1
|
Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggren PO, Caicedo A. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci U S A 2006; 103:2334-9. [PMID: 16461897 PMCID: PMC1413730 DOI: 10.1073/pnas.0510790103] [Citation(s) in RCA: 878] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The cytoarchitecture of human islets has been examined, focusing on cellular associations that provide the anatomical framework for paracrine interactions. By using confocal microscopy and multiple immunofluorescence, we found that, contrary to descriptions of prototypical islets in textbooks and in the literature, human islets did not show anatomical subdivisions. Insulin-immunoreactive beta cells, glucagon-immunoreactive alpha cells, and somatostatin-containing delta cells were found scattered throughout the human islet. Human beta cells were not clustered, and most (71%) showed associations with other endocrine cells, suggesting unique paracrine interactions in human islets. Human islets contained proportionally fewer beta cells and more alpha cells than did mouse islets. In human islets, most beta, alpha, and delta cells were aligned along blood vessels with no particular order or arrangement, indicating that islet microcirculation likely does not determine the order of paracrine interactions. We further investigated whether the unique human islet cytoarchitecture had functional implications. Applying imaging of cytoplasmic free Ca2+ concentration, [Ca2+]i, we found that beta cell oscillatory activity was not coordinated throughout the human islet as it was in mouse islets. Furthermore, human islets responded with an increase in [Ca2+]i when lowering the glucose concentration to 1 mM, which can be attributed to the large contribution of alpha cells to the islet composition. We conclude that the unique cellular arrangement of human islets has functional implications for islet cell function.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
878 |
2
|
Coskun T, Sloop KW, Loghin C, Alsina-Fernandez J, Urva S, Bokvist KB, Cui X, Briere DA, Cabrera O, Roell WC, Kuchibhotla U, Moyers JS, Benson CT, Gimeno RE, D'Alessio DA, Haupt A. LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: From discovery to clinical proof of concept. Mol Metab 2018; 18:3-14. [PMID: 30473097 PMCID: PMC6308032 DOI: 10.1016/j.molmet.2018.09.009] [Citation(s) in RCA: 473] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE A novel dual GIP and GLP-1 receptor agonist, LY3298176, was developed to determine whether the metabolic action of GIP adds to the established clinical benefits of selective GLP-1 receptor agonists in type 2 diabetes mellitus (T2DM). METHODS LY3298176 is a fatty acid modified peptide with dual GIP and GLP-1 receptor agonist activity designed for once-weekly subcutaneous administration. LY3298176 was characterised in vitro, using signaling and functional assays in cell lines expressing recombinant or endogenous incretin receptors, and in vivo using body weight, food intake, insulin secretion and glycemic profiles in mice. A Phase 1, randomised, placebo-controlled, double-blind study was comprised of three parts: a single-ascending dose (SAD; doses 0.25-8 mg) and 4-week multiple-ascending dose (MAD; doses 0.5-10 mg) studies in healthy subjects (HS), followed by a 4-week multiple-dose Phase 1 b proof-of-concept (POC; doses 0.5-15 mg) in patients with T2DM (ClinicalTrials.gov no. NCT02759107). Doses higher than 5 mg were attained by titration, dulaglutide (DU) was used as a positive control. The primary objective was to investigate safety and tolerability of LY3298176. RESULTS LY3298176 activated both GIP and GLP-1 receptor signaling in vitro and showed glucose-dependent insulin secretion and improved glucose tolerance by acting on both GIP and GLP-1 receptors in mice. With chronic administration to mice, LY3298176 potently decreased body weight and food intake; these effects were significantly greater than the effects of a GLP-1 receptor agonist. A total of 142 human subjects received at least 1 dose of LY3298176, dulaglutide, or placebo. The PK profile of LY3298176 was investigated over a wide dose range (0.25-15 mg) and supports once-weekly administration. In the Phase 1 b trial of diabetic subjects, LY3298176 doses of 10 mg and 15 mg significantly reduced fasting serum glucose compared to placebo (least square mean [LSM] difference [95% CI]: -49.12 mg/dL [-78.14, -20.12] and -43.15 mg/dL [-73.06, -13.21], respectively). Reductions in body weight were significantly greater with the LY3298176 1.5 mg, 4.5 mg and 10 mg doses versus placebo in MAD HS (LSM difference [95% CI]: -1.75 kg [-3.38, -0.12], -5.09 kg [-6.72, -3.46] and -4.61 kg [-6.21, -3.01], respectively) and doses of 10 mg and 15 mg had a relevant effect in T2DM patients (LSM difference [95% CI]: -2.62 kg [-3.79, -1.45] and -2.07 kg [-3.25, -0.88], respectively. The most frequent side effects reported with LY3298176 were gastrointestinal (vomiting, nausea, decreased appetite, diarrhoea, and abdominal distension) in both HS and patients with T2DM; all were dose-dependent and considered mild to moderate in severity. CONCLUSIONS Based on these results, the pharmacology of LY3298176 translates from preclinical to clinical studies. LY3298176 has the potential to deliver clinically meaningful improvement in glycaemic control and body weight. The data warrant further clinical evaluation of LY3298176 for the treatment of T2DM and potentially obesity.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
473 |
3
|
Speier S, Nyqvist D, Cabrera O, Yu J, Molano RD, Pileggi A, Moede T, Köhler M, Wilbertz J, Leibiger B, Ricordi C, Leibiger IB, Caicedo A, Berggren PO. Noninvasive in vivo imaging of pancreatic islet cell biology. Nat Med 2008; 14:574-8. [PMID: 18327249 DOI: 10.1038/nm1701] [Citation(s) in RCA: 213] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 12/03/2007] [Indexed: 01/09/2023]
Abstract
Advanced imaging techniques have become a valuable tool in the study of complex biological processes at the cellular level in biomedical research. Here, we introduce a new technical platform for noninvasive in vivo fluorescence imaging of pancreatic islets using the anterior chamber of the eye as a natural body window. Islets transplanted into the mouse eye engrafted on the iris, became vascularized, retained cellular composition, responded to stimulation and reverted diabetes. Laser-scanning microscopy allowed repetitive in vivo imaging of islet vascularization, beta cell function and death at cellular resolution. Our results thus establish the basis for noninvasive in vivo investigations of complex cellular processes, like beta cell stimulus-response coupling, which can be performed longitudinally under both physiological and pathological conditions.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
213 |
4
|
Cabrera O, Jacques-Silva MC, Speier S, Yang SN, Köhler M, Fachado A, Vieira E, Zierath JR, Kibbey R, Berman DM, Kenyon NS, Ricordi C, Caicedo A, Berggren PO. Glutamate is a positive autocrine signal for glucagon release. Cell Metab 2008; 7:545-54. [PMID: 18522835 PMCID: PMC4396785 DOI: 10.1016/j.cmet.2008.03.004] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 01/09/2008] [Accepted: 03/10/2008] [Indexed: 11/15/2022]
Abstract
An important feature of glucose homeostasis is the effective release of glucagon from the pancreatic alpha cell. The molecular mechanisms regulating glucagon secretion are still poorly understood. We now demonstrate that human alpha cells express ionotropic glutamate receptors (iGluRs) that are essential for glucagon release. A lowering in glucose concentration results in the release of glutamate from the alpha cell. Glutamate then acts on iGluRs of the AMPA/kainate type, resulting in membrane depolarization, opening of voltage-gated Ca(2+) channels, increase in cytoplasmic free Ca(2+) concentration, and enhanced glucagon release. In vivo blockade of iGluRs reduces glucagon secretion and exacerbates insulin-induced hypoglycemia in mice. Hence, the glutamate autocrine feedback loop endows the alpha cell with the ability to effectively potentiate its own secretory activity. This is a prerequisite to guarantee adequate glucagon release despite relatively modest changes in blood glucose concentration under physiological conditions.
Collapse
|
Research Support, N.I.H., Extramural |
17 |
158 |
5
|
Berman DM, Willman MA, Han D, Kleiner G, Kenyon NM, Cabrera O, Karl JA, Wiseman RW, O'Connor DH, Bartholomew AM, Kenyon NS. Mesenchymal stem cells enhance allogeneic islet engraftment in nonhuman primates. Diabetes 2010; 59:2558-68. [PMID: 20622174 PMCID: PMC3279532 DOI: 10.2337/db10-0136] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To test the graft-promoting effects of mesenchymal stem cells (MSCs) in a cynomolgus monkey model of islet/bone marrow transplantation. RESEARCH DESIGN AND METHODS Cynomolgus MSCs were obtained from iliac crest aspirate and characterized through passage 11 for phenotype, gene expression, differentiation potential, and karyotype. Allogeneic donor MSCs were cotransplanted intraportally with islets on postoperative day (POD) 0 and intravenously with donor marrow on PODs 5 and 11. Recipients were followed for stabilization of blood glucose levels, reduction of exogenous insulin requirement (EIR), C-peptide levels, changes in peripheral blood T regulatory cells, and chimerism. Destabilization of glycemia and increases in EIR were used as signs of rejection; additional intravenous MSCs were administered to test the effect on reversal of rejection. RESULTS MSC phenotype and a normal karyotype were observed through passage 11. IL-6, IL-10, vascular endothelial growth factor, TGF-β, hepatocyte growth factor, and galectin-1 gene expression levels varied among donors. MSC treatment significantly enhanced islet engraftment and function at 1 month posttransplant (n = 8), as compared with animals that received islets without MSCs (n = 3). Additional infusions of donor or third-party MSCs resulted in reversal of rejection episodes and prolongation of islet function in two animals. Stable islet allograft function was associated with increased numbers of regulatory T-cells in peripheral blood. CONCLUSIONS MSCs may provide an important approach for enhancement of islet engraftment, thereby decreasing the numbers of islets needed to achieve insulin independence. Furthermore, MSCs may serve as a new, safe, and effective antirejection therapy.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
157 |
6
|
Ichii H, Inverardi L, Pileggi A, Molano RD, Cabrera O, Caicedo A, Messinger S, Kuroda Y, Berggren PO, Ricordi C. A novel method for the assessment of cellular composition and beta-cell viability in human islet preparations. Am J Transplant 2005; 5:1635-45. [PMID: 15943621 DOI: 10.1111/j.1600-6143.2005.00913.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Current methodologies to evaluate islet cell viability are largely based on tests that assess the exclusion of DNA-binding dyes. While these tests identify cells that have lost selective membrane permeability, they do not allow us to recognize apoptotic cells, which do not yet stain with DNA-binding dyes. Furthermore, current methods of analysis do not discriminate between cell subsets in the preparation and, in particular, they do not allow for selectively defining beta-cell viability. For these reasons we have developed novel methods for the specific assessment of beta-cell content and viability in human islets based on cellular composition analysis through laser scanning cytometry (LSC) coupled with identification of beta-cell-specific apoptosis at the mitochondrial level. Our novel analytical methods hold promise to prospectively analyze clinical islet transplantation preparations and predict functional performance, as suggested by the observed correlation with in vivo analysis of islet potency in immunodeficient rodents.
Collapse
|
Research Support, N.I.H., Extramural |
20 |
153 |
7
|
Pfefferkorn JA, Guzman-Perez A, Litchfield J, Aiello R, Treadway JL, Pettersen J, Minich ML, Filipski KJ, Jones CS, Tu M, Aspnes G, Risley H, Bian J, Stevens BD, Bourassa P, D’Aquila T, Baker L, Barucci N, Robertson AS, Bourbonais F, Derksen DR, MacDougall M, Cabrera O, Chen J, Lapworth AL, Landro JA, Zavadoski WJ, Atkinson K, Haddish-Berhane N, Tan B, Yao L, Kosa RE, Varma MV, Feng B, Duignan DB, El-Kattan A, Murdande S, Liu S, Ammirati M, Knafels J, DaSilva-Jardine P, Sweet L, Liras S, Rolph TP. Discovery of (S)-6-(3-Cyclopentyl-2-(4-(trifluoromethyl)-1H-imidazol-1-yl)propanamido)nicotinic Acid as a Hepatoselective Glucokinase Activator Clinical Candidate for Treating Type 2 Diabetes Mellitus. J Med Chem 2012; 55:1318-33. [DOI: 10.1021/jm2014887] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
|
13 |
94 |
8
|
Samms RJ, Christe ME, Collins KA, Pirro V, Droz BA, Holland AK, Friedrich JL, Wojnicki S, Konkol DL, Cosgrove R, Furber EPC, Ruan X, O'Farrell LS, Long AM, Dogra M, Willency JA, Lin Y, Ding L, Cheng CC, Cabrera O, Briere DA, Alsina-Fernandez J, Gimeno RE, Moyers JS, Coskun T, Coghlan MP, Sloop KW, Roell WC. GIPR agonism mediates weight-independent insulin sensitization by tirzepatide in obese mice. J Clin Invest 2021; 131:146353. [PMID: 34003802 DOI: 10.1172/jci146353] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/05/2021] [Indexed: 01/01/2023] Open
Abstract
Tirzepatide (LY3298176), a dual GIP and GLP-1 receptor (GLP-1R) agonist, delivered superior glycemic control and weight loss compared with GLP-1R agonism in patients with type 2 diabetes. However, the mechanism by which tirzepatide improves efficacy and how GIP receptor (GIPR) agonism contributes is not fully understood. Here, we show that tirzepatide is an effective insulin sensitizer, improving insulin sensitivity in obese mice to a greater extent than GLP-1R agonism. To determine whether GIPR agonism contributes, we compared the effect of tirzepatide in obese WT and Glp-1r-null mice. In the absence of GLP-1R-induced weight loss, tirzepatide improved insulin sensitivity by enhancing glucose disposal in white adipose tissue (WAT). In support of this, a long-acting GIPR agonist (LAGIPRA) was found to enhance insulin sensitivity by augmenting glucose disposal in WAT. Interestingly, the effect of tirzepatide and LAGIPRA on insulin sensitivity was associated with reduced branched-chain amino acids (BCAAs) and ketoacids in the circulation. Insulin sensitization was associated with upregulation of genes associated with the catabolism of glucose, lipid, and BCAAs in brown adipose tissue. Together, our studies show that tirzepatide improved insulin sensitivity in a weight-dependent and -independent manner. These results highlight how GIPR agonism contributes to the therapeutic profile of dual-receptor agonism, offering mechanistic insights into the clinical efficacy of tirzepatide.
Collapse
|
Journal Article |
4 |
91 |
9
|
Refai E, Dekki N, Yang SN, Imreh G, Cabrera O, Yu L, Yang G, Norgren S, Rössner SM, Inverardi L, Ricordi C, Olivecrona G, Andersson M, Jörnvall H, Berggren PO, Juntti-Berggren L. Transthyretin constitutes a functional component in pancreatic beta-cell stimulus-secretion coupling. Proc Natl Acad Sci U S A 2005; 102:17020-5. [PMID: 16286652 PMCID: PMC1287967 DOI: 10.1073/pnas.0503219102] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transthyretin (TTR) is a transport protein for thyroxine and, in association with retinol-binding protein, for retinol, mainly existing as a tetramer in vivo. We now demonstrate that TTR tetramer has a positive role in pancreatic beta-cell stimulus-secretion coupling. TTR promoted glucose-induced increases in cytoplasmic free Ca(2+) concentration ([Ca(2+)](i)) and insulin release. This resulted from a direct effect on glucose-induced electrical activity and voltage-gated Ca(2+) channels. TTR also protected against beta-cell apoptosis. The concentration of TTR tetramer was decreased, whereas that of a monomeric form was increased in sera from patients with type 1 diabetes. The monomer was without effect on glucose-induced insulin release and apoptosis. Thus, TTR tetramer constitutes a component in normal beta-cell function. Conversion of TTR tetramer to monomer may be involved in the development of beta-cell failure/destruction in type 1 diabetes.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
79 |
10
|
Yang J, MacDougall ML, McDowell MT, Xi L, Wei R, Zavadoski WJ, Molloy MP, Baker JD, Kuhn M, Cabrera O, Treadway JL. Polyomic profiling reveals significant hepatic metabolic alterations in glucagon-receptor (GCGR) knockout mice: implications on anti-glucagon therapies for diabetes. BMC Genomics 2011; 12:281. [PMID: 21631939 PMCID: PMC3130710 DOI: 10.1186/1471-2164-12-281] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 06/01/2011] [Indexed: 02/07/2023] Open
Abstract
Background Glucagon is an important hormone in the regulation of glucose homeostasis, particularly in the maintenance of euglycemia and prevention of hypoglycemia. In type 2 Diabetes Mellitus (T2DM), glucagon levels are elevated in both the fasted and postprandial states, which contributes to inappropriate hyperglycemia through excessive hepatic glucose production. Efforts to discover and evaluate glucagon receptor antagonists for the treatment of T2DM have been ongoing for approximately two decades, with the challenge being to identify an agent with appropriate pharmaceutical properties and efficacy relative to potential side effects. We sought to determine the hepatic & systemic consequence of full glucagon receptor antagonism through the study of the glucagon receptor knock-out mouse (Gcgr-/-) compared to wild-type littermates. Results Liver transcriptomics was performed using Affymetric expression array profiling, and liver proteomics was performed by iTRAQ global protein analysis. To complement the transcriptomic and proteomic analyses, we also conducted metabolite profiling (~200 analytes) using mass spectrometry in plasma. Overall, there was excellent concordance (R = 0.88) for changes associated with receptor knock-out between the transcript and protein analysis. Pathway analysis tools were used to map the metabolic processes in liver altered by glucagon receptor ablation, the most notable being significant down-regulation of gluconeogenesis, amino acid catabolism, and fatty acid oxidation processes, with significant up-regulation of glycolysis, fatty acid synthesis, and cholesterol biosynthetic processes. These changes at the level of the liver were manifested through an altered plasma metabolite profile in the receptor knock-out mice, e.g. decreased glucose and glucose-derived metabolites, and increased amino acids, cholesterol, and bile acid levels. Conclusions In sum, the results of this study suggest that the complete ablation of hepatic glucagon receptor function results in major metabolic alterations in the liver, which, while promoting improved glycemic control, may be associated with adverse lipid changes.
Collapse
|
Journal Article |
14 |
66 |
11
|
Berman DM, Cabrera O, Kenyon NM, Miller J, Tam SH, Khandekar VS, Picha KM, Soderman AR, Jordan RE, Bugelski PJ, Horninger D, Lark M, Davis JE, Alejandro R, Berggren PO, Zimmerman M, O'Neil JJ, Ricordi C, Kenyon NS. Interference with tissue factor prolongs intrahepatic islet allograft survival in a nonhuman primate marginal mass model. Transplantation 2007; 84:308-15. [PMID: 17700154 DOI: 10.1097/01.tp.0000275401.80187.1e] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Tissue factor (TF) expression on islets can result in an instant blood-mediated inflammatory reaction (IBMIR) that contributes to early islet loss. We tested whether peritransplant protection of islets from IBMIR with a monoclonal anti-TF antibody (CNTO859) would enhance engraftment in our nonhuman primate marginal mass model. METHODS Each of six pairs of cynomolgus monkeys (CM) with streptozotocin-induced diabetes was closely matched for metabolic control and was transplanted with 5,000 IEQ/kg allogeneic, ABO-compatible islets from the same donor under the cover of steroid-free immunosuppression. For each pair, experimental animals received islets cultured with 20 microg/mL anti-TF and were dosed with 6 mg/kg anti-TF intravenously, 10-25 min before islet infusion; control monkeys received an equal number of islets from the same preparation cultured without anti-TF and no in vivo treatment. RESULTS Early fasting C-peptide (CP) values were different between (P<0.01), but not within, pairs and correlated with in vitro functional capacity of islets as assessed by perifusion (r=0.60; P=0.022). Compared to their matched controls, experimental animals had decreased posttransplant markers of coagulation, higher fasting CP levels (1 month posttransplant and end of study) and prolonged graft function. CONCLUSIONS These data suggest that pretreatment of islets and the recipient with anti-TF may limit the effects of IBMIR, thereby enhancing islet engraftment and survival.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
65 |
12
|
Fenjves ES, Ochoa MS, Cabrera O, Mendez AJ, Kenyon NS, Inverardi L, Ricordi C. Human, nonhuman primate, and rat pancreatic islets express erythropoietin receptors. Transplantation 2003; 75:1356-60. [PMID: 12717230 DOI: 10.1097/01.tp.0000062862.88375.bd] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Erythropoietin (EPO) promotes survival in a variety of cells by mediating antiapoptotic signals through the EPO receptor (R). The authors examined pancreatic islets for the presence of EPO-R to determine whether these cells are protected by EPO from cytokine-induced apoptosis. METHODS Reverse-transcriptase polymerase chain reaction, immunohistology, and Western blots were used to establish the presence and localization of EPO-R on rat, nonhuman primate, and human islets. Islets were exposed to cytokines in the presence and absence of recombinant EPO and apoptosis was measured using a terminal deoxynucleotide transferase-mediated dUTP nick-end labeling assay followed by fluorescence-activated cell sorter analysis. Glucose stimulation indices were measured to assess the effect of EPO on islet function. RESULTS The presence of EPO-R was demonstrated on islets regardless of species. Recombinant EPO protected islets in culture from cytokine-induced apoptosis in a dose-dependent manner. Furthermore, the presence of EPO in the media does not adversely affect islet function. CONCLUSIONS This is the first demonstration that pancreatic islets express EPO-R and that EPO may prevent islet-cell apoptosis in culture. In vivo trials to evaluate the potential of long-term expression of EPO to augment islet survival in transplantation are underway.
Collapse
|
|
22 |
55 |
13
|
Bueno AB, Showalter AD, Wainscott DB, Stutsman C, Marín A, Ficorilli J, Cabrera O, Willard FS, Sloop KW. Positive Allosteric Modulation of the Glucagon-like Peptide-1 Receptor by Diverse Electrophiles. J Biol Chem 2016; 291:10700-15. [PMID: 26975372 PMCID: PMC4865917 DOI: 10.1074/jbc.m115.696039] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Indexed: 11/25/2022] Open
Abstract
Therapeutic intervention to activate the glucagon-like peptide-1 receptor (GLP-1R) enhances glucose-dependent insulin secretion and improves energy balance in patients with type 2 diabetes mellitus. Studies investigating mechanisms whereby peptide ligands activate GLP-1R have utilized mutagenesis, receptor chimeras, photo-affinity labeling, hydrogen-deuterium exchange, and crystallography of the ligand-binding ectodomain to establish receptor homology models. However, this has not enabled the design or discovery of drug-like non-peptide GLP-1R activators. Recently, studies investigating 4-(3-benzyloxyphenyl)-2-ethylsulfinyl-6-(trifluoromethyl)pyrimidine (BETP), a GLP-1R-positive allosteric modulator, determined that Cys-347 in the GLP-1R is required for positive allosteric modulator activity via covalent modification. To advance small molecule activation of the GLP-1R, we characterized the insulinotropic mechanism of BETP. In guanosine 5′-3-O-(thio)triphosphate binding and INS1 832-3 insulinoma cell cAMP assays, BETP enhanced GLP-1(9–36)-NH2-stimulated cAMP signaling. Using isolated pancreatic islets, BETP potentiated insulin secretion in a glucose-dependent manner that requires both the peptide ligand and GLP-1R. In studies of the covalent mechanism, PAGE fluorography showed labeling of GLP-1R in immunoprecipitation experiments from GLP-1R-expressing cells incubated with [3H]BETP. Furthermore, we investigated whether other reported GLP-1R activators and compounds identified from screening campaigns modulate GLP-1R by covalent modification. Similar to BETP, several molecules were found to enhance GLP-1R signaling in a Cys-347-dependent manner. These chemotypes are electrophiles that react with GSH, and LC/MS determined the cysteine adducts formed upon conjugation. Together, our results suggest covalent modification may be used to stabilize the GLP-1R in an active conformation. Moreover, the findings provide pharmacological guidance for the discovery and characterization of small molecule GLP-1R ligands as possible therapeutics.
Collapse
|
Journal Article |
9 |
46 |
14
|
Cabrera O, Jacques-Silva MC, Berman DM, Fachado A, Echeverri F, Poo R, Khan A, Kenyon NS, Ricordi C, Berggren PO, Caicedo A. Automated, High-Throughput Assays for Evaluation of Human Pancreatic Islet Function. Cell Transplant 2017; 16:1039-1048. [DOI: 10.3727/000000007783472408] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
An important challenge in pancreatic islet transplantation in association with type 1 diabetes is to define automatic high-throughput assays for evaluation of human islet function. The physiological techniques presently used are amenable to small-scale experimental samples and produce descriptive results. The postgenomic era provides an opportunity to analyze biological processes on a larger scale, but the transition to high-throughput technologies is still a challenge. As a first step to implement high-throughput assays for the study of human islet function, we have developed two methodologies: multiple automated perifusion to determine islet hormone secretion and high-throughput kinetic imaging to examine islet cellular responses. Both technologies use fully automated devices that allow performing simultaneous experiments on multiple islet preparations. Our results illustrate that these technologies can be applied to study the functional status and explore the pharmacological profiles of islet cells. These methodologies will enable functional characterization of human islet preparations before transplantation and thereby provide the basis for the establishment of predictive tests for β-cell potency.
Collapse
|
|
8 |
42 |
15
|
Pérez O, Lastre M, Cabrera O, del Campo J, Bracho G, Cuello M, Balboa J, Acevedo R, Zayas C, Gil D, Mora N, González D, Pérez R, González E, Barberá R, Fajardo EM, Sierra G, Solís RL, Campa C. New Vaccines Require Potent Adjuvants like AFPL1 and AFCo1. Scand J Immunol 2007; 66:271-7. [PMID: 17635804 DOI: 10.1111/j.1365-3083.2007.01981.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neisseria meningitidis B proteoliposome (AFPL1 when used as adjuvant) and its derivative-Cochleate (AFCo1) contain immunopotentiating and immunomodulating properties and delivery system capacities required for a good adjuvant. Additionally, they contain meningococcal protective antigens and permit packaging of other antigens and pathogen-associated molecular patterns (PAMP). Consequently, we hypothesized that they would function as good vaccine adjuvants for their own antigens and also for non-related antigens. AFPL1 is a detergent-extracted outer membrane vesicle of N. meningitidis B transformed into AFCo1 in calcium environment. Both are produced at Finlay Institute under good manufacture practices (GMP) conditions. We show their exceptional characteristics: combining in the same structure, the potentiator activity, polarizing agents and delivery system capacities; presenting multimeric protein copies; containing multiprotein composition and multi and synergistic PAMP components; acting with incorporated or co-administrated antigens; inducing type I IFN-gamma and IL-12 cytokines suggesting the stimulation of human plasmocytoid precursor and conventional dendritic cells, respectively, inducing a preferential Th1 immune response with TCD4(+), TCD8(+), cross-presentation and cytotoxic T-lymphocyte (CTL) in vivo responses; and functioning by parenteral and mucosal routes. AFPL1-AFCo1 protective protein constitutions permit per se their function as a vaccine. In addition to Phase IV Men BC vaccine, AFPL1 has ended the preclinical stage in an allergy vaccine and is concluding the preclinical stage of a nasal meningococcal vaccine. In conclusion, AFPL1 and AFCo1 induced signal 1, 2 and 3 polarizing to a Th1 (including CTL) response when they acted directly as vaccines or were used as adjuvants with incorporated or co-administered antigens by parenteral or mucosal routes. Both are very promising adjuvants.
Collapse
|
|
18 |
37 |
16
|
Pérez O, Batista-Duharte A, González E, Zayas C, Balboa J, Cuello M, Cabrera O, Lastre M, Schijns VEJC. Human prophylactic vaccine adjuvants and their determinant role in new vaccine formulations. Braz J Med Biol Res 2012; 45:681-92. [PMID: 22527130 PMCID: PMC3854239 DOI: 10.1590/s0100-879x2012007500067] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 04/13/2012] [Indexed: 01/04/2023] Open
Abstract
Adjuvants have been considered for a long time to be an accessory and empirical component of vaccine formulations. However, accumulating evidence of their crucial role in initiating and directing the immune response has increased our awareness of the importance of adjuvant research in the past decade. Nevertheless, the importance of adjuvants still is not fully realized by many researchers working in the vaccine field, who are involved mostly in the search for better target antigens. The choice of a proper adjuvant can be determinant for obtaining the best results for a given vaccine candidate, but it is restricted due to intellectual property and know-how issues. Consequently, in most cases the selected adjuvant continues to be the aluminum salt, which has a record of safety, but predominantly constitutes a delivery system (DS). Ideally, new strategies should combine immune potentiators (IP) and DS by mixing both compounds or by obtaining structures that contain both IP and DS. In addition, the term immune polarizer has been introduced as an essential concept in the vaccine design strategies. Here, we review the theme, with emphasis on the discussion of the few licensed new adjuvants, the need for safe mucosal adjuvants and the adjuvant/immunopotentiating activity of conjugation. A summary of toxicology and regulatory issues will also be discussed, and the Finlay Adjuvant Platform is briefly summarized.
Collapse
|
Review |
13 |
35 |
17
|
Untereiner A, Abdo S, Bhattacharjee A, Gohil H, Pourasgari F, Ibeh N, Lai M, Batchuluun B, Wong A, Khuu N, Liu Y, Al Rijjal D, Winegarden N, Virtanen C, Orser BA, Cabrera O, Varga G, Rocheleau J, Dai FF, Wheeler MB. GABA promotes β-cell proliferation, but does not overcome impaired glucose homeostasis associated with diet-induced obesity. FASEB J 2018; 33:3968-3984. [PMID: 30509117 DOI: 10.1096/fj.201801397r] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
γ-Aminobutyric acid (GABA) administration has been shown to increase β-cell mass, leading to a reversal of type 1 diabetes in mice. Whether GABA has any effect on β cells of healthy and prediabetic/glucose-intolerant obese mice remains unknown. In the present study, we show that oral GABA administration ( ad libitum) to mice indeed increased pancreatic β-cell mass, which led to a modest enhancement in insulin secretion and glucose tolerance. However, GABA treatment did not further increase insulin-positive islet area in high fat diet-fed mice and was unable to prevent or reverse glucose intolerance and insulin resistance. Mechanistically, whether in vivo or in vitro, GABA treatment increased β-cell proliferation. In vitro, the effect was shown to be mediated via the GABAA receptor. Single-cell RNA sequencing analysis revealed that GABA preferentially up-regulated pathways linked to β-cell proliferation and simultaneously down-regulated those networks required for other processes, including insulin biosynthesis and metabolism. Interestingly, single-cell differential expression analysis revealed GABA treatment gave rise to a distinct subpopulation of β cells with a unique transcriptional signature, including urocortin 3 ( ucn3), wnt4, and hepacam2. Taken together, this study provides new mechanistic insight into the proliferative nature of GABA but suggests that β-cell compensation associated with prediabetes overlaps with, and negates, its proliferative effects.-Untereiner, A., Abdo, S., Bhattacharjee, A., Gohil, H., Pourasgari, F., Ibeh, N., Lai, M., Batchuluun, B., Wong, A., Khuu, N., Liu, Y., Al Rijjal, D., Winegarden, N., Virtanen, C., Orser, B. A., Cabrera, O., Varga, G., Rocheleau, J., Dai, F. F., Wheeler, M. B. GABA promotes β-cell proliferation, but does not overcome impaired glucose homeostasis associated with diet-induced obesity.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
33 |
18
|
Schwede F, Chepurny OG, Kaufholz M, Bertinetti D, Leech CA, Cabrera O, Zhu Y, Mei F, Cheng X, Manning Fox JE, MacDonald PE, Genieser HG, Herberg FW, Holz GG. Rp-cAMPS Prodrugs Reveal the cAMP Dependence of First-Phase Glucose-Stimulated Insulin Secretion. Mol Endocrinol 2015; 29:988-1005. [PMID: 26061564 DOI: 10.1210/me.2014-1330] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
cAMP-elevating agents such as the incretin hormone glucagon-like peptide-1 potentiate glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells. However, a debate has existed since the 1970s concerning whether or not cAMP signaling is essential for glucose alone to stimulate insulin secretion. Here, we report that the first-phase kinetic component of GSIS is cAMP-dependent, as revealed through the use of a novel highly membrane permeable para-acetoxybenzyl (pAB) ester prodrug that is a bioactivatable derivative of the cAMP antagonist adenosine-3',5'-cyclic monophosphorothioate, Rp-isomer (Rp-cAMPS). In dynamic perifusion assays of human or rat islets, a step-wise increase of glucose concentration leads to biphasic insulin secretion, and under these conditions, 8-bromoadenosine-3',5'-cyclic monophosphorothioate, Rp-isomer, 4-acetoxybenzyl ester (Rp-8-Br-cAMPS-pAB) inhibits first-phase GSIS by up to 80%. Surprisingly, second-phase GSIS is inhibited to a much smaller extent (≤20%). Using luciferase, fluorescence resonance energy transfer, and bioluminescence resonance energy transfer assays performed in living cells, we validate that Rp-8-Br-cAMPS-pAB does in fact block cAMP-dependent protein kinase activation. Novel effects of Rp-8-Br-cAMPS-pAB to block the activation of cAMP-regulated guanine nucleotide exchange factors (Epac1, Epac2) are also validated using genetically encoded Epac biosensors, and are independently confirmed in an in vitro Rap1 activation assay using Rp-cAMPS and Rp-8-Br-cAMPS. Thus, in addition to revealing the cAMP dependence of first-phase GSIS from human and rat islets, these findings establish a pAB-based chemistry for the synthesis of highly membrane permeable prodrug derivatives of Rp-cAMPS that act with micromolar or even nanomolar potency to inhibit cAMP signaling in living cells.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
29 |
19
|
Ho KH, Yang X, Osipovich AB, Cabrera O, Hayashi ML, Magnuson MA, Gu G, Kaverina I. Glucose Regulates Microtubule Disassembly and the Dose of Insulin Secretion via Tau Phosphorylation. Diabetes 2020; 69:1936-1947. [PMID: 32540877 PMCID: PMC7458041 DOI: 10.2337/db19-1186] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/07/2020] [Indexed: 12/16/2022]
Abstract
The microtubule cytoskeleton of pancreatic islet β-cells regulates glucose-stimulated insulin secretion (GSIS). We have reported that the microtubule-mediated movement of insulin vesicles away from the plasma membrane limits insulin secretion. High glucose-induced remodeling of microtubule network facilitates robust GSIS. This remodeling involves disassembly of old microtubules and nucleation of new microtubules. Here, we examine the mechanisms whereby glucose stimulation decreases microtubule lifetimes in β-cells. Using real-time imaging of photoconverted microtubules, we demonstrate that high levels of glucose induce rapid microtubule disassembly preferentially in the periphery of individual β-cells, and this process is mediated by the phosphorylation of microtubule-associated protein tau. Specifically, high glucose induces tau hyper-phosphorylation via glucose-responsive kinases GSK3, PKA, PKC, and CDK5. This causes dissociation of tau from and subsequent destabilization of microtubules. Consequently, tau knockdown in mouse islet β-cells facilitates microtubule turnover, causing increased basal insulin secretion, depleting insulin vesicles from the cytoplasm, and impairing GSIS. More importantly, tau knockdown uncouples microtubule destabilization from glucose stimulation. These findings suggest that tau suppresses peripheral microtubules turning over to restrict insulin oversecretion in basal conditions and preserve the insulin pool that can be released following stimulation; high glucose promotes tau phosphorylation to enhance microtubule disassembly to acutely enhance GSIS.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
23 |
20
|
Cabrera O, Ficorilli J, Shaw J, Echeverri F, Schwede F, Chepurny OG, Leech CA, Holz GG. Intra-islet glucagon confers β-cell glucose competence for first-phase insulin secretion and favors GLP-1R stimulation by exogenous glucagon. J Biol Chem 2022; 298:101484. [PMID: 34896391 PMCID: PMC8789663 DOI: 10.1016/j.jbc.2021.101484] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
We report that intra-islet glucagon secreted from α-cells signals through β-cell glucagon and GLP-1 receptors (GcgR and GLP-1R), thereby conferring to rat islets their competence to exhibit first-phase glucose-stimulated insulin secretion (GSIS). Thus, in islets not treated with exogenous glucagon or GLP-1, first-phase GSIS is abolished by a GcgR antagonist (LY2786890) or a GLP-1R antagonist (Ex[9-39]). Mechanistically, glucose competence in response to intra-islet glucagon is conditional on β-cell cAMP signaling because it is blocked by the cAMP antagonist prodrug Rp-8-Br-cAMPS-pAB. In its role as a paracrine hormone, intra-islet glucagon binds with high affinity to the GcgR, while also exerting a "spillover" effect to bind with low affinity to the GLP-1R. This produces a right shift of the concentration-response relationship for the potentiation of GSIS by exogenous glucagon. Thus, 0.3 nM glucagon fails to potentiate GSIS, as expected if similar concentrations of intra-islet glucagon already occupy the GcgR. However, 10 to 30 nM glucagon effectively engages the β-cell GLP-1R to potentiate GSIS, an action blocked by Ex[9-39] but not LY2786890. Finally, we report that the action of intra-islet glucagon to support insulin secretion requires a step-wise increase of glucose concentration to trigger first-phase GSIS. It is not measurable when GSIS is stimulated by a gradient of increasing glucose concentrations, as occurs during an oral glucose tolerance test in vivo. Collectively, such findings are understandable if defective intra-islet glucagon action contributes to the characteristic loss of first-phase GSIS in an intravenous glucose tolerance test that is diagnostic of type 2 diabetes in the clinical setting.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
21 |
21
|
Slieker RC, Donnelly LA, Akalestou E, Lopez-Noriega L, Melhem R, Güneş A, Abou Azar F, Efanov A, Georgiadou E, Muniangi-Muhitu H, Sheikh M, Giordano GN, Åkerlund M, Ahlqvist E, Ali A, Banasik K, Brunak S, Barovic M, Bouland GA, Burdet F, Canouil M, Dragan I, Elders PJM, Fernandez C, Festa A, Fitipaldi H, Froguel P, Gudmundsdottir V, Gudnason V, Gerl MJ, van der Heijden AA, Jennings LL, Hansen MK, Kim M, Leclerc I, Klose C, Kuznetsov D, Mansour Aly D, Mehl F, Marek D, Melander O, Niknejad A, Ottosson F, Pavo I, Duffin K, Syed SK, Shaw JL, Cabrera O, Pullen TJ, Simons K, Solimena M, Suvitaival T, Wretlind A, Rossing P, Lyssenko V, Legido Quigley C, Groop L, Thorens B, Franks PW, Lim GE, Estall J, Ibberson M, Beulens JWJ, 't Hart LM, Pearson ER, Rutter GA. Identification of biomarkers for glycaemic deterioration in type 2 diabetes. Nat Commun 2023; 14:2533. [PMID: 37137910 PMCID: PMC10156700 DOI: 10.1038/s41467-023-38148-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 04/18/2023] [Indexed: 05/05/2023] Open
Abstract
We identify biomarkers for disease progression in three type 2 diabetes cohorts encompassing 2,973 individuals across three molecular classes, metabolites, lipids and proteins. Homocitrulline, isoleucine and 2-aminoadipic acid, eight triacylglycerol species, and lowered sphingomyelin 42:2;2 levels are predictive of faster progression towards insulin requirement. Of ~1,300 proteins examined in two cohorts, levels of GDF15/MIC-1, IL-18Ra, CRELD1, NogoR, FAS, and ENPP7 are associated with faster progression, whilst SMAC/DIABLO, SPOCK1 and HEMK2 predict lower progression rates. In an external replication, proteins and lipids are associated with diabetes incidence and prevalence. NogoR/RTN4R injection improved glucose tolerance in high fat-fed male mice but impaired it in male db/db mice. High NogoR levels led to islet cell apoptosis, and IL-18R antagonised inflammatory IL-18 signalling towards nuclear factor kappa-B in vitro. This comprehensive, multi-disciplinary approach thus identifies biomarkers with potential prognostic utility, provides evidence for possible disease mechanisms, and identifies potential therapeutic avenues to slow diabetes progression.
Collapse
|
research-article |
2 |
20 |
22
|
Kibbey RG, Choi CS, Lee HY, Cabrera O, Pongratz RL, Zhao X, Birkenfeld AL, Li C, Berggren PO, Stanley C, Shulman GI. Mitochondrial GTP insensitivity contributes to hypoglycemia in hyperinsulinemia hyperammonemia by inhibiting glucagon release. Diabetes 2014; 63:4218-29. [PMID: 25024374 PMCID: PMC4237996 DOI: 10.2337/db14-0783] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mitochondrial GTP (mtGTP)-insensitive mutations in glutamate dehydrogenase (GDH(H454Y)) result in fasting and amino acid-induced hypoglycemia in hyperinsulinemia hyperammonemia (HI/HA). Surprisingly, hypoglycemia may occur in this disorder despite appropriately suppressed insulin. To better understand the islet-specific contribution, transgenic mice expressing the human activating mutation in β-cells (H454Y mice) were characterized in vivo. As in the humans with HI/HA, H454Y mice had fasting hypoglycemia, but plasma insulin concentrations were similar to the controls. Paradoxically, both glucose- and glutamine-stimulated insulin secretion were severely impaired in H454Y mice. Instead, lack of a glucagon response during hypoglycemic clamps identified impaired counterregulation. Moreover, both insulin and glucagon secretion were impaired in perifused islets. Acute pharmacologic inhibition of GDH restored both insulin and glucagon secretion and normalized glucose tolerance in vivo. These studies support the presence of an mtGTP-dependent signal generated via β-cell GDH that inhibits α-cells. As such, in children with activating GDH mutations of HI/HA, this insulin-independent glucagon suppression may contribute importantly to symptomatic hypoglycemia. The identification of a human mutation causing congenital hypoglucagonemic hypoglycemia highlights a central role of the mtGTP-GDH-glucagon axis in glucose homeostasis.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
19 |
23
|
Cabrera O, Scholthof KBG. The Complex Viral Etiology of St. Augustine Decline. PLANT DISEASE 1999; 83:902-904. [PMID: 30841070 DOI: 10.1094/pdis.1999.83.10.902] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
St. Augustine decline is a viral disease of St. Augustinegrass, a turfgrass grown in the Gulf Coast region of the United States. Analyses of 204 plants in two locations in southeast Texas indicate that the disease is caused by an infection with panicum mosaic virus (PMV), alone or in any combination with satellite panicum mosaic virus (SPMV) and/or its satellite RNAs (satRNAs). This is the first report of the incidence of PMV satRNAs in field samples of St. Augustinegrass. Leaf symptoms of plants collected from the field ranged from severe bleaching to a mild chlorotic mottle, but after 5 months in the greenhouse, the plants had a relatively homogeneous chlorotic mottle phenotype, suggesting that environmental conditions have a significant influence on the development of this disease.
Collapse
|
|
26 |
19 |
24
|
Ma W, Chen X, Cerne R, Syed SK, Ficorilli JV, Cabrera O, Obukhov AG, Efanov AM. Catechol estrogens stimulate insulin secretion in pancreatic β-cells via activation of the transient receptor potential A1 (TRPA1) channel. J Biol Chem 2018; 294:2935-2946. [PMID: 30587572 DOI: 10.1074/jbc.ra118.005504] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/10/2018] [Indexed: 12/22/2022] Open
Abstract
Estrogen hormones play an important role in controlling glucose homeostasis and pancreatic β-cell function. Despite the significance of estrogen hormones for regulation of glucose metabolism, little is known about the roles of endogenous estrogen metabolites in modulating pancreatic β-cell function. In this study, we evaluated the effects of major natural estrogen metabolites, catechol estrogens, on insulin secretion in pancreatic β-cells. We show that catechol estrogens, hydroxylated at positions C2 and C4 of the steroid A ring, rapidly potentiated glucose-induced insulin secretion via a nongenomic mechanism. 2-Hydroxyestrone, the most abundant endogenous estrogen metabolite, was more efficacious in stimulating insulin secretion than any other tested catechol estrogens. In insulin-secreting cells, catechol estrogens produced rapid activation of calcium influx and elevation in cytosolic free calcium. Catechol estrogens also generated sustained elevations in cytosolic free calcium and evoked inward ion current in HEK293 cells expressing the transient receptor potential A1 (TRPA1) cation channel. Calcium influx and insulin secretion stimulated by estrogen metabolites were dependent on the TRPA1 activity and inhibited with the channel-specific pharmacological antagonists or the siRNA. Our results suggest the role of estrogen metabolism in a direct regulation of TRPA1 activity with potential implications for metabolic diseases.
Collapse
|
Journal Article |
7 |
16 |
25
|
Farb TB, Adeva M, Beauchamp TJ, Cabrera O, Coates DA, Meredith TD, Droz BA, Efanov A, Ficorilli JV, Gackenheimer SL, Martinez-Grau MA, Molero V, Ruano G, Statnick MA, Suter TM, Syed SK, Toledo MA, Willard FS, Zhou X, Bokvist KB, Barrett DG. Regulation of Endogenous (Male) Rodent GLP-1 Secretion and Human Islet Insulin Secretion by Antagonism of Somatostatin Receptor 5. Endocrinology 2017; 158:3859-3873. [PMID: 28938487 DOI: 10.1210/en.2017-00639] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/06/2017] [Indexed: 12/25/2022]
Abstract
Incretin and insulin responses to nutrient loads are suppressed in persons with diabetes, resulting in decreased glycemic control. Agents including sulfonylureas and dipeptidyl peptidase-4 inhibitors (DPP4i) partially reverse these effects and provide therapeutic benefit; however, their modes of action limit efficacy. Because somatostatin (SST) has been shown to suppress insulin and glucagonlike peptide-1 (GLP-1) secretion through the Gi-coupled SST receptor 5 (SSTR5) isoform in vitro, antagonism of SSTR5 may improve glycemic control via intervention in both pathways. Here, we show that a potent and selective SSTR5 antagonist reverses the blunting effects of SST on insulin secretion from isolated human islets, and demonstrate that SSTR5 antagonism affords increased levels of systemic GLP-1 in vivo. Knocking out Sstr5 in mice provided a similar increase in systemic GLP-1 levels, which were not increased further by treatment with the antagonist. Treatment of mice with the SSTR5 antagonist in combination with a DPP4i resulted in increases in systemic GLP-1 levels that were more than additive and resulted in greater glycemic control compared with either agent alone. In isolated human islets, the SSTR5 antagonist completely reversed the inhibitory effect of exogenous SST-14 on insulin secretion. Taken together, these data suggest that SSTR5 antagonism should increase circulating GLP-1 levels and stimulate insulin secretion (directly and via GLP-1) in humans, improving glycemic control in patients with diabetes.
Collapse
|
|
8 |
16 |