jaclyn M. Long, Megan E. Fung, Kathleen Newcomer, Katy K. Tsai, Melissa Chow, Samantha Guinn, Juhi R. Kuchroo, Kelly P. Burke, Jason M. Schenkel, Michael D. Rosenblum, Adil I. Daud, Arlene H. Sharpe, Meromit Singer. Single-cell analyses characterize circulating anti-tumor CD8 T cells and identify markers for their isolation [abstract]. In: Abstracts: AACR Virtual Special Conference: Tumor Immunology and Immunotherapy; 2020 Oct 19-20. Philadelphia (PA): AACR; Cancer Immunol Res 2021;9(2 Suppl):Abstract nr PO016.
Collapse
|
|
4 |
|
5
|
Subtirelu RC, Teichner EM, Ashok A, Parikh C, Talasila S, Matache IM, Alnemri AG, Anderson V, Shahid O, Mannam S, Lee A, Werner T, Revheim ME, Alavi A. Advancements in dendritic cell vaccination: enhancing efficacy and optimizing combinatorial strategies for the treatment of glioblastoma. Front Neurol 2023; 14:1271822. [PMID: 38020665 PMCID: PMC10644823 DOI: 10.3389/fneur.2023.1271822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Glioblastomas (GBM) are highly invasive, malignant primary brain tumors. The overall prognosis is poor, and management of GBMs remains a formidable challenge, necessitating novel therapeutic strategies such as dendritic cell vaccinations (DCVs). While many early clinical trials demonstrate an induction of an antitumoral immune response, outcomes are mixed and dependent on numerous factors that vary between trials. Optimization of DCVs is essential; the selection of GBM-specific antigens and the utilization of 18F-fludeoxyglucose Positron Emission Tomography (FDG-PET) may add significant value and ultimately improve outcomes for patients undergoing treatment for glioblastoma. This review provides an overview of the mechanism of DCV, assesses previous clinical trials, and discusses future strategies for the integration of DCV into glioblastoma treatment protocols. To conclude, the review discusses challenges associated with the use of DCVs and highlights the potential of integrating DCV with standard therapies.
Collapse
|
Review |
2 |
|
6
|
Pauken KE, Shahid O, Lagattuta KA, Mahuron KM, Luber JM, Lowe MM, Huang L, Delaney C, Long J, Fung ME, Newcomer K, Tsai KK, Chow M, Guinn S, Kuchroo JR, Burke KP, Schenkel JM, Rosenblum MD, Daud AI, Sharpe AH, Singer M. Single-cell analyses characterize circulating anti-tumor CD8+ T cells in mice and humans and identify markers for their enrichment. THE JOURNAL OF IMMUNOLOGY 2021. [DOI: 10.4049/jimmunol.206.supp.26.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Abstract
The ability to monitor anti-tumor CD8+ T cell responses in the blood has tremendous therapeutic potential, but is currently challenging due to the limited number of reagents to track antigen-specific T cells. Here, we used paired single-cell RNA sequencing and T cell receptor (TCR) sequencing to detect and characterize “tumor matching” (TM) CD8+ T cells in the blood of mice with MC38 tumors or melanoma patients using the TCR as a molecular barcode. TM cells showed increased activation compared to non-matching T cells in blood, and appeared less exhausted than matching counterparts in tumor. Importantly, PD-1, which has been used to identify putative circulating anti-tumor CD8+ T cells, showed poor sensitivity for identifying TM cells in both mice and humans. By leveraging the transcriptome, we identified candidate cell surface marker panels for TM cells in mice and melanoma patients, and validated CX3CR1, NKG2D, and CD39 proteins in mice. Combinations of markers performed better than single markers in identifying TM cells from non-TM cells in the blood, providing a platform to potentially track TM cells based on surface markers instead of the TCR. These data demonstrate that the TCR can be used to identify tumor-relevant populations for comprehensive characterization, reveal unique transcriptional properties of TM cells, and develop marker panels for tracking and analysis of these cells.
Collapse
|
|
4 |
|
7
|
Liang D, Judge J, Markson S, Guinn S, Collier JL, Shahid O, Manne S, Kuchroo J, Fung M, Pauken KE, Vignali DAA, Wherry JE, Sharpe AH. PD-1 restricts the development and effector function of tissue regulatory T cells in experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2022. [DOI: 10.4049/jimmunol.208.supp.163.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
PD-1 restricts T cell effector functions, regulates T cell tolerance, and maintains immune homeostasis, thereby playing pivotal roles in cancer, autoimmune and infectious diseases. Our studies and others show that PD-1 can restrain Treg suppressive function in autoimmunity and cancer. Here, we investigate the role of Treg intrinsic PD-1 in regulating pathogenic and protective CD4+ T cell responses in experimental autoimmune encephalomyelitis (EAE) by inducing PD-1 deletion on FoxP3+ cells prior to disease development. This deletion of PD-1 only in Treg protects mice from severe disease, and both flow cytometry and transcriptional analysis of central nervous system (CNS) CD4+ T cells show enrichment of tissue effector Treg (eTreg) subsets at peak of disease. We find that PD-1 restrains the generation and suppressive function of these effector Treg. This tissue eTreg signature is also observed in human and mouse Treg subsets from the tumor microenvironment, and are potent suppressor populations. Further studies are underway to determine how PD-1 impacts TCR signaling and FoxP3 transcriptional co-activators in Treg cells. Our study provides deeper insights into how PD-1 regulates T cell tolerance, underscoring the important role of PD-1 in regulating Treg differentiation and suppressive function during autoimmune diseases, and provide mechanistic insights for PD-1 modulation in cancer and autoimmunity.
Supported by NIH P01AI108545
Collapse
|
|
3 |
|