1
|
Fodor E, Devenish L, Engelhardt OG, Palese P, Brownlee GG, García-Sastre A. Rescue of influenza A virus from recombinant DNA. J Virol 1999; 73:9679-82. [PMID: 10516084 PMCID: PMC113010 DOI: 10.1128/jvi.73.11.9679-9682.1999] [Citation(s) in RCA: 630] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have rescued influenza A virus by transfection of 12 plasmids into Vero cells. The eight individual negative-sense genomic viral RNAs were transcribed from plasmids containing human RNA polymerase I promoter and hepatitis delta virus ribozyme sequences. The three influenza virus polymerase proteins and the nucleoprotein were expressed from protein expression plasmids. This plasmid-based reverse genetics technique facilitates the generation of recombinant influenza viruses containing specific mutations in their genes.
Collapse
|
research-article |
26 |
630 |
2
|
Pleschka S, Jaskunas R, Engelhardt OG, Zürcher T, Palese P, García-Sastre A. A plasmid-based reverse genetics system for influenza A virus. J Virol 1996; 70:4188-92. [PMID: 8648766 PMCID: PMC190316 DOI: 10.1128/jvi.70.6.4188-4192.1996] [Citation(s) in RCA: 190] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A reverse genetics system for negative-strand RNA viruses was first successfully developed for influenza viruses. This technology involved the transfection of in vitro-reconstituted ribonucleoprotein (RNP) complexes into influenza virus-infected cells. We have now developed a method that allows intracellular reconstitution of RNP complexes from plasmid-based expression vectors. Expression of a viral RNA-like transcript is achieved from a plasmid containing a truncated human polymerase I (polI) promoter and a ribozyme sequence that generates the desired 3' end by autocatalytic cleavage. The polI-driven plasmid is cotransfected into human 293 cells with polII-responsive plasmids that express the viral PB1, PB2, PA, and NP proteins. This exclusively plasmid-driven system results in the efficient transcription and replication of the viral RNA-like reporter and allows the study of cis- and trans-acting signals involved in the transcription and replication of influenza virus RNAs. Using this system, we have also been able to rescue a synthetic neuraminidase gene into a recombinant influenza virus. This method represents a convenient alternative to the previously established RNP transfection system.
Collapse
|
research-article |
29 |
190 |
3
|
Engelhardt OG, Smith M, Fodor E. Association of the influenza A virus RNA-dependent RNA polymerase with cellular RNA polymerase II. J Virol 2005; 79:5812-8. [PMID: 15827195 PMCID: PMC1082766 DOI: 10.1128/jvi.79.9.5812-5818.2005] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Transcription by the influenza virus RNA-dependent RNA polymerase is dependent on cellular RNA processing activities that are known to be associated with cellular RNA polymerase II (Pol II) transcription, namely, capping and splicing. Therefore, it had been hypothesized that transcription by the viral RNA polymerase and Pol II might be functionally linked. Here, we demonstrate for the first time that the influenza virus RNA polymerase complex interacts with the large subunit of Pol II via its C-terminal domain. The viral polymerase binds hyperphosphorylated forms of Pol II, indicating that it targets actively transcribing Pol II. In addition, immunofluorescence analysis is consistent with a new model showing that influenza virus polymerase accumulates at Pol II transcription sites. The present findings provide a framework for further studies to elucidate the mechanistic principles of transcription by a viral RNA polymerase and have implications for the regulation of Pol II activities in infected cells.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
189 |
4
|
Barr IG, McCauley J, Cox N, Daniels R, Engelhardt OG, Fukuda K, Grohmann G, Hay A, Kelso A, Klimov A, Odagiri T, Smith D, Russell C, Tashiro M, Webby R, Wood J, Ye Z, Zhang W. Epidemiological, antigenic and genetic characteristics of seasonal influenza A(H1N1), A(H3N2) and B influenza viruses: basis for the WHO recommendation on the composition of influenza vaccines for use in the 2009-2010 northern hemisphere season. Vaccine 2009; 28:1156-67. [PMID: 20004635 DOI: 10.1016/j.vaccine.2009.11.043] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 11/16/2009] [Indexed: 10/20/2022]
Abstract
Influenza vaccines form an important component of the global response against infections and subsequent illness caused in man by influenza viruses. Twice a year, in February and September, the World Health Organisation through its Global Influenza Surveillance Network (GISN), recommends appropriate influenza viruses to be included in the seasonal influenza vaccine for the upcoming Northern and Southern Hemisphere winters. This recommendation is based on the latest data generated from many sources and the availability of viruses that are suitable for vaccine manufacture. This article gives a summary of the data and background to the recommendations for the 2009-2010 Northern Hemisphere influenza vaccine formulation.
Collapse
|
Practice Guideline |
16 |
136 |
5
|
Deng T, Engelhardt OG, Thomas B, Akoulitchev AV, Brownlee GG, Fodor E. Role of ran binding protein 5 in nuclear import and assembly of the influenza virus RNA polymerase complex. J Virol 2006; 80:11911-9. [PMID: 17005651 PMCID: PMC1676300 DOI: 10.1128/jvi.01565-06] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The influenza A virus RNA-dependent RNA polymerase is a heterotrimeric complex of polymerase basic protein 1 (PB1), PB2, and polymerase acidic protein (PA) subunits. It performs transcription and replication of the viral RNA genome in the nucleus of infected cells. We have identified a nuclear import factor, Ran binding protein 5 (RanBP5), also known as karyopherin beta3, importin beta3, or importin 5, as an interactor of the PB1 subunit. RanBP5 interacted with either PB1 alone or with a PB1-PA dimer but not with a PB1-PB2 dimer or the trimeric complex. The interaction between RanBP5 and PB1-PA was disrupted by RanGTP in vitro, allowing PB2 to bind to the PB1-PA dimer to form a functional trimeric RNA polymerase complex. We propose a model in which RanBP5 acts as an import factor for the newly synthesized polymerase by targeting the PB1-PA dimer to the nucleus. In agreement with this model, small interfering RNA (siRNA)-mediated knock-down of RanBP5 inhibited the nuclear accumulation of the PB1-PA dimer. Moreover, siRNA knock-down of RanBP5 resulted in the delayed accumulation of viral RNAs in infected cells, confirming that RanBP5 plays a biological role during the influenza virus life cycle.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
118 |
6
|
Palese P, Zheng H, Engelhardt OG, Pleschka S, García-Sastre A. Negative-strand RNA viruses: genetic engineering and applications. Proc Natl Acad Sci U S A 1996; 93:11354-8. [PMID: 8876139 PMCID: PMC38061 DOI: 10.1073/pnas.93.21.11354] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The negative-strand RNA viruses are a broad group of animal viruses that comprise several important human pathogens, including influenza, measles, mumps, rabies, respiratory syncytial, Ebola, and hantaviruses. The development of new strategies to genetically manipulate the genomes of negative-strand RNA viruses has provided us with new tools to study the structure-function relationships of the viral components and their contributions to the pathogenicity of these viruses. It is also now possible to envision rational approaches--based on genetic engineering techniques--to design live attenuated vaccines against some of these viral agents. In addition, the use of different negative-strand RNA viruses as vectors to efficiently express foreign polypeptides has also become feasible, and these novel vectors have potential applications in disease prevention as well as in gene therapy.
Collapse
|
research-article |
29 |
101 |
7
|
Engelhardt OG, Fodor E. Functional association between viral and cellular transcription during influenza virus infection. Rev Med Virol 2006; 16:329-45. [PMID: 16933365 DOI: 10.1002/rmv.512] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Influenza viruses replicate and transcribe their segmented negative-sense single-stranded RNA genome in the nucleus of the infected host cell. All RNA synthesising activities associated with influenza virus are performed by the virally encoded RNA-dependent RNA polymerase (RdRp) that consists of three subunits, PA, PB1 and PB2. However, viral transcription is critically dependent on on-going cellular transcription, in particular, on activities associated with the cellular DNA-dependent RNA polymerase II (Pol II). Thus, the viral RdRp uses short 5' capped RNA fragments, derived from cellular Pol II transcripts, as primers for viral mRNA synthesis. These capped RNA primers are generated by cleavage of host Pol II transcripts by an endonuclease activity associated with the viral RdRp. Moreover, some viral transcripts require splicing and since influenza virus does not encode splicing machinery, it is dependent on host splicing, an activity also related to Pol II transcription. Despite these functional links between viral and host Pol II transcription, there has been no evidence that a physical association existed between the two transcriptional machineries. However, recently it was reported that there is a physical interaction between the trimeric viral RdRp and cellular Pol II. The viral RdRp was found to interact with the C-terminal domain (CTD) of initiating Pol II, at a stage in the transcription cycle when capping takes place. It was therefore proposed that this interaction may be required for the viral RNA (vRNA) polymerase to gain access to capped RNA substrates for endonucleolytic cleavage. The virus not only relies on cellular factors to support its own RNA synthesis, but also subverts cellular pathways in order to generate an environment optimised for viral multiplication. In this respect, the interaction of the viral NS1 protein with factors involved in cellular pre-mRNA processing is of particular relevance. The virus also alters the distribution of Pol II on cellular genes, leading to a reduction in elongating Pol II thereby contributing to the phenomenon known as host shut-off.
Collapse
|
|
19 |
97 |
8
|
Muster T, Ferko B, Klima A, Purtscher M, Trkola A, Schulz P, Grassauer A, Engelhardt OG, García-Sástre A, Palese P. Mucosal model of immunization against human immunodeficiency virus type 1 with a chimeric influenza virus. J Virol 1995; 69:6678-86. [PMID: 7474077 PMCID: PMC189577 DOI: 10.1128/jvi.69.11.6678-6686.1995] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Previously, we constructed a chimeric influenza virus that expresses the highly conserved amino acid sequence ELDKWA of gp41 of human immunodeficiency virus type 1 (HIV-1). Antisera elicited in mice by infection with this chimeric virus showed neutralizing activity against distantly related HIV-1 isolates (T. Muster, R. Guinea, A. Trkola, M. Purtscher, A. Klima, F. Steindl, P. Palese, and H. Katinger, J. Virol. 68:4031-4034, 1994). In the present study, we demonstrated that intranasal immunizations with this chimeric virus are also able to induce a humoral immune response at the mucosal level. The immunized mice had ELDKWA-specific immunoglobulins A in respiratory, intestinal, and vaginal secretions. Sustained levels of these secretory immunoglobulins A were detectable for more than 1 year after immunization. The results show that influenza virus can be used to efficiently induce secretory antibodies against antigens from foreign pathogens. Since long-lasting mucosal immunity in the genital and intestinal tracts might be essential for protective immunity against HIV-1, influenza virus appears to be a promising vector for HIV-1-derived immunogens.
Collapse
|
research-article |
30 |
93 |
9
|
Barr IG, Russell C, Besselaar TG, Cox NJ, Daniels RS, Donis R, Engelhardt OG, Grohmann G, Itamura S, Kelso A, McCauley J, Odagiri T, Schultz-Cherry S, Shu Y, Smith D, Tashiro M, Wang D, Webby R, Xu X, Ye Z, Zhang W. WHO recommendations for the viruses used in the 2013-2014 Northern Hemisphere influenza vaccine: Epidemiology, antigenic and genetic characteristics of influenza A(H1N1)pdm09, A(H3N2) and B influenza viruses collected from October 2012 to January 2013. Vaccine 2014; 32:4713-25. [PMID: 24582632 DOI: 10.1016/j.vaccine.2014.02.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/28/2014] [Accepted: 02/07/2014] [Indexed: 11/28/2022]
Abstract
In February the World Health Organisation (WHO) recommends influenza viruses to be included in influenza vaccines for the forthcoming winter in the Northern Hemisphere. These recommendations are based on data collected by National Influenza Centres (NICs) through the WHO Global Influenza Surveillance and Response System (GISRS) and a more detailed analysis of representative and potential antigenically variant influenza viruses from the WHO Collaborating Centres for Influenza (WHO CCs) and Essential Regulatory Laboratories (ERLs). This article provides a detailed summary of the antigenic and genetic properties of viruses and additional background data used by WHO experts during development of the recommendations of the 2013-2014 Northern Hemisphere influenza vaccine composition.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
87 |
10
|
Robertson JS, Nicolson C, Harvey R, Johnson R, Major D, Guilfoyle K, Roseby S, Newman R, Collin R, Wallis C, Engelhardt OG, Wood JM, Le J, Manojkumar R, Pokorny BA, Silverman J, Devis R, Bucher D, Verity E, Agius C, Camuglia S, Ong C, Rockman S, Curtis A, Schoofs P, Zoueva O, Xie H, Li X, Lin Z, Ye Z, Chen LM, O'Neill E, Balish A, Lipatov AS, Guo Z, Isakova I, Davis CT, Rivailler P, Gustin KM, Belser JA, Maines TR, Tumpey TM, Xu X, Katz JM, Klimov A, Cox NJ, Donis RO. The development of vaccine viruses against pandemic A(H1N1) influenza. Vaccine 2011; 29:1836-43. [PMID: 21199698 DOI: 10.1016/j.vaccine.2010.12.044] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 11/26/2010] [Accepted: 12/14/2010] [Indexed: 10/18/2022]
Abstract
Wild type human influenza viruses do not usually grow well in embryonated hens' eggs, the substrate of choice for the production of inactivated influenza vaccine, and vaccine viruses need to be developed specifically for this purpose. In the event of a pandemic of influenza, vaccine viruses need to be created with utmost speed. At the onset of the current A(H1N1) pandemic in April 2009, a network of laboratories began a race against time to develop suitable candidate vaccine viruses. Two approaches were followed, the classical reassortment approach and the more recent reverse genetics approach. This report describes the development and the characteristics of current pandemic H1N1 candidate vaccine viruses.
Collapse
|
Journal Article |
14 |
84 |
11
|
Chan AY, Vreede FT, Smith M, Engelhardt OG, Fodor E. Influenza virus inhibits RNA polymerase II elongation. Virology 2006; 351:210-7. [PMID: 16624367 DOI: 10.1016/j.virol.2006.03.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Accepted: 03/07/2006] [Indexed: 10/24/2022]
Abstract
The influenza virus RNA-dependent RNA polymerase interacts with the serine-5 phosphorylated carboxy-terminal domain (CTD) of the large subunit of RNA polymerase II (Pol II). It was proposed that this interaction allows the viral RNA polymerase to gain access to host mRNA-derived capped RNA fragments required as primers for the initiation of viral mRNA synthesis. Here, we show, using a chromatin immunoprecipitation (ChIP) analysis, that similar amounts of Pol II associate with Pol II promoter DNAs in influenza virus-infected and mock-infected cells. However, there is a statistically significant reduction in Pol II densities in the coding region of Pol II genes in infected cells. Thus, influenza virus specifically interferes with Pol II elongation, but not Pol II initiation. We propose that influenza virus RNA polymerase, by binding to the CTD of initiating Pol II and subsequent cleavage of the capped 5' end of the nascent transcript, triggers premature Pol II termination.
Collapse
|
|
19 |
64 |
12
|
Engelhardt OG, Ullrich E, Kochs G, Haller O. Interferon-induced antiviral Mx1 GTPase is associated with components of the SUMO-1 system and promyelocytic leukemia protein nuclear bodies. Exp Cell Res 2001; 271:286-95. [PMID: 11716541 DOI: 10.1006/excr.2001.5380] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mx proteins are interferon-induced large GTPases, some of which have antiviral activity against a variety of viruses. The murine Mx1 protein accumulates in the nucleus of interferon-treated cells and is active against members of the Orthomyxoviridae family, such as the influenza viruses and Thogoto virus. The mechanism by which Mx1 exerts its antiviral action is still unclear, but an involvement of undefined nuclear factors has been postulated. Using the yeast two-hybrid system, we identified cellular proteins that interact with Mx1 protein. The Mx1 interactors were mainly nuclear proteins. They included Sp100, Daxx, and Bloom's syndrome protein (BLM), all of which are known to localize to specific subnuclear domains called promyelocytic leukemia protein nuclear bodies (PML NBs). In addition, components of the SUMO-1 protein modification system were identified as Mx1-interacting proteins, namely the small ubiquitin-like modifier SUMO-1 and SAE2, which represents subunit 2 of the SUMO-1 activating enzyme. Analysis of the subcellular localization of Mx1 and some of these interacting proteins by confocal microscopy revealed a close spatial association of Mx1 with PML NBs. This suggests a role of PML NBs and SUMO-1 in the antiviral action of Mx1 and may allow us to discover novel functions of this large GTPase.
Collapse
|
|
24 |
59 |
13
|
Klimov AI, Garten R, Russell C, Barr IG, Besselaar TG, Daniels R, Engelhardt OG, Grohmann G, Itamura S, Kelso A, McCauley J, Odagiri T, Smith D, Tashiro M, Xu X, Webby R, Wang D, Ye Z, Yuelong S, Zhang W, Cox N. WHO recommendations for the viruses to be used in the 2012 Southern Hemisphere Influenza Vaccine: epidemiology, antigenic and genetic characteristics of influenza A(H1N1)pdm09, A(H3N2) and B influenza viruses collected from February to September 2011. Vaccine 2012; 30:6461-71. [PMID: 22917957 PMCID: PMC6061925 DOI: 10.1016/j.vaccine.2012.07.089] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 07/25/2012] [Accepted: 07/31/2012] [Indexed: 11/27/2022]
Abstract
In February and September each year the World Health Organisation (WHO) recommends influenza viruses to be included in influenza vaccines for the forthcoming winters in the Northern and Southern Hemispheres respectively. These recommendations are based on data collected by National Influenza Centres (NIC) through the Global Influenza Surveillance and Response System (GISRS) and a more detailed analysis of representative and potential antigenically variant influenza viruses from the WHO Collaborating Centres for Influenza (WHO CCs) and Essential Regulatory Laboratories (ERLs). This article provides a detailed summary of the antigenic and genetic properties of viruses and additional background data used by WHO experts during development of the recommendations for the 2012 Southern Hemisphere influenza vaccine composition.
Collapse
|
research-article |
13 |
58 |
14
|
Minor PD, Engelhardt OG, Wood JM, Robertson JS, Blayer S, Colegate T, Fabry L, Heldens JG, Kino Y, Kistner O, Kompier R, Makizumi K, Medema J, Mimori S, Ryan D, Schwartz R, Smith JS, Sugawara K, Trusheim H, Tsai TF, Krause R. Current challenges in implementing cell-derived influenza vaccines: Implications for production and regulation, July 2007, NIBSC, Potters Bar, UK. Vaccine 2009; 27:2907-13. [DOI: 10.1016/j.vaccine.2009.02.064] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 02/04/2009] [Accepted: 02/18/2009] [Indexed: 11/15/2022]
|
|
16 |
48 |
15
|
Harvey R, Wheeler JX, Wallis CL, Robertson JS, Engelhardt OG. Quantitation of haemagglutinin in H5N1 influenza viruses reveals low haemagglutinin content of vaccine virus NIBRG-14 (H5N1). Vaccine 2008; 26:6550-4. [PMID: 18840494 DOI: 10.1016/j.vaccine.2008.09.050] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 09/04/2008] [Accepted: 09/17/2008] [Indexed: 11/17/2022]
|
|
17 |
46 |
16
|
Engelhardt OG, Sirma H, Pandolfi PP, Haller O. Mx1 GTPase accumulates in distinct nuclear domains and inhibits influenza A virus in cells that lack promyelocytic leukaemia protein nuclear bodies. J Gen Virol 2004; 85:2315-2326. [PMID: 15269373 DOI: 10.1099/vir.0.79795-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The interferon-induced murine Mx1 GTPase is a nuclear protein. It specifically inhibits influenza A viruses at the step of primary transcription, a process known to occur in the nucleus of infected cells. However, the exact mechanism of inhibition is still poorly understood. The Mx1 GTPase has previously been shown to accumulate in distinct nuclear dots that are spatially associated with promyelocytic leukaemia protein (PML) nuclear bodies (NBs), but the significance of this association is not known. Here it is reported that, in cells lacking PML and, as a consequence, PML NBs, Mx1 still formed nuclear dots. These dots were indistinguishable from the dots observed in wild-type cells, indicating that intact PML NBs are not required for Mx1 dot formation. Furthermore, Mx1 retained its antiviral activity against influenza A virus in these PML-deficient cells, which were fully permissive for influenza A virus. Nuclear Mx proteins from other species showed a similar subnuclear distribution. This was also the case for the human MxA GTPase when this otherwise cytoplasmic protein was translocated into the nucleus by virtue of a foreign nuclear localization signal. Human MxA and mouse Mx1 do not interact or form heterooligomers. Yet, they co-localized to a large degree when co-expressed in the nucleus. Taken together, these findings suggest that Mx1 dots represent distinct nuclear domains (‘Mx nuclear domains’) that are frequently associated with, but functionally independent of, PML NBs.
Collapse
|
|
21 |
42 |
17
|
Hutchinson EC, Orr OE, Man Liu S, Engelhardt OG, Fodor E. Characterization of the interaction between the influenza A virus polymerase subunit PB1 and the host nuclear import factor Ran-binding protein 5. J Gen Virol 2011; 92:1859-1869. [DOI: 10.1099/vir.0.032813-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The influenza A virus RNA polymerase is a heterotrimer that transcribes and replicates the viral genome in the cell nucleus. Newly synthesized RNA polymerase subunits must therefore be imported into the nucleus during an infection. While various models have been proposed for this process, the consensus is that the polymerase basic protein PB1 and polymerase acidic protein PA subunits form a dimer in the cytoplasm and are transported into the nucleus by the beta-importin Ran-binding protein 5 (RanBP5), with the PB2 subunit imported separately to complete the trimeric complex. In this study, we characterized the interaction of PB1 with RanBP5 further and assessed its importance for viral growth. In particular, we found that the N-terminal region of PB1 mediates its binding to RanBP5 and that basic residues in a nuclear localization signal are required for RanBP5 binding. Mutating these basic residues to alanines does not prevent PB1 forming a dimer with PA, but does reduce RanBP5 binding. RanBP5-binding mutations reduce, though do not entirely prevent, the nuclear accumulation of PB1. Furthermore, mutations affecting RanBP5 binding are incompatible with or severely attenuate viral growth, providing further support for a key role for RanBP5 in the influenza A virus life cycle.
Collapse
|
|
14 |
40 |
18
|
Staczek J, Gilleland HE, Gilleland LB, Harty RN, García-Sastre A, Engelhardt OG, Palese P. A chimeric influenza virus expressing an epitope of outer membrane protein F of Pseudomonas aeruginosa affords protection against challenge with P. aeruginosa in a murine model of chronic pulmonary infection. Infect Immun 1998; 66:3990-4. [PMID: 9673294 PMCID: PMC108472 DOI: 10.1128/iai.66.8.3990-3994.1998] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The ability of a chimeric influenza virus containing, within the antigenic B site of its hemagglutinin, an 11-amino-acid (AEGRAINRRVE) insert from the peptide 10 epitope of outer membrane (OM) protein F of Pseudomonas aeruginosa to serve as a protective vaccine against P. aeruginosa was tested by using the murine chronic pulmonary infection model. Mice immunized with the chimeric virus developed antibodies that reacted in an enzyme-linked immunosorbent assay with peptide 10, with purified protein F, and with whole cells of various immunotype strains of P. aeruginosa but failed to react with a protein F-deficient strain of P. aeruginosa. The chimeric-virus antisera reacted specifically with protein F alone when immunoblotted against proteins extracted from cell envelopes of each of the seven Fisher-Devlin immunotype strains and had significantly greater in vitro opsonic activity for P. aeruginosa than did antisera from wild-type influenza virus-immunized mice. Subsequent to intratracheal challenge with agar-encased cells of P. aeruginosa, chimeric-virus-immunized mice developed significantly fewer severe lung lesions than did control mice immunized with the wild-type influenza virus. Furthermore, the chimeric influenza virus-immunized group had a significantly smaller percentage of mice with >5 x 10(3) CFU of P. aeruginosa in their lungs upon bacterial quantitation than did the control group. These data indicate that chimeric influenza viruses expressing epitopes of OM protein F warrant continued development as vaccines to prevent pulmonary infections caused by P. aeruginosa.
Collapse
|
research-article |
27 |
37 |
19
|
Engelhardt OG, Boutell C, Orr A, Ullrich E, Haller O, Everett RD. The homeodomain-interacting kinase PKM (HIPK-2) modifies ND10 through both its kinase domain and a SUMO-1 interaction motif and alters the posttranslational modification of PML. Exp Cell Res 2003; 283:36-50. [PMID: 12565818 DOI: 10.1016/s0014-4827(02)00025-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Homeodomain-interacting protein kinases (HIPK-1, -2, and -3) are a family of enzymes that have been implicated in the phosphorylation and repression of homeodomain-containing transcription factors. HIPK-2 has been found to interact with the SUMO-1-conjugating enzyme Ubc9 and can be covalently modified by SUMO-1. It has also been shown to interact with and phosphorylate p53 and to form punctate speckles in the nucleus of which a proportion colocalize with PML nuclear bodies (ND10). We have previously shown that the hamster equivalent of HIPK-2 (named PKM) interacts with the interferon-induced antiviral GTPase Mx1 and associates with ND10 in interferon-treated cells. Given the connections between the interferon response pathway, constituents of ND10, and SUMO-1-conjugated proteins, we have studied the effects of exogenously expressed PKM on endogenous ND10 proteins. We found that PKM induces structural changes in ND10 that can be attributed both to its kinase activity and to the presence of a functional SUMO-1 interaction motif in the C-terminal half of the protein. The changes in the localization of PML, Sp100, and hDaxx induced by exogenous PKM or fragments thereof correlate with changes in the posttranslationally modified species of PML. We propose that PKM is able to modify ND10 structure by inducing changes in the posttranslational modification of PML and by interacting with SUMO-1 modification pathways.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antigens, Nuclear/genetics
- Antigens, Nuclear/metabolism
- Autoantigens/genetics
- Autoantigens/metabolism
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Nucleus Structures/enzymology
- Cell Nucleus Structures/genetics
- Cells, Cultured
- Co-Repressor Proteins
- Eukaryotic Cells/cytology
- Eukaryotic Cells/enzymology
- Fluorescent Antibody Technique
- Humans
- Intracellular Signaling Peptides and Proteins
- Leukemia, Promyelocytic, Acute/enzymology
- Leukemia, Promyelocytic, Acute/genetics
- Microscopy, Confocal
- Molecular Chaperones
- Mutation/genetics
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Plasmids/genetics
- Promyelocytic Leukemia Protein
- Protein Binding/genetics
- Protein Biosynthesis/genetics
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Protein Structure, Tertiary/genetics
- SUMO-1 Protein/genetics
- SUMO-1 Protein/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tumor Suppressor Proteins
Collapse
|
|
22 |
33 |
20
|
Horby PW, Laurie KL, Cowling BJ, Engelhardt OG, Sturm‐Ramirez K, Sanchez JL, Katz JM, Uyeki TM, Wood J, Van Kerkhove MD. CONSISE statement on the reporting of Seroepidemiologic Studies for influenza (ROSES-I statement): an extension of the STROBE statement. Influenza Other Respir Viruses 2017; 11:2-14. [PMID: 27417916 PMCID: PMC5155648 DOI: 10.1111/irv.12411] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2016] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Population-based serologic studies are a vital tool for understanding the epidemiology of influenza and other respiratory viruses, including the early assessment of the transmissibility and severity of the 2009 influenza pandemic, and Middle East respiratory syndrome coronavirus. However, interpretation of the results of serologic studies has been hampered by the diversity of approaches and the lack of standardized methods and reporting. OBJECTIVE The objective of the CONSISE ROSES-I statement was to improve the quality and transparency of reporting of influenza seroepidemiologic studies and facilitate the assessment of the validity and generalizability of published results. METHODS The ROSES-I statement was developed as an expert consensus of the CONSISE epidemiology and laboratory working groups. The recommendations are presented in the familiar format of a reporting guideline. Because seroepidemiologic studies are a specific type of observational epidemiology study, the ROSES-I statement is built upon the STROBE guidelines. As such, the ROSES-I statement should be seen as an extension of the STROBE guidelines. RESULTS The ROSES-I statement presents 42 items that can be used as a checklist of the information that should be included in the results of published seroepidemiologic studies, and which can also serve as a guide to the items that need to be considered during study design and implementation. CONCLUSIONS We hope that the ROSES-I statement will contribute to improving the quality of reporting of seroepidemiologic studies.
Collapse
|
Consensus Development Conference |
8 |
32 |
21
|
Engelhardt OG. Many ways to make an influenza virus--review of influenza virus reverse genetics methods. Influenza Other Respir Viruses 2012; 7:249-56. [PMID: 22712782 PMCID: PMC5779834 DOI: 10.1111/j.1750-2659.2012.00392.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Methods to introduce targeted mutations into a genome or, in the context of virology, into a virus are subsumed under the term reverse genetics (RG). Influenza viruses are important human pathogens that continue to surprise us. The development of RG for influenza viruses has greatly expanded our knowledge about influenza virus and enabled researchers to generate influenza viruses with rationally designed genotypes. Currently, a wide array of influenza virus RG methods is available. These can all be traced to fundamental principles essential in any RG system for negative-strand RNA viruses. This review gives an overview of these principles and of the multitude of RG methods, categorising them by technical characteristics.
Collapse
|
Review |
13 |
29 |
22
|
Wagner E, Engelhardt OG, Gruber S, Haller O, Kochs G. Rescue of recombinant Thogoto virus from cloned cDNA. J Virol 2001; 75:9282-6. [PMID: 11533190 PMCID: PMC114495 DOI: 10.1128/jvi.75.19.9282-9286.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Thogoto virus (THOV) is a tick-transmitted orthomyxovirus with a genome consisting of six negative-stranded RNA segments. To rescue a recombinant THOV, the viral structural proteins were produced from expression plasmids by means of a vaccinia virus expressing the T7 RNA polymerase. Genomic virus RNAs (vRNAs) were generated from plasmids under the control of the RNA polymerase I promoter. Using this system, we could efficiently recover recombinant THOV following transfection of 12 plasmids into 293T cells. To verify the recombinant nature of the rescued virus, specific genetic tags were introduced into two vRNA segments. The availability of this efficient reverse genetics system will allow us to address hitherto-unanswered questions regarding the biology of THOV by manipulating viral genes in the context of infectious virus.
Collapse
|
research-article |
24 |
28 |
23
|
Van Kerkhove MD, Broberg E, Engelhardt OG, Wood J, Nicoll A. The consortium for the standardization of influenza seroepidemiology (CONSISE): a global partnership to standardize influenza seroepidemiology and develop influenza investigation protocols to inform public health policy. Influenza Other Respir Viruses 2013; 7:231-4. [PMID: 23280042 PMCID: PMC5779825 DOI: 10.1111/irv.12068] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2012] [Indexed: 12/03/2022] Open
Abstract
CONSISE - The consortium for the Standardization of Influenza Seroepidemiology - is a global partnership to develop influenza investigation protocols and standardize seroepidemiology to inform health policy. This international partnership was formed in 2011 and was created out of a need, identified during the 2009 H1N1 pandemic, for timely seroepidemiological data to better estimate pandemic virus infection severity and attack rates to inform policy decisions. CONSISE has developed into a consortium of two interactive working groups: epidemiology and laboratory, with a steering committee composed of individuals from several organizations. CONSISE has had two international meetings with more planned for 2013. We seek additional members from public health agencies, academic institutions and other interested parties.
Collapse
|
brief-report |
12 |
27 |
24
|
Hufton SE, Risley P, Ball CR, Major D, Engelhardt OG, Poole S. The breadth of cross sub-type neutralisation activity of a single domain antibody to influenza hemagglutinin can be increased by antibody valency. PLoS One 2014; 9:e103294. [PMID: 25084445 PMCID: PMC4118869 DOI: 10.1371/journal.pone.0103294] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/27/2014] [Indexed: 11/18/2022] Open
Abstract
The response to the 2009 A(H1N1) influenza pandemic has highlighted the need for additional strategies for intervention which preclude the prior availability of the influenza strain. Here, 18 single domain VHH antibodies against the 2009 A(H1N1) hemagglutinin (HA) have been isolated from a immune alpaca phage displayed library. These antibodies have been grouped as having either (i) non-neutralising, (ii) H1N1 restricted neutralising or (iii) broad cross-subtype neutralising activity. The ability to neutralise different viral subtypes, including highly pathogenic avian influenza (H5N1), correlated with the absence of hemagglutination inhibition activity, loss of binding to HA at acid pH and the absence of binding to the head domain containing the receptor binding site. This data supports their binding to epitopes in the HA stem region and a mechanism of action other than blocking viral attachment to cell surface receptors. After conversion of cross-neutralising antibodies R1a-B6 and R1a-A5 into a bivalent format, no significant enhancement in neutralisation activity was seen against A(H1N1) and A(H5N1) viruses. However, bivalent R1a-B6 showed an 18 fold enhancement in potency against A(H9N2) virus and, surprisingly, gained the ability to neutralise an A(H2N2) virus. This demonstrates that cross-neutralising antibodies, which make lower affinity interactions with the membrane proximal stem region of more divergent HA sub-types, can be optimised by bivalency so increasing their breadth of anti-viral activity. The broad neutralising activity and favourable characteristics, such as high stability, simple engineering into bivalent molecules and low cost production make these single domain antibodies attractive candidates for diagnostics and immunotherapy of pandemic influenza.
Collapse
|
research-article |
11 |
26 |
25
|
Harvey R, Nicolson C, Johnson RE, Guilfoyle KA, Major DL, Robertson JS, Engelhardt OG. Improved haemagglutinin antigen content in H5N1 candidate vaccine viruses with chimeric haemagglutinin molecules. Vaccine 2010; 28:8008-14. [PMID: 20934460 DOI: 10.1016/j.vaccine.2010.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 08/13/2010] [Accepted: 09/03/2010] [Indexed: 10/19/2022]
Abstract
The candidate vaccine virus NIBRG-14 was derived by reverse genetics and comprises the haemagglutinin (HA) and neuraminidase (NA) genes derived from the clade 1 virus A/Viet Nam/1194/2004 on an A/Puerto Rico/8/34 (PR8) backbone. The HA gene was modified to remove the multibasic cleavage site motif associated with high pathogenicity. Reports from manufacturers, confirmed by data generated in this laboratory, have shown that this virus yields a low amount of HA antigen. We have generated a panel of new viruses using reverse genetics in which each virus consists of the PR8 backbone, the NA gene from A/Viet Nam/1194/2004 and a chimeric HA gene with sequences from both PR8 and A/Viet Nam/1194/2004. Here we show that a number of these viruses have improved HA antigen content and yield and are therefore better candidate vaccine viruses for use in production of H5N1 vaccine.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
25 |